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Abstract - The dynamics of the Lorenz model of general circulation of the atmosphere is
investigated. The attractors found are characlerized by calculating their Fourier spectra,
Lyapunov exponents and dimensions. In addition, the self similarity of the attractors is
studied with the aid of a Poincaré map. A series of one-dimensional maps derived from

the Poincaré section illustrates the structural changes of the attractors as a function of
parameters variations,

1. INTRODUCTION

The search for chaotic dynamics has become a fascinating subject in many scientific disciplines,
and a great deal of inierest has been focused on the relevance of strange attractors in modeling real
systems. Numerical and theoretical evidence for strange attractors has beeu found in many model
equations, and several techniques to analyze chaotic dynamics have been developed [1,2]. In order
to compare model calculations with experimental data, the characterization of the geometrical and
statistical properties of the strange attractors is required. In the present paper we present such
study of chaotic attractors of the Lorenz model, a model of considerable importance in the fields of
meteorology, fluid dynamics and atmospheric sciences.

In Refs. [3,4] Lorenz introduccd a modified version of his famous Lorenz equations [5], a low-order
geostrophic baroclinic model capable of representing the general circulation of the atmosphere. In
previous studies we have shown that this model exhibits very rich dynamics [6,7]. An immense variety
of bifurcation sequences were found, and coexistence of several attractors was reported.In the present
contribution we characterize qualitatively these strange attractors, and investigate period-doubling
cascades leading to chaos.

Lorenz model of general circulation of the atmosphere consists of the {ollowing nonlinear ordinary
differcutial equations [3,4]
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where the variable X represents the strength of a large-scale westerly-wind current, while Y and 2
are the strengths of the cosine and sine phases of a chain of superposed waves. The parameter F
represents the external-heating contrast, and (7 represents the heating contrast between oceans and
continents. Fora = 1/4,b = 4,G = 1 and different intensities of the external thermal forcing F, these
equations may have one or more stable solutions, which can be steady-states, periodic solutions, or
aperiodic solutions.

We will now describe briefly the changes that occur in the qualitative nature of the attractors as
the parameter F is varied [6,7). For F < 1.18 the cquations possess one stable steady-state solution
(fixed point 1), for 1.18 < F < 1.27 two stable steady state solutions (fixed points 1 and 2), and
for 1.27 < F < 4.31 one stable steady state (fixed point 1) and one periodic solution (weak limit
cycle). The weak cycle period-doubles at F' = 6.25 and becomes unstable at I* = 7.85. In the region
4.31 < F < 7.85 the model presents two different attractors (the weak cycle and the strong attractor)
and the diagram of solutions becomes extremely complicated. There are regions of the parameter
F in which the strong attractor is periodic, regions in which it is aperiodic, and regions in which
it does not exist, or is barely stable and only the weak limit cycle exists. In the turbulent region
7.85 < F < 8.0 the weak cycle is unstable and the equations have only aperiodic solutions.

We will study in detail three of the strong chaotic attractors found in [7] attractor B (F = 4.56),
attractor N (F = 5.198) and the strongly chaotic attractor (# = 8.0). While the transition scenarios
of attractors B and N are period-doubling cascades, the strongly chaotic attractor is born when a
long chaotic transient becomes stable after the subcritical Hopf bifurcation of the weak limit cycle.
The qualitative nature of these attractors is studied with the aid of phase portrait and power spec-
trum analysis [1,2,8]. We find that attractors B and N look like "noise limit cycles”. In contrast,
the dynamics in the last one is highly chaotic. In addition, the Poincaré section of the strongly
chaotic attractor presents the self-similar structure characteristic of strange attractors [9] and is
considerably more complicated than the Poincaré sections of attractors B and N. The spectrum
of Lyapunov exponents [10-12] and several dimensions {13-16] are employed for dynamical and geo-
metrical characterization. We show that these attractors have one positive Lyapunov exponent and
fractal dimension. In addition, the period doubling cascades found in [7] are studied in detail. We
show that these routes are in perfect correspondence to the Feigenbaum sequence [17,13]). A series
of one dimensional maps is derived from the Poincaré section that explains this behavior.

