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Abstract - The effect of the inclusion of nonlinear gain saturation in the governing equations 

of a semiconductor laser with optical feedback is numerically analyzed. The dependence of 

the route to chaos on the intensity of the nonlinear term and on the form of gain saturation, are 

considered. It is found that the inclusion of gain saturation causes significant changes in the 

behavior of the laser with respect to the route found when a linear optical gain is used [5]. We 

find that the value of the feedback rate at which the transition to coherence collapsed state 

occurs increases, as the intensity of the nonlinear term is augmented. In order to study the 

influence of the form of gain saturation, three different forms of optical gain, that result from 

spectral and kinetic hole burning or carrier heating, with an explicit intensity dependence are 

considered. The route to chaos is the same for the three forms considered but the parameters at 

which transition between attractors occur depend slightly on the form of gain saturation used. 

The calculated Lyapunov exponents, dimension and entropy confirm the fractal and chaotic 

nature of the attractors found. 

1. INTRODUCTION 

The complex laser dynamics induced by delayed feedback provides a rich variety of nonlinear 

phenomena. In a semiconductor laser with optical feedback intermittence [1], quasi periodicity [2], period- 

doubling [3] and coexistence of attractors [4] have been found experimentally and reported in numerical 

simulations. it is well known that the presence of a time delay in the feedback loop might cause the laser to 

switch to a state of significantly increased phase and dynamical complexity. This state has been called 

coherence collapsed state and has received a lot of attention Tom the experimental and the theoretical points 

of view. We recently showed that the laser dynamics in the coherence collapsed state is chaotic, calculating 

the Lyapunov spectrum and fractal dimension of the underlying attractor ES]. 
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However, the laser behavior vary strongly when a nonlinear gain saturation is considered. The transient 

frequency dynamics of a gain-switched laser diode has been studied in [6], while a high order expression for 

the gain dependence on the carrier density and on the optical intensity is derived in [7] and is used to describe 

the semiconductor laser above and below threshold in the static and transient regimes. In 151 we studied the 

dynamics of the laser using the model of Land and Kobayashi [S] with the linear optical gain G(N)=@+No). 

In this paper we present a detailed analysis of the effect of gain saturation on the chaotic dynamics of the laser. 

We find that the route to chaotic behavior of the laser with nonlinear gain is different than the one found in [5] 

where a linear gain was considered. Coexistence of two, and in some cases three, different attractors is 

reported, The value of the feedback rate at which the transition to coherence collapsed state occurs increases 

as the intensity of the nonlinear term in the optical gain is augmented. In fact, as the nonlinear term is 

increased, the attractors become more stable and the transition to the coherence collapsed state is delayed, i.e., 

increasing the intensity of the nonlinear term (decreasing the optical gain) seems to be equivalent to 

decreasing the feedback rate. 

In order to analyze the influence of the form of gain saturation we have considered three different 

forms that have been previously used for studying transient and stationary regimes of semiconductor lasers 

with satisfactory results [9,10,2]. Although the inclusion of gain saturation has important effects on the 

dynamics of the laser, the dynamics is almost the same for the three forms of nonlinear gain considered and 

only the values of the feedback rate at which transition between attractors occur, depend slightly on the form 

used. This behavior is explained because for typical values of carrier density and optical intensity in the 

chaotic attractors, the three forms of optical gain take almost the same values. 

The nature of the chaotic attractors found is studied using several chara~teri~tion techniques 

associated with Poincare sections, Lyapunov exponents, dimension and entropy. It is shown that using these 

techniques we can distinguish in the behavior of the laser different regimes of operation such as quasi 

periodicity with two incommensurate frequencies, quasi periodicity with three incommensurate frequencies, 

chaotic behavior and hyper-chaotic behavior. 

The outline of this paper is as follows. In section 2 we describe the model equations and its main 

characteristics. In Section 3 we study the evolution of the laser when the feedback rate is increased, for 

different values of the intensity of the nonlinear term in the optical gain. Section 4 is devoted to the 

characterization of the chaotic dynamics of the laser, calculating the Lyapunov spectrum, dimension and 

entropy of the attractors found. The conclusion are presented in section 5. 

