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Abstract - The dynamics of the Loccnz model of general circulation of the atmosphere is 
investigated. The attractors found ace characterized by calculating their Fourier spectra, 

Lyapunov exponents and dimensions. In addition, the self similarity of the attractors is 

studied with the aid of a Poincare map. A series of ~r~~~di~~~e~lsional maps derived from 
the Poincare section illustrates the structural changes of the attractors as a function of 
parameters variations. 

1. INTRODUCTION 

The search for chaotic dynamics has become a fascinating subject in many scientific disciplines, 
and a great deal of interest has been focused on the rclcvancc: of strange attractors in modeling real 
systems. Numerical and theoretical evidence for strange attractors has baeu found in many model 
equations, and several techniques to analyze chaotic tlyrrarrrics have beeu developed [1,2). In order 
to cowpare model calculations with experi~~~erttal data, tlrc ~tiar~teri~atiol~ of the gc~metrical aud 

statistical properties of the strange attractors is required. ln the pccscnt paper we present such 
study of chaotic attractors of the Locenz model, a model of cousiderable importance in tbe fields of 

mettucology, fluid dynamics and atmospheric sciences. 
In Refs. [3,4] Lorenz introduced a modified version of his famous Locenz equations [S], a low-order 

geostrophic baroclinic model capable of representing t.be general circulation of the atmosphare. In 

previous studies we have shown that this model exhibits very rich dynamics [6,7]. An immense variety 
of bifurcation sequences were fouud, and coexistence of ~~eral attractors was reported.In the present 
contribution we characterize qualitatively these strange attractors, and investigate period-doubling 

cascades leading to chaos. 
Lorenz model of general circulation of the atmosphere consists of the following nonlinear ordiuary 

differcutial equations (3,4] 

dX - = -y3 - 2’ 
dt 

-a‘x+al’ 

g:=XY-6X&Y+G 

(1) 

dZ I ;it=6XY+Xi:-L (3) 
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where the variable X represents the strength of a large-scale westerly-wind current, while 1’ and 2 
are the strengths of the cosine aud sine phases of a chaiu of superposed waves. The parameter F 
represents the external-heating contrast, and C: rcpreseuts the heating contrast between ocean:3 and 
continents. For a = l/4, b = 4, G = 1 and dilfcrc!nt intensities of the external thermal forcing F, these 

equations may have one or more stable solutions, which cau be steady-states, periodic solutions, or 
aperiodic solutions. 

We will now describe briefly the changes that occur in the qualitative nature of the attractors as 
the parameter F is varied [6,7]. For F < 1.18 the equations possess one stable steady-state solution 
(fixed point l), for 1.18 < F < 1.27 two stable steady state solhtions (fixed points 1 and 2), and 
for 1.27 < F < 4.31 one stable steady state (fixed point 1) and one periodic solution (weak limit 

cycle). The weak cycle period-doubles at F = 6.25 and becomes unstable at 11‘ = 7.85. In the region 
4.31 < F < 7.85 the model presents two different attractors (the weak cycle and the strong attractor) 
and the diagram of solutions becomes extremely complicated. There are regions of the parameter 
F in which the strong attractor is periodic, regions in which it is aperiodic, and regions in which 
it does not exist, or is barely stable and only the weak limit cycle exists. In the turbulent region 

7.85 < F < 8.0 the weak cycle is unstable and the equations have only aperiodic solutions. 

We will study in detail three of the strong chaotic attractors found in (7) attractor f3 (F = 4.56), 
attractor N (F = 5.198) and the strongly chaotic attractor (I = 8.0). While the transition scenarios 
of attractors B and N are period-doubling cascades, the strongly chaotic attractor is born when a 
long chaotic transient becomes stable after the subcritical llopf bifurcation of the weak limit I:ycle. 

