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Comparison of the Effects of Nonlinear
Gain and Weak Optical Feedback on
the Dynamics of Semiconductor Lasers

C. Masoller

Abstract—The influence of nonlinear gain and optical feedback When the laser operates in a single longitudinal mode, the
on the dynamics of single-mode semiconductor lasers are numer- saturation is included phenomenologically in the rate equations

ically investigated based on the Lang and Kobayashi model. It is i ; oot ; i
well known that the nonlinear gain tends to stabilize the dynam- _by erltlng the modal gain per unit timé with an explicit
intensity dependence

ics, while the optical feedback tends to increase the instabilities.
In this paper, we study the behavior of the attractors when the
feedback levelk and the gain saturation coefficiente vary and G(N, EQ) = GN(N = No)(1 - EEQ) 1)
show that the effects of these parameters are surprisingly oppo-

site. For example, we find that the route to chaos that the external whereGy is the modal gain coefficien; is the field ampli-
cavity modes follow for increasing’ is reversed for increasing=  tude, i.e.,.E? is proportional to the total photon numbgy N

in an almost identical manner. When the feedback increases the j5 the carrier density)V, the carrier density at transparency,

modes follow the usual quasi-periodic route and turn into torus. . - . . :
If k& continues to increase, the torus become chaotic attractors as and e the gain saturation coefficient. The form (1) is valid

the result of several period-doubling bifurcations or a third Hopf ~ {OF 10w output powers, since for largel’” the expression is
bifurcation. Further increase of k causes the chaotic attractors negative. The alternative forms
to lose stability. Contrarily, if the value of the parameter = is

increased, the attractors recover their stability and reverse the Go(N EQ) _ Gn(N —N,)

route becoming simple torus again. Ifc is increased further, the e\t T 14 eE?

torus reverse the quasi-periodic route and turn into stable modes GN(N - N,)

again. We also find that on the contrary tok, the parameter = Gy(N, EQ) = (2)
enhances the stability region of an attractor. We show that the V14 2eE?

feedback level above which a limit cycle emerges from a stable .
mode, the feedback level above which a torus emerges from aNave been proposed and are commonly employed. For optical

limit cycle, and the feedback level above which a chaotic attractor intensities much below the saturation levgl, andG, become
loses stability are all increasing functions ofz. equivalent toG by expanding to first order iaE?.

It is well known that semiconductor lasers provide a highly
stable radiation field. However, even a small amount of optical
feedback from an external reflector might have a profound

HE INTENSITY reduction of the gain is a phenomenofimpact on the dynamic and spectral behavior of the laser. Low

that has attracted considerable attention recently due tojégels of optical feedback might be used to obtain a significant
strong influence in semiconductor laser dynamics. It is usuallMewidth reduction and improved frequency stability, but
referred to as gain saturation or nonlinear gain and affe¢igjher feedback levels might cause the laser to switch to the
the damping rate of relaxation oscillations, the modulatiatbherence collapse state, in which the laser linewidth increases
response, and the stability and spectral properties of teseveral gigahertz, and the dynamics is chaotic.
laser. Although the physical processes that contribute to gainThe theoretical studies of a semiconductor laser coupled
nonlinearities are still not fully understood, it has been showg an external cavity are commonly based on the Lang and
that spatial and spectral hole burning, carrier heating, and tWaobayashi model [3], which has proven to successfully de-
photon absorption are phenomena responsible for nonlinggfipe the observed laser behavior [4], [5]. The model consists
gain [1], [2]. of rate equations for the complex electric figlidt) and for the

The inclusion of gain saturation in the governing ratgarrier densityN (¢) inside the laser cavity. The field equation
equations is known to be important in order to describgntains a single time-delayed term that takes into account
accurately the dynamics of semiconductor lasers, and variqHg field fed back into the laser cavity, and therefore, since
models have been advanced to account for gain nonlinearitiggltiple reflections are neglected, the model is valid for weak

. . , _ feedback levels.
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work [10], it was shown that the gain saturation plays areverses the quasi-periodic route and becomes a stable mode
important role in the dynamic response of the laser, increasiagain.