The paper is organized as follows. In section 2 the phase portrait and power spectrum of the
attractors are studied, and their Poincaré sections are presented in section 3. In section 4 the
period-doubling routes to chaos are analyzed. Section § is concerned with the dynamical and geo-
metrical characterization with the spectrum of Lyapunov expouents and dimensions. Finally, section
6 presents the discussion of the results.

2. VISUALIZATION OF THE DYNAMICS

In order to study the qualitative nature of attractors B, N and the strongly chaotic attractor,
we use two of the more commonly emnployed methods, nanely phase portraits and power spectrum.
The phase plots were obtained integrating equations (1)-(3) and plotting X(t) vs.- Z(t), after letting
transients relax (the parameters used are a = 1/4,b = 4,7 = 1). The power spectrum was calculated
using 4096 points corresponding to the time series of the variable X (¢) with a time difference At = 0.5.

Let us begin by comparing the phase portraits. While the orbits of the attractors B (Fig.1a) and
N (Fig.1c) look like "noisy limit cycles”, the orbit of the strongly chaotic attractor (Fig.le) appears
to fill out a continuous region of the phase space and has a considerably more complicated structure.
This impression is reafirmed by the examination of the power spectrum. The spectrum of attractors
B (Fig.1b) and N (Fig.1d) is composed of broadband components and sharp peaks. In contrast,
in the spectrum of the strongly chaotic attractor (Fig.1f) we do not distinguish any sharp peaks.
These results agree with the fact that attractors B and N arise from period multiplication cascades
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Fig. I Phase plots and power spectra of attractors B, N and turbulent attractor, Parameters: a=1/4, b=4, G=1
{a) and (b) F=4.56; {c) and (d) F=5.198; (e) and {f) F=8.0.
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of strong limit cycles, while the strongly chaotic attractor is a long chaotic transient that becomes
stable when the weak limit cycle losses stability. The transition scenario of attractor N is a period
doubling cascade that will be studied in section 4, and closer examination of Fig. 1d reveals that the

spectrum of attractor N presents sharp peaks at [requencies nfy with fo & 0.18 in the frequency of
cycle N.

3. POINCARE SECTION ANALYSIS

In order to gain insight into the geometrical structure of the attractors, we use the Poincaré section
technique [8]. The Poincaré section is a two-dimensional intersection of the phase space chosen in
such a way that all qualitatively interesting trajectories actually intersect the plane transversely. In
our case we chose the plane Z = 0 and plot the coordinates X vs. Y whenever Z = 0 and dZ/d! > 0
(" mirror” points are rejected). For the precise location of the intersection point an effective technique
proposed by Hénon was employed [19].

Figure 2a shows the Poincaré section of attractor B. Five strips can be seen in the figure. Figs.
2b, 2¢c and 2d are blowups of sectors of the section at successively greater resolution. This attractor
shows the recursive structure that occurs on fractal attractors [9]. A careful observation of Fig.3d

suggests that there are sectors of the map slightly more probable that others, and that this attractor
is a fractal [14].
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Fig. 2 (a) Poincaré section of attractor B (F=4.56). Figures (b)-(d) are blowups constructed by plotting only those points that lie
within the box indicated in figs. (a)-(c). Fig. 2a contains 5000 points, while (b)-(d) were constructed from 400.000.
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Fig. 3 (a) Poincaré section of attractor N (F=5.198). (b) Biowup of the box indicated in fig. 3a.

Figure 3a shows the Poincaré section of attractor N, aud Fig. 3b is a magnification of the
sector indicated in Fig.3a. We see that this atiractor consists of three distinct arcs and has simpler
structure than the attractor B. A series of one-dimensional maps derived in the next section, from
this Poincaré map will add us in explaining the sequence of bifurcations observed.

Figure 4a shows the Poincaré section of the strongly chaotic attractor, and Figs. 4b, 4c and
4d are successively magnification at greater resolution of a sector of the map. This attractor has
pronounced sheet-like Cantor set structure characteristic of chaotic attractors.