The qualitative nature of these attractors is studied with the aid of phase portrait and power spec- 
trum analysis [1,2,8]. We find that attractors B and N look like “noise limit cycles”. In contrast, 
the dynamics in the last one is highly chaotic. In addition, the Poincare section of the strongly 
chaotic attractor presents the self-similar structure characteristic of strange attractors [9] and is 
considerably more complicated than the Poincari sections of attractors B and N. The spectrum 

of Lyapunov exponents [lo-121 and several dimensions [13-161 are employed for dynamical and gee- 
metrical characterization. We show that these attractors have one positive Lyapunov exponent and 
fractal dimension. In addition, the period doubling cascades found in [7] are studied in detail. We 
show that these routes are in perfect correspondence to the Fcigenbaum sequence (17,181. A series 
of one dimensional maps is derived from the Poiucarrl xctctiou that explains this behavior. 

The paper is organized as follows. In section 2 the phase portrait and power spectrum of the 
attractors are studied, and their Poincari sections are presented in section 3. In section 4 the 

period-doubling routes to chaos are analyzed. Sectiou 5 is concerned with the dynamical and geo- 
metrical characterization with the spectrum of Lyapunov expoucnts and dimensions. Finally, section 
6 presents the discussion of the results. 

2. VISUALIZATION OF THE DYNAMICS 

In order to gtudy the qualitative nature of attractors 11, N and the strongly chaotic attractor, 
we use two of the more commonly employed methods, ni~lrlely phase portraits and powe:r spectrum. 
The phase plots were obtained integrating equations ( I )-( 3) itud plotting X(l) vs. Z(t), after letting 
transients relax (the parameters used are u = l/4, b = J, (; = 1). The power spectrum was calculated 
using 4096 points corresponding to the time series of the vitriable X( 1) with a time difference At = 0.5. 

Let us begin by comparing the phase portraits. While the orbits of the attractors B (lJig.lal and 
N (Fig.lc) look like n noisy limit cycles”, the orbit of the strongly-chaotic attractor (Fig. le) appears 
to fill out a continuous region of the phase space and has a considerably more complicated structure. 
This impression is reafirmed by the examination of the power spectrum. The spectrum of attractors 

B (Fig.lb) and N (Fig.ld) is composed of broadband components and sharp peaks. In contrast, 
in the spectrum of the strongly chaotic attractor (Fig.lf) we do not distinguish any sharp peaks. 
These results agree with the fact that attractors H and N arise from period multiplication cascades 
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of strong limit cycles, while the strongly chaotic attractor is a loug chaotic transient that becomes 
stable when the weak limit cycle losses stability. The transitiou scenario of attractor N is a period 
doubling cascade that will be studied in section 4, and closer examiuation of Fig. Id reveals that the 
spectrum of attractor N presents sharp peaks at frequencies /rJo with fo zz 0.18 in the frequency of 
cycle N. 

3. POINCARE SECTION ANALYSIS 

In order to gain insight into the geometrical structure of the a.t.tractors, we use the PoincarC sxtion 

technique [i3]. The Poincam section is a two-dimensional intersection of the phase spac,e chosen in 
such a way that all qualitatively interesting trajectories actually intersect the plane transversely. In 

our case we chose the plane Z = 0 and plot the coordinatc3 S vs. Y whenever Z = 0 and dZ/dl > 0 
(“mirror” points are rejected). For the precise location of the intersection poiut an effective technique 
proposed by H&on was employed [lU]. 

Figure 2a shows the Poincare section of attractor 8. Five strips can be seeu in the figure. Figs. 
2b, 2c and 2d are blowups of sectors of the section at successively greater resolution. This attractor 

shows the recursive structure that occurs on fractal attractors [!I]. A careful observation of Fig.Jd 

suggests that there are sectors of the map slightly more probable that others, and that this attractor 
is a fractal [14]. 

Fig. 2 (a) Poincart section of attractor B (F4.56). Figures (b)-(d) are blowups constructed by plotting only those points that lie 

withii the box indicated in figs. (a)-(c). Fig. 2a contains 5000 points, while (b)-(d) were constructed from 400.000. 
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Fig, 3 (a) Poincar4 section of a&actor N (F=5.198). (b) Blowup of the box indicated in fig. 3a 

Figure 3a shows the Poincar& section of attractor N, autl Fig. 3b is a niagnificatioli of t!ie 
sector indicated in Fig.Ja, We see that this attraclor couaiste of three distinct arcs and has simpler 
structure than the attractor B. A series of ollc!-tliltlcllsioJlal thla/>s derived in the next section, from 
this Poinca& map will add us in ex~~lai~li~~~ the: stqueu~~ of l~iftir~atiolls observed. 