2. THE MODEL EQUATIONS 

The rate equations governing the behavior of a laser diode with weak to moderate feedback are the 

Lang and Kobayashi equations [8] for the amplitude E,(t) and the phase 4(t) of the electric field and the 

average carrier density N(t) in the active region. The equations are nonlinear and the field equation contains a 

time-delayed term that accounts for the field reflected from the extemal.‘mirror and that renders the system 

infinite dimensional. 
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Wt) -&N(t) 
dt 

-- G(N,E’)EJt)’ 
z* 

(3) 

In these equations the field amplitude E,(t) is normalized such that V,E,(t)2 is the total photon 

number in the laser wave-guide (where Ve is the volume of the active region). T is the delay time (r=L/2c 

where L is the length of the optical path and c is the velocity of light), rs is the carrier lifetime or population 

inversion lifetime, rp is the photon lifetime and Tin is the round-trip time in the laser cavity. G(N,E2) is the 

optical gain and A(t)=wOrf(b(t)-4(t-r) is the phase delay (where w. is the laser frequency without feedback at 

the threshold of the laser operation). k is the feedback rate, i.e., k2 is the power reflected from the external 

cavity relative to the Rower reflected from the laser mirror. These equations do not include multiple reflection, 

and are therefore valid only for kc<1 . CL is the linewidth enhancement factor and J is the bias current. 

Three different forms of nonlinear gain are used, 

G~~N,E) = ~~, 
+ & 

G*~N,E) = ‘~~~), G~~N,E) = g(N - Nof(G EE’), 

with g being the modal gain coefficient, No the carrier density at transparency and e=I,,t-1 is the inverse of 

the saturation intensity and will be taken as a parameter in order to increase the value of the nonlinear term. 

G, was recently proposed by Agrawal [9] as providing the best fit to experimental measures of transient 

behavior while Gb and Gc are nonlinear gain saturations commonly used [10,2]. The three forms of gain 

saturation become equivalent by expanding to first order in cE2. 

3. DYNAMICS OF THE MODEL 

The behavior of the model when the gain saturation increases is studied in detail. The parameter E was 

varied as E=&~ ~~~ with ap in [O,l] and hoax = 7,5x10-*3 m3. We numerically integrated Eqs. (l)-(3) using 

G, form of optical gain and a six-order Runge-Kutta integration routine with a time increment At=O.O Ins. The 

values of the parameters used are the same as [5]: a=6 g=l.l~lO-~~ m3/s, No=1.1x1024 m3,2,=2 ns, rp=2 

ps, rinz6.7 ps, r=2 ns, J=2.OJth where Jth is the threshold current. We use the feedback rate k as the control 

parameter, in order to study the laser’s route to chaotic behavior. 

The stationary solutions of eqs. (l)-(3) are the external cavity modes (ECM) of the laser. If we neglect 

the small contribution from nonlinear gain [I 11, the stationary angular frequencies ws are the solutions of the 

equation 

while the stationary carrier density and field amplitude corresponding to a given value of os are 



350 C. MASOLLER et al. 

where N& is the threshold carrier density. The evolution of one ECM is studied for an increasing feedback 

level. The computer program was initiated from the ECM with minimum carrier density, and was first started 

for the laser diode without feedback. The value of the electric field in one round-trip interval is stored in 

memory in order to use it in next round-trip interval. We analyzed the trajectory after a large number of round 

trips in order to eliminate transient effects. 

Without feedback, the system shows the characteristic damped relaxation oscillations to the ECM of 

the laser. With delayed feedback, different motions might occur since the laser becomes a system with infinite 

dimension. Increasing the feedback level k, the ECM becomes unstable and a limit cycle appears. If we 

continue to increase k, the laser follows a quasiperiodic route and a two-torus appears. This attractor will be 

called attractor A. The evolution of this attractor when k is increased, i.e., the system’s route to chaos, depends 

on the intensity of the nonlinear gain saturation considered E. 

Some typical Poincare sections [ 12,131 that illustrate the evolution of the laser are shown in Figs. 1 and 

2. These Poincart sections were obtained plotting the normalized photon number N(t)/Nth-1 and the phase 

delay 4(t)-4(t-r) at the intersection points of the trajectory with the plane I(t)/Is=E(t)2/Eso12=1. 

Fig. 1 illustrates the evolution of attractor A for sp=0.2. For low values of k, the attractor is a two torus 

(Fig. 1 a). For higher values of k, a third incommensurate frequency appears and attractor A becomes a three- 

torus (Fig. 1 b). It is interesting to notice that, when using a linear gain in [5] was found that the two torus A 

undergoes several period-doubling bifurcations before becoming chaotic. Therefore, the inclusion of a small 

nonlinear term in the optical gain changes the period-doubling route into a quasi-periodic route and a three 

torus appears. 