4. PERIOD-DOUBLING ROUTES TO CHAOS

The routes into chaotic dynamics are studied by means of the Poincaré maps defined in the previous
section. In [6,7] a sequence of saddle-node and inverse saddle node bifurcations, giving rise to a
periodic window structure , was found.

Each periodic window is the domain of a different strong limit cycle and the transition scenario is
usually a subharmonic cascade. In this section we will describe three of the period-doubling cascades
found in the first part of this series and show that the essential dynamics can be captured by a
one-dimensional non-invertible map.

In the first window of periodicity, cycle BB period-doubles at F' = 4.484 and follows the subhar-
monic cascade shown in the bifurcation diagram of figure 5a. ‘This bifurcation diagram was obtained
plotting the coordinate X of points in a sector of thePoincaré map, as a function of F'. We observe
that the range of thePoincaré section that is visited by the chaotic trajectory grows with increasing
the parameter F'. Before the end of the Feigenbaum sequence we observe a sharp interior crisis at
F = 4.488 and the size of the chaolic attractor suddenly grows. Beyond this value of F we observe
a broad continuation of the chaotic regime up to anothier crisis at J* = 4.489 that leads to a sudden
destruction of the attractor.

In the second window of periodicity, cycle K period-doubles at F = 4.601 and follows a period-
doubling cascade that is interrupted by a period- halving cascade.

The corresponding bifurcation diagram is shown in Fig. 5b. In the third window cycle N period
doubles at F = 5.0602 and follows the period doubling cascade illustrated in Fig. 5c. Belore the end

of the Feigenbaum sequence, a crisis occurs at F' = 5.089 and leads to a sudden destruction of the
chaotic attractor.
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Fig. 4 Poincaré section of the turbulent attractor. The blowups shown in figs (b)-(d) are constructed by plotting only those poin
that lie within the box indicated in figs, (a)-(c). Figure 4a contains only 10000 points, while (b), (c) and (d) were constructed fro
1.000,000 points.
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Fig. 6 Relation between the critical values of the parameter a in the Feigenbaum's sequence of bifurcations and the values of the
parameter F at which the analogous events occur in the dynamics of the model. a) Bifurcations of cycle B. b) Bifurcations of cyc
K. ¢) Bifurcations of cycle N.

The first part of the three bifurcation diagrams resembles the structure of the attractors of the
logistic map on the unit interval X, 4, = X, (1 — X,) [17,18]. Morcover, there is an alimost linear
relation between the values of the parameter ¢ and the parameter I at which the period doublings
and periodic windows in the chaotic regime occur (see Fig.t). The sequence of events leadiug into
chaos and the fine structure of the chaotic regime along these routes show perfect correspondence to
the Feigenbaum or Sharbovski sequence.

For few selected values of F' in the bifurcation cascade ol cycle N we constructed the first return
maps on the unit interval, shown in Fig.7. These maps were constructed from points in the sector
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Fig. 7 Return maps (wy,,Wp41) on the unit interval corresponding to the period-doubling cascade of cycle B. The parameters are (a}
F=5.086, (b) F=5.089, (c) F=5.09, (d) F=5.097, (¢) F=5.182 The points w=0 and w=1 correspond to the outermost and innermost
points of the sector of the Poincaré section indicated in fig. 4.
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of the Poincaré map indicated in Fig.3b. The coordinate X of the outermost point of the sector was
defined as w = 0 and the coordinate X of the lnermost point was chosen to represent the value
w = 1. As expected, the maps resemble the logistic map in the parameter range where we observe
the Feigenbaum sequence. lowever, at higher values of I' the map becomes more complicated.

5. CHARACTERIZATION OF THE ATTRACTORS

Lyapunov exponents describe the mean rate of exponential divergence or convergence of initially
neighboring trajectories and provide the best quantitative measure of chaotic behavior. A system
with one or more positive Lyapunov exponents is defined Lo be chaotic,. We have calculated the
Lyapunov exponents using the method proposed by Woll ct. al{10] since this techniqueyields in a
straightforward manner for computing the complete Lyapunov spectrum. The results obtained were
double-checked by applying alternative methods such as those given by Benettin et. al. [11] and
Eckmann et. al.[12].