the feedback level above which the transition to coherenceAlso, we find that a slight increase of the feedback above
collapse occurs. However, we found that the particular foren certain critical value causes a chaotic attractor to lose
of nonlinear gain employed in the Lang and Kobayashi modstiability, but a slight increase of the value ofrenders the

had no important effects on the dynamics, the three forrmagtractor stable again. The critical feedback level above which
G, G, and Gy, were tested and the resulting dynamics wean attractor loses stabilityk.) depends on the value of the
almost independent of the form used, but strongly sensitivegarametee. We studied in detail the behavior of two attractors:
the value of the parameter attractor A (originated from the perturbed laser mode) and

In the first part of our present investigation [11] (hereafteattractor B (originated from the first compound cavity mode).
called part 1), we studied two different sets of Lang anBor both attractorg;. is found to increase almost linearly with
Kobayashi equations for a single-mode semiconductor laseri.e., the higher the value af the higher the feedback level
The two sets differ in the way the parameter is introduced above which the attractor loses stability.
in the model. The linewidth enhancement factor is introduced Furthermore, we find that both the feedback level above
in the field equation by linearizing the frequency of the lasevhich a limit cycle emerges from a stable mo@fa.) and
mode around its threshold value. One of the studied sets [{(Bg feedback level above which a torus emerges from a limit
and (3) of part I)] results from taking into account the intensitgycle (k) also increase with the value of the parameteWe
reduction ofG in the linearization ofv, while the other set [(6) show that the numerical value &f. of a given mode and its
and (3) of part I)] results from neglecting it. As we have showdependency with the parameteris in very good agreement
in part I, the two sets are equal when a linear formdbis with the analytical expression derived from a small-signal
assumed, but when gain nonlinearities are taken into accouwaralysis of the Lang and Kobayashi model.
the behavior they predict is strikingly different. Nevertheless, Finally, and with the aim of comparing the effects of the
in both sets, it was found that the parameter tends to stabilizarameterg ande in the coherence collapse state, we revisited
the dynamics, while the feedback levetends to increase the the results of [13], where we studied theoretically and experi-
instabilities. mentally the visibility (i.e., the field autocorrelation function)

A general question arising from the previous studies is tf a semiconductor laser operated well above the onset of
what extent the effects of nonlinear gain and weak opticabherence collapse. In [13], four experimentally measured
feedback can be considered opposite. In this paper, we fosisbility curves, corresponding to four different attenuations
our attention on comparing the effects of the paramédtersd of the light, were numerically fitted calculating the field
e on the dynamics of (5) and (3) of part I. We find severautocorrelation function based on the Lang and Kobayashi
interesting results that demonstrate that the effects of thesedel. Good results were found varying the parameéteaad
parameters are surprisingly opposite. e; the higher the value of used, the higher the feedback

First, we find that if the parameters and £ are both levels that had to be employed in order to fit the visibility
increased or decreased certain amo@ats, A¢), the Poincé& measurements. Here, we show that the plots of the feedback
section of an attractor (which is the transversal cut of tHevels as a function of give four straight lines with the same
attractor with a two-dimensional plane [12]) does not changm®sitive slope. This indicates that the visibility of the laser
significantly. The value ofAe that compensates the variatiorwithin the coherence collapse regime remains approximately
Ak depends on the attractor, but in all the studied attractarachanged if the parameteksand ¢ are varied accordingly
we have found that if\k > 0, thenAe > 0, i.e., an increase of to the linear relation.
the feedback might be compensated by an increase of the gaim summary, the main conclusion of our study is that the
saturation, and the dynamics of the laser remains unchangetiects of the parameters and £ are surprisingly opposite,