Figure 4a shows the Poincart? section of the strctugly chaotic attractor, and Figs. 4b, 4c antl 
4d are successively magnification at greater resolution of a sector of the map. This attractor has 
pronounced sheet-like Cantor set structure characteristic of chaotic attractors. 

4. PERIOD-DOUBLlNG ROUTES TO CHAOS 

The routes into chaotic dynamics are studied by means of the I’oincaG maps defined in the previous 
section. In [6,7] a sequence of saddle-node and iuvcrsu saddle uode bifurcations, giving rise! to a 
periodic window structure , was found. 

Each periodic window is the domaiu of a difl’erent stroug limit cycle aud the transition scenario is 

usually a subharmonic cascade, In this section we will dcscribrt three of the ~~eriod-doubling cascades 
found in the first part of this scrie! and show that the esscutial dynamics can be captured by a 

one-dimensional non-invertible map. 
In the first window of periodicity, cycle U period-doubles at F = 4.484 and follows the subhar- 

monic cascade shown in the bifurcation diagram of figure 5a. ‘l’his bifurcation diagram was obtained 

plotting the coordinate X of points in a sector of thel’oiucwG map, as a function of F. We observe 
that the range of thePoincarG section that is visited by the chaotic trajectory grows with increasing 
the parameter F. Before the end of the ~eigeilljaunl st:t~ueucc we observe a sharp interior crisis at 
F = 4.488 and the size of the chaolic attractor suddenly grows. l3eyond this value of t” we observe 
a broad continuation of the chaotic regime up to another crisis al F = 4.489 that leads to a sudden 
destruction of the attractor. 

In the second window of periodicity, cycle II’ period-doubles at F = 4.601 and follows a period- 
doubling cascade that is interrupted by a period- halviug c~catlc. 

The corresponding bifurcation diagram is sbowu iu Fig. 51,. Iu the third window cycle N period 

doubles at F = 5.060’2 and follows the period doubling cascnrlc illustrated itr Fig. 5c. i3efore t:t:re end 
of the Feigenbaum sequence, a crisis occurs al 1;’ = 5.01i9 alid leads lo a sudden destruction of the 
cliaotic attractor. 
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Fig. 6 Relation between the critical values of the parameter a in the Feigcnbaum’s sequence of bifimxtions and tbe values of the 

parameter F at which the analogous events occur in the dynamics of the model. a) Bifurcations of cycle B. b) Bifurcations of cyc 

K. c) I3ifkcations of cycle N. 

The firet part of the three bifurcation diagranlv rc:sc:n~l~l~s the structure of the attractorv of the 
logistic map on the unit interval &+I = u.Y,,( 1 - S,,) (17,lt4]. Moreover, there is an itlniout linear 
relation between the values of lhe paraluetur (1 iuld I.IW l>~riuu&*r 11’ at which the period doubhgs 

sod periodic windowa h the chaotic regime occur (SW Izig.6). The seyucuce of event8 leading into 
chaos and the fine structure of the chaotic rcgitnt: along thcsc routes show perfect correspondence to 
the F’eigenbaum or Sharbovski sequence. 

For few selected values of F in the bifurcation cascade of cycle N we constructed the first return 

maps on the unit interval, shown in Fig.7. ‘I’hesc? maps wwc constructed from points in the sector 
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5. CHARACTERIZATION OF THE ATTRACTORS 

Lyapunov exponents describe the mean rater of 1,xpom*utial divergence or couvergenco of initiahy 
l~e~~h~~~~~g trajectories and f~ovide the best quarrtitativc nt~~surt of chaotic behavior. A system 
with one or m5re p0sitiW LyapuoOv expotter~ts is rhiiticri 10 be chaotic. We have c&dated the 
Lyapunov exponents ushi; the method proposed by Wolf ct. ill.it0f since: thiil techniyueyiolds in a 
straightforward manner for computing the cornplctc i,y~&~~t~~lo\~ spectrum. ‘fhe results obtained were 
double-checked by applying alternative ruethotls such as those giveu by Ueucttiu et. ;il. (11) aud 
Eckmztim et. al.[l2]. 