If we continue to increase the feedback rate, above a certain critical point attractor A becomes unstable 

and a new attractor, which will be called attractor B, appears. Notice that while the Poincare section of 

attractor A has phase delay Q(t)-$(t-r) < 0 (Figs. 1 a, b), the Poincart section of attractor B has g(t)-$(t-r) >O 

(Figs. 1 c, d). In IS] using a linear gain and the same parameters as this paper, no coexistence of attractors was 

found. 

Attractor B is a two torus that undergoes a period-doubling bifurcation (Fig. 1 d) before the chaotic 

regime appears (Fig. le). For higher values of the feedback (Fig. 1 f), the trajectory “jumps” between the 

vicinity of attractors A and B. This regime is identify with the coherence collapsed state and is strongly 

reminiscent of the intermittence phenomena. 

For larger values of E a new torus appears (attractor C) and laser behavior becomes more complicated. 

Fig. 2 illustrates this behavior for aP =O.S. We can identify different types of regimes where the laser operates, 

that depend on the type of stable attractor. For low values of k, the stable attractor is attractor A (regime I, Fig. 

2 a, b). When this attractor becomes unstable, the laser switches to attractor B, which is the stable attractor in 

this regime (II, Fig. 2 c). Attractor B period-doubles before becoming chaotic. This chaotic regime has 

Poincark section with values 4(t)-$(t-r) >O (Fig. 2 d) and is desestabilized because of the presence of a new 
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Fig. 1 Poincart? sections for e,,=O.2. (a) two-torus A (the Poincark section has values O(t)-+(t-r)<O) ; (b) mree-torus A; (c) 

two-tams B (the Poincard section has 6(t)-+(t-r)>O) ; (d) torus B that period doubled; (e) chaotic attractor B and (f) coherence 

collapsed state (the trajecto& jumps between attractors A and B) 

stable attractor. This new attractor (C, Fig. 2 e) is a two dimensional torus that has PoincarC section with 

values $(t)-$(t-r) >O but that are slightly above of those of attractor B, i.e., attractor C is in the “middle” of 

attractors A and B. Regime III corresponds to the region when the laser operates close to attractor C. Finally, 

when attractor C becomes unstable, the laser switches between the three unstable attractors. This is regime IV 

shown in Fig. 2 f, that corresponds to the coherence collapsed state of the laser. The PoincarC section has 

points with $(t)-@(t-r) >O (close to the unstable torus B or C) and points with +(t)-+(t-r) <O (close to the 

unstable torus A). 

Let us now study the effect of increasing the nonlinear term in the optical gain for a fixed value of k. 

Fig. 3 shows the phase portrait and the PoincarC section of attractor A, for k=O.O07 and different values of Ed. 



i 

t 

i 

i’ 
1 

k=O.Ol 

,p... . . . 
‘. 

:,..--d 

t 

-“*?& 0.00 0.01 0.02 
N(t)/N,-1 

k=O.UI 3 

1.0 : 
-0.01 0.00 0.01 f 

N(t)/N~~-1 

k4.0149 
7.0 ,’ I , I 

i 

j 

i 

k=O,Ol5 

/ 
f ! 

i J 
I 

, 

1.0; * ) 
-0.01 0.00 0.01 0.02 

-4.0 - 
-0.01 0.00 0.01 0.02 

N(t)/NJ N(t)/N,,-1 

Fig. 2 Poin& sections for E~-O.S. (a) two-torus A; (b) two-torus A deformed; (cf torus B that period doubled; (d) chaotic 

attractor B; (e) two-torus C and (fj coherence coliapsed state 

r.J ’ 
I 

-0.01 0.00 0.01 0.02 
N(t)/N,-1 

C. MASOLLER et al. 

k=O.012 

a0 1‘1 

t 

i 

1 .o i 

k=0.0125 

In the linear case (sp =O) the attractor is chaotic (regime IV). As we increase the value of &p the 

attractor becomes more “ordenated” and is a two-torus for ~~4.5 and a limit cycle for ~~4.8. ‘l’hu~, 

increasing the ‘intensity of the nonlinear term (i.e., decreasing the optical gain) for a fixed value of k seems to 

be equivalent to decreasing the feedback rate for a fixed value of ape 

fn order to study the influence of the form of optical gain in the dynamics of the system, we have 

integrated Eqs. (f)-(3) using Gb and Gc forms. We have found almost the same behavior as the one described 

previously. The values of the feedback rate at which transition between attractors occur depend slightly on the 

gain saturation form used, but the shape of the attractors and the route to chaotic behavior is the same that the 

one described previously for the form G,, “Ibis is explained because for low values of a as the ones used in 

this paper and the values of carrier density and optical intensity in the attractors (typically ~.~(t)~~-l iQ.02 

and O<E(t)&Esol~C?, see Fig. 3), the three forms of optical gain take approximately the same values. 