Second, we find that when the value of the parametir spite of the fact that they appear in terms of the field rate
¢ is increased the attractors reverse, in an almost identiegjuations that represent physically independent contributions
manner, the route to chaos that they followed for increasing the rate of variation of the complex electric field. We have
feedback. As it is well established, Asncreases the externalinvestigated parameter regions where the dynamics is very
cavity modes (which are the stationary solutions of the ratifferent, i.e., we have studied the stationary, periodic, and
equations) follow a quasi-periodic route and become toruguasi-periodic behavior, the onset of coherence collapse, and
Further increase of causes a torus to become a chaotiwell above the onset of coherence collapse, and in all regions
attractor, either after several period-doubling bifurcations @re found that mainly the effect of nonlinear gain is to enhance
after the apparition of a third incommensurate frequency (i.¢he stability region of an attractor by increasing the feedback
after the occurrence of a third Hopf bifurcation). Contrarelyate required to destabilize it.
if the value of the parameteris increased a chaotic attractor This paper is organized as follows. Section Il presents the
reverses the route, becoming a simple torus again. If risult obtained by studying the behavior of the attractors when
underwent several period-doubling bifurcations for increasirig and ¢ are varied. We also show that the values of the
k, it undergoes several inverse period-doubling bifurcatiop@rameters: and £ used in [13] to fit the visibility curves
for increasinge, or if it underwent a third Hopf bifurcation satisfy linear relations with the same positive slope. In Section
for increasingk, it undergoes an inverse Hopf bifurcation follll, we present our conclusions. A small-signal analysis of
increasinge. Moreover, if ¢ is increased further, the torus(5) and (3) of part | is presented in the Appendix, and an
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Fig. 1. Trajectories obtained integrating (5) and (3) of part | [11], with initial conditions chosen in mode A. In the first row, a linear gain is e@sider
the feedback is increased, while in the second row the feedback level is kept fixed and the gain saturation coefficient is (indseaseabsured in units
of 7.5 x 10~2* m?). The circles indicate the position of the fixed point corresponding to the perturbed laser mode.

analytical expression for the feedback above which a givém satisfy
mode becomes undamped is derived.

wsT — woT = —(k/Tin) T cos(w,T) + sin(w,7)] )
GN(Ns — No)(1 —el,) =1/7, — 2(k/Tin) cos(wsT) (6)
Il. RESULTS J = N,/7s — Gy(N, = N)(1 — eI ), = 0. (7)

In this section, we present the results of the numerical ) ] o )
integration of the Lang and Kobayashi equations The evolution of two particular modes are studied in detail: the

perturbed laser mode (mode A, which hag ~ —1) and the
d[E(t)e**®) 1+ i 1 i) first compound cavity mode (mode B, which hag = 4.5).
= G—— |E(te The feedback levet and the gain saturation coefficientare

dt 2 T,
L ‘ i ‘ the free parameters of our study (as in par¢ is measured
+ —E(t - 7)et=Te=oT - (3) in units of 7.5x 1072¢ m3).
df:l’t(t) _y_ NGO _ GE(t)’. (4) A. Behavior of Mode A
Ts

We begin by showing the behavior of the attractor originated
In these equations, the field amplitude is normalized sufftom mode A whenk ande vary. In Fig. 1, the attractor is
thatV E(t)? is the total photon number in the laser waveguiderojected onto the plane formed by the normalized intensity
(where V' is the volume of the active regiony. is the delay I(¢)/ls1 ({501 being the intensity of the solitary laser) and the

time (r = 2L/c where L is the length of the optical path phase differencé\ = w,7 + ¢(¢) — ¢(t — 7) (A/7 being the
and ¢ is the velocity of light), 7 is the carrier lifetime, average optical frequency, the threshold frequency of the
7p is the photon lifetime, and, is the round-trip time in solitary laser; the round-trip time in the external cavity, and
the laser cavityk is the feedback parameter, i.&2 is the ¢ the phase deviation from the phase of the stationary solitary
power reflected from the external cavity relative to the powdéaser).
reflected from the laser mirrot: is the linewidth enhancement For increasing feedback level and a fixed value of the
factor and.J is the current density in carriers per unit volumgarameter (first row of Fig. 1), the stable mode [Fig. 1(a)]
and unit time. In the numerical simulation, the values used foecomes a limit cycle [Fig. 1(b)] after a first Hopf bifurcation,
these parameters are= 6, G = Gy (N — N,)(1 — E?) with  and the limit cycle becomes a torus [Figs. 1(c) and (d)], after
Gy =11x 1072 m?/s andN, = 1.1 x 10** m=3. 7, = a second Hopf bifurcation. Fdr= 0.006 [Fig. 1(e)], the torus
2ns,7,=2ps Tin =8pPsS 7=2ns w,7 =7/2, andJ = period doubled, as will be shown below. This torus survives
2Jin (Jin being the threshold current density). only for a short feedback intervék < 0.0066) before it loses
The initial conditions are chosen in the external cavitgtability and gives rise to chaos.
modes of the laser, which are the fixed points of (3) and (4) andFor increasinges and fixed feedback level (second row
written in the formE?(¢) = I,, ¢(t) = (ws —w,)t, N(t) = N, of Fig. 1), the period-doubled torus reverses the route and
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Fig. 2. Poincage sections of attractor A f00.006 < k& < 0.0065 and0 < ¢ < 0.045.