Tabh I aurnr~ar~ze the resufts obtained. The Lyaptntov c&Aatior~s clearfy indicate chaotic 
behavior, since agf the attractors have one positive Lyapuuov cxporlerrt. ~~~~~t~~~~ss~ tfle stra~igly 

chaotic attractor presents a col~siderabie larger &a&c dy~~ai~lics than attractors B and N, since 
its positive exponent is larger than the positive expouuut of attractors U aud N and its rregativc 
exponent 3s smaller than the negative cxponrrnt of attractors ff and N. 

~~~~a~~~~~t~ and ~~~~~~~i~~~~ R?g:ior1 in f f5r Wlidl cj?*) e f-f& was faci&& ff j4 approaches a Iim- 
iting value D, as the embedding dimensiou is incr~ascd, D, is i&A&d as the correlatiorr dimension, 
The correlation dimensiarx ww cafcuiated from the thrra dimensionat time series si(t), gi(t), z;(i) 
as well as from the reconstructed series s(fi),r(l, + r),~(1; + 27) , applying the delay method to 
reconstruct the dynamics from the measurumeuts of a. r;iugtc! vxia.blc, In 135th cum 70.000 data 

points wx used, and for the re&o~Istr~ctio~~ of the attractor, a delay time T = f was chasen, The 

estimated correlation dinl~ns~o~Is appear iu Tabfc I. We observe a very good agr~i~t b‘:twoen both 
calcuktions. While attrztors 23 and N present a corr~~~t~o~~ dimension 1 < f), < 2, according 
with the topological shape of the attractors (“noisy lid cydw”) ,tlte strotigly chaotic itttractctr has 

a correlatian dimension D, > 2 eviderrciug a more coruplcx clylramics. 1x1 addition, the Lyapunov 
dimension & was calculated from tile IGqhm wtd Yoh’a kn~rufn 

2 Ai 

&=j+J @I 

where j is the largest integer for which Xr t . . . . + XI 2 0. For typical attractors it has been 

conjectured [IS] that the Lyapunov dimeneion is equal to the information dirneusion am.! thus gives 

a value D& 2 &, Our results are given ih ‘I’abtc 1. 
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6. DISCUSSION 

In this contribution we have presented a full characlerixalion of the chaotic attractors of the 

Lorenz model of general circulation of the almospherc. 
Direct evidence from the inspection of conlpu~cd trajcctorics shows that attractor.3 B and N 

look like “noisy limit cycles”, while the strougly chaotic atlractor presents a nluch more complicated 
structure. In addition the spectra of attractors U and N prcseut sharp peaks and broad- band 
components. On the contrary, in the spectrum of lhe slrongly chaotic altractor we discern no sharp 

peaks. These features confirm the results of ref. [7] while lhe lransition scenarios of attractors B 
and N are period-multiplication cascades, the Iransit.iou sceuario of the strougly chaotic attractor is 
a subcritical Hopf bifurcation of the weak limit cycle. 

Moreover, the Poincart! sections of attractors U and N consist of thin arcs while the Poincari 
section of the strongly chaotic attractor presents a complicatctl self similar sheet-like structure. With 

the aid of Poincart! sections the period doubliug cascades were studied in detail. We were able to 
show that chaos develops in an almost perfect I&igenbaum scenario. However, the cha.os in never 
fully developed, but it ends with a crisis or a period-halviug cascade. The rlelailed study of these 
crises is the object of a forthcoming paper. 

Dimension and Lyapunov exponent calculations confirm the fractal and chaotic nature of the 
attractors. The Lyapunov exponents and dimensious of attractors E aud N are quantitatively 
different from those of the strongly chaolic attraclor. The values are lower, indicating much thinner 
strange attractors. 
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