The nonlinear gain in a semiconductor laser 353 

001 
‘-0.02 -0.01 0.00 0.01 0.02 

N(t)/N,,-1 

e,=O 

7*o j-----T 

02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 $02 
N(t)/N,h-l N(t)/N,,-1 N(t)/N,,-1 

2.0 ’ 

1 

t3,=0.5 e,=0.8 

I *.OO r------Y 

’ -0.02 -0.01 0.00 0.01 0.02 -0.02 -0.01 0.00 0.01 0.02 
N(t)/N,,-1 N(t)/N,,-1 

e,=O.S e,=0.8 

Fig. 3 (a), (b), (c) Phase plots of the trajectory; (d), (e), (t) Poincare sections for k = 0.007 and ~~ = 0; 0.5 and 0.8 respectivelly. 

For ~~‘0 the attractor is chaotic while for ~~‘0.5 is a two-torus and for ~~‘0.8 a limit cycle 

4. CHARACTERIZATION OF THE MODEL’S ATTRACTORS 

In order to gain more information about the stability and topological properties of the attractors found 

in the previous section, we have calculated their Lyapunov exponents, dimension and entropy. 

The Lyapunov exponents of an attractor show qualitatively the sensitive dependence on initial 

conditions by measuring the average separation speed of nearby trajectories on the attractor. Since a 

semiconductor laser with delayed feedback is a system with infinite dimensions, we must study the evolution 

of infinitesimal perturbations that are vectors with three components, two of which (the field and the 

amplitude) are functions of time over the entire delay t. The technique we used is as follows [S, 14, 1.51: for 

each exponent Ai to be computed, we arbitrarily selected an initial perturbation dxi(0) = (dEi(O), d@(O), 

dNi(0)). We monitored the evolution of the trajectory x(t) = (E(t), $(t), N(t)) and of the perturbations dxi(t) 

integrating simultaneously the nonlinear evolution equations (l)-(3) as well as the linealized equations, for a 
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round-trip time 7. Then we normalized the first perturbation dxl to have length one and using a Gram- 

Schmidt algorithm, we o~ono~ali~d the second vector relative to the first, the third relative to the first and 

second, and so on. We repeated this procedure for L round trip times and computed 

(7) 

where the Euclidean metric was chosen to define distance in the phase space 

lldx’(k)\r = ‘2 (dE;ki)2 + ;$ (d$;(k))’ -t- (dN;ki)2. (8) 
n j=l 

0 I 0 

Here dEji and d+ji with j=l...n are the electric field and phase components of the i-perturbation over the entire 

delay interval T. 

Since Eqs. (l)-(3) are invariant under a global translation in the phase ($j+4j+a), two points in the 

attractor that differ in a constant value of Q will not merge nor separate. Thus, the system has a “spurious” zero 

Lyapunov exponent in the spectrum that corresponds to a fixed zero in the system determinant D(s) [1 11. This 

exponent does not influence the stability of the attractors and will be ignored in the rest of our calculations. 

The fractal dimension of an attractor is related to the number of collective degrees of freedom exited in 

the system. From the spectrum of Lyapunov exponents we can calculate the Lyapunov dimension using the 

definition of Kaplan and Yorke [ 161 

(9) 

where Xl>k2>...>hn and j is the largest integer for which hl+h2+.,.+hj>O. For typical attractors it has been 

conjectured [ 171 that the Lyapunov dimension is equal to the well known information dimension. 

Finally, the metric entropy, that provides information on a typical predictability time of the motion, 
can also be computed from the spectrum of Lyapunov exponents. The relation between the metric entropy hu 

and the Lyapunov exponents [ 181 of an attractor is 

(10) 
i=I 

where hi+ are the positive Lyapunov exponents of the attractor. 