becomes a simple torus [Figs. 1(g) and (h)], then a limit cycterus that is almost equal to the torus located in the upper left
[Fig. 1(i)], and finally a stable mode again [Fig. 1(j)]. corner.
To gain insight into the deep features of the dynamics, Also, notice that the Poincarsections for values afk, )
we use the Poincérsection technique [12] and calculate théhat satisfyk = k, + nAk,e = &, + nAe with Ak =
transversal cut of the attractor with the plaiét) = Ny, (N,  0.0001, Ae = 0.009, and » integer (i.e., the ones that are
being the threshold carrier density). The intersection pointscated in the diagonals that go from up-left to down-right)
are plotted in the plane formed by the normalized intensire all approximately equal. This result suggests that, if
1(t)/ 1,1 and phase delay(t) — ¢(t— 7). In Fig. 2, the results the parametergk,e) are varied certain amount\k, Ae)
obtained are presented in a matrix; the columns corresponith Ak/Ae ~ 0.01, the dynamics of the attractor remains
to Poinca€” sections that have equal (and differehtwhile approximately unchanged.
the rows correspond to Poinéarsections that have equal Attractor A loses stability when the feedback level is
k and differente. The feedback was varied in the rangéncreased above a certain critical value, but it recovers its
0.006 < k£ < 0.0065, and the parametet in the range stability if the value of the parameteris slightly increased.
0 < e < 0.045 (the transversal cut of attractor A is alsdn Fig. 3 of part I, we can see that fer= 0 attractor A loses
shown in Fig. 3 of part |, but in a larger parameter region). stability for feedback levels above 0.0066, but it is stable again
The Poincag’section shown in the upper left corner of Fig. & ¢ is increased above 0.02.
(k =0.006,¢ = 0) is the transverse cut of the attractor shown The critical feedback levet. above which attractor A loses
in Fig. 1(e) with the plané&V = Ny, and indicates that attractor stability augments with the value of the parametein Fig. 3
A is a torus that period doubled at a lower feedback level. of part I, notice that fore = 0 attractor A is unstable for
Notice that the effect of increasing the feedback is oppositeedback levels above 0.0066, while for= 0.06, it is unstable
to the effect of increasing. In the former case, the attractfur feedback levels above 0.0072. In the parameter region
undergoes a few period-doubling bifurcations, while in thehown in Fig. 3 of part I, when attractor A loses stability,
latter case the attractor undergoes a few inverse periafiaos arises since the trajectory starts switching between the
doubling bifurcations. For example, the period-doubled torusstable attractors A and B. As will be discussed below, for
located in the upper left corner of Fig.(2 = 0.006, = 0) higher values of, when attractor A loses stability attractor B
becomes a complicated attractor in the lower left cofiker s still stable, and the trajectory evolves toward it.
0.0065,¢ = 0). This attractor reverses the route as increases,The feedback level above which mode A becomes unstable
and in the lower right cornetk = 0.0065,¢ = 0.045) is a and a limit cycle appear§:;.), and the feedback level above
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Fig. 3. Dependencies with the parameter of the feedback level above which attractor A becomes kpdgtatitte ), of the feedback level above which
a limit cycle appears (calculated from the numerical simulation of the rate equakigné)ith o), and of the feedback level above which a torus appears
k¢ (dashed line). The dotted line represents the valué;ofobtained from the analytical expression (8).