Table I summarize the results obtained. The Lyapunov calculations clearly indicate chaotic
behavior, since all the attractors have one positive Lyapunov exponent. Nevertheless, the strongly
chaotic attractor presents a considerable larger chaotic dynamics than attractors B and N, since
its positive exponent is larger than the positive exponent of attractors B and N and its negative
exponent is smaller than the negative exponent of attractors B and N.

In order to study the fractal nature of the atiractors quantitatively, 2we now turn to the calcula-
tion of the dimension of the attractors. The method proposed by Grassberger and Procaccia {14,15]
leads the determination of the correlation dimension 1), which is a lower bound on the Hausdorff
dimension. The correlation sumn:

Ciry= %{Numberofprxirs(m;,:z:ﬁwii:‘z(a:; - ;] <1} (4)

was calculated and the scaling region in ¢ for which C{r) & r# was located. If g approaches a lim-
iting value D, as the embedding dimension is increased, D, is identified as the correlation dimension.
The correlation dimension was calculated {rom the three dimensional time series z;(), wi(t), zi(¢)
as well as from the reconstructed series 2(t;), 2(¢, + 7), £k + 27) , applying the delay method to
reconstruct the dynamics from the measurements of a siugle variable. In both cases 70.000 data
points were used, and for the reconstruction of the atiractor, a delay time v = 1 was chosen. The
estimated correlation dimensions appear in Table 1. We observe a very good agreement butween both
calculations. While atiractors B and N prescut a correlation dimension | < D, < 2, according
with the topological shape of the attractors (" noisy limit cycles”) the strougly chaotic attractor has
a correlation dimension D, > 2 evidencing a more complex dynamics. In addition, the Lyapunov
dimension D was calculated from the Kaplan and Yorke's formula

1
£ ;
T =
D=3+ or] {
where j is the largest integer for which Ay + ... + A; = 0. For typical attractors it has been
conjectured [16] that the Lyapunov dimension is equal to the information dimmension and thus gives
a value Dy, > D.. Our results are given in Table |

TABLE I Lyapunov exponents and dimensions for attractors B, N, and strongly chaotic

Attractor Lyapunov Exponents | Dy, | D1} | DA2)
B (F=4.56) 007 0 10 | 207150 |148
N (F=5.198) 0.07 0 -0.85 208 | 1.79 1.78
Strongly chaotic {F=38.0} 0.23 0 089 (2391228 1222

{1} Calculated from the reconstructed time series x{(8;),#(f; + 7),2(6; + 2r) with 7 = 1.
3 Calculated from the three dimensional time series (1), y:i{t), z:{!)
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6. DISCUSSION

In this contribution we have presented a full characterization of the chaotic attractors of the
Lorenz model of general circulation of the atmosphere.

Direct evidence from the inspection of computed trajectories shows that attractors B and N
look like "noisy limit cycles”, while the strongly chaotic attractor presents a much more complizated
structure. In addition the spectra of attractors B and N present sharp peaks and broad- band
components. On the contrary, in the spectrum of the strongly chaotic attractor we discern no sharp
peaks. These features confirm the results of ref. [7] while the transition scenarios of attractors B
and N are period-multiplication cascades, the transition scenario of the strongly chaotic attractor is
a subcritical Hopf bifurcation of the weak limit cycle.

Moreover, the Poincaré sections of attractors I3 and N consist of thin arcs while the Poincaré
section of the strongly chaotic attractor presents a complicated self similar sheet-like structure. With
the aid of Poincaré sections the period doubling cascades were studied in detail. We were able to
show that chaos develops in an almost perfect Feigenbaum scenario. However, the chaos in never
fully developed, but it ends with a crisis or a period-halving cascade. The detailed study of these
crises is the object of a forthcoming paper.

Dimension and Lyapunov exponent calculations confirm the fractal and chaotic nature of the
attractors. The Lyapunov exponents and dimensions of attractors B and N are quantitatively

different from those of the strongly chaotic attractor. The values are lower, indicating much thinner
strange attractors.
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