The results obtained are summarized in Tables I and II for the attractors shown in Figs. 1 and 2 

respectively. 

For ~~=0.2 and k=0.007, the attractor has two exponents equal to zero, Lyapunov dimension equal to 

two and zero metric entropy, i.e., is a two dimensional torus (see Fig. la). For k=0.0085 the attractor is a three 

torus that has three exponents equal to zero, dimension equal to three and zero entropy. For k=O.Ol and 

k=O.O106 the attractor is the two dimensional torus B, while for k=O.Ol I and k=0.0125 the attractors are 

chaotic. The Lyapunov exponents and metric entropy calculated confirm this fact, since the attractors have at 

least one positive exponent and positive entropy. 

For Ep=O.5 the results obtained are summarized in Table II. For k=O.Ol and 0.012 the attractor is two 

torus A, while for k=O.O125 the attractor is two torus B and for k=0.013 the chaotic attractor B. For k=O.O149 
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the attractor is the two dimensional torus C, and finally, for k=0.015 the attractor is chaotic. 

It is important to notice that the regime IV, that was identified with the collapsed coherence state, is a 

hyper chaotic state that has two or more positive Lyapunov exponents. The dynamical complexity of this state 

is evidenced by the fact that is has larger fractal dimension and entropy than the chaotic states shown in Fig. 

le (~~=0.2, k=O.Oll) or Fig. 2 d (E~=OS, k=0.013). 

TABLE I: Lyapunov exponents of the attractors shown in Fig. 1 (~~‘0.2) 

k Lyapunov Exponents DL hP 

0.007 0 0 -0.12 -0.23 -0.23 -0.47 -0.47 -0.54 -0.67 2 0 

0.0085 0 0 0 -0.05 -0.27 -0.28 -0.53 -0.56 -0.56 3 0 

0.01 0 0 -0.02 -0.07 -0.12 -0.30 -0.30 -0.43 -0.46 2 0 

0.0106 0 0 -0.02 -0.02 -0.17 -0.3 -0.3 -0.48 -0.48 2 0 

0.011 0.13 0 0 -0.04 -0.09 -0.26 -0.30 -0.39 -0.45 5 0.13 

0.0125 0.34 0.12 0.02 0 -0.05 -0.12 -0.19 -0.24 -030 7.5 0.48 

TABLE II: Lyapunov exponents of the attractors shown in Fig. 2 (E~=O.S) 

k Lyapunov Exponents Dl hP 

0.0 100 0 0 -0.12 -0.20 -0.20 -0.29 -0.33 -0.40 -0.46 2 0 

0.0120 0 0 -0.07 -0.08 -0.15 -0.27 -0.28 -0.34 -0.39 2 0 

0.0125 0 0 -0.09 -0.18 -0.19 -0.29 -0.29 -0.36 -0.36 2 0 

0.0130 0.12 0 0 -0.15 -0.19 -0.23 -0.26 -0.33 -0.35 4.77 0.12 

0.0149 0 0 -0.0 1 -0.01 -0.06 -0.15 -0.23 -0.25 -0.25 2 0 

0.0150 0.10 0.03 0 -0.01 -0.06 -0.13 -0.17 -0.22 -0.25 5.46 0.13 

5. CONCLUSIONS 

We have analyzed in detail the effects of the inclusion of nonlinear gain saturation in the governing 

equations of a semiconductor laser with optical feedback. We found that gain saturation varies strongly the 

behavior of the laser with respect of the behavior found in [5] where a linear optical gain was used. 

We found that, as could be expected, when the intensity of the nonlinear term is increased, for a fixed 

value of the feedback rate, the attractor is stabilized. In fact, the chaotic attractor turns into a two dimensional 

torus and this torus turns into a limit cycle when the parameter E is increased and the feedback rate k remains 

constant (see Fig. 3). This effect simulates the decreasing of the feedback rate for a fixed value of the 

nonlinear term. 

In addition, on the contrary with the linear case, when a nonlinear gain saturation is used, coexistence 

of attractors is found for a large range of the parameters. Moreover, for particular values of these parameters, 

intermittence is found and the trajectory jumps randomly between several unstable attractors . 

Finally, the characterization of the different attractors found was done, calculating their Lyapunov 

exponents, fractal dimension and entropy. With this characterization we can clearly discriminate between the 
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different regimes in which the laser operates, such as two-frequency regime, three-frequency regime, chaotic 

and hyper-chaotic regimes. 
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