which the limit cycle becomes unstable and a torus appeaimple torus, which reverses the route and evolves into a limit
(kt), also increase with the value of the parametdn Fig. 3, cycle [Fig. 4(g9)—(i)] and into a stable mode again [Fig. 4(j)].
we have plotted the values &f (with ), k. (with o), and The Poincaé section shown in the lower left corner of
k: (dashed line) calculated from the numerical simulation &fig. 5 (k¢ = 0.0053,e = 0) is the transverse cut of the
the rate equations, as a function of the parameteXotice attractor shown in Fig. 4(e) with the plan® = N, and
that they are almost linear functions ofwith positive slope, evidences that the attractor of Fig. 4(e) underwent several
which means that the nonlinear gain increases the feedbaekiod-doubling bifurcations. Also, notice in Fig. 5 that if the
level required to destabilize a fixed point, a limit cycle, or parametergk, ) are varied certain amountg\k, Ae), with
chaotic attractor. Ak = 0.0001n, Ae = 0.009n, and n integer, the Poincér
In Fig. 3, the dotted line represents the valuekgf cal- section of attractor B remains approximately unchanged (i.e.,
culated from the analytical expression (Al4) derived in thiae Poincag sections that are located in the diagonals that go
Appendix: from up-left to down-right are approximately equal).
G Attractor B loses stability if the feedback is increased above
o = ~Ti(1/7s + J"IS°1+IS°15/TP)_ (8) a certain critical value, but it is slightly increased, the
2v/ 1+ a? cos(wsT — arctan(a)) attractor becomes stable again. As an example, notice in Fig. 3
: . N of part | that for(k = 0.0062,e = 0.02) only attractor A is
Notice that_ (8) gives a very goqd approximation of the Valusetable, but for(k = 0.0062,¢ = 0.04) attractors A and B are
of k;. obtained from the numerical simulation, but the latter
is slightly higher than the value obtained from (8). E uatio%table'
gntly hig - = Fig. 6 shows how,, k;. andk, of attractor B depend on the
(8) demonstrates that the parameter renders a steady state . .
. . : arameters. The results obtained for attractor B differ from
more stable by increasing the feedback level above which the . .
: S hose obtained for attractor A essentially by the fact that mode
relaxation oscillations become undamped. ; ) o
B has two associated attractors, which are both originated from
. mode B but at different feedback levels, as will be discussed
B. Behavior of Mode B below.
In Figs. 4 and 5, we can see that the effects of the parametertn Fig. 6, the(o) indicates the value of;. above which a
k ande on attractor B are similar to those on attractor A. Thimit cycle arises from the stable mode B, calculated by direct
effect of increasing the feedback while keeping the value of tihemerical integration. This value is in excellent agreement
parametet fixed is opposite to the effect of increasiagvhile with the value predicted by (8) (dotted line). The dashed
keeping the feedback fixed. In the first case, the stable mda® indicates the feedback level above which the limit cycle
[Fig. 4(a)] evolves into a limit cycle (Fig. 4(b) and (c)] andbecomes a torus, and tH&>) indicates the feedback level
a torus [Fig. 4(d)], and the torus becomes a chaotic attractdyove which the chaotic attractor originated from the torus

[Fig. 4(e)]. In the second case, the chaotic attractor becomeleses stability.
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Fig. 4. Phase portraits of the attractor originated from mode B for increasing feedback level and for incredRiegcircles indicate the position of
the fixed point corresponding to mode B.
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Fig. 5. Poincae” sections of attractor B fod.0048 < k& < 0.0053 and0 < & < 0.04

For ¢ = 0 and feedback levels slightly above= 0.0053, between the unstable attractors A and B (see, e.g., Fig. 3
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attractor B loses stability and the trajectory jumps to attractof part 1). However, at a somewhat larger feedbagk=¢

A. Attractor A survives for a short feedback interval, and fo8.0083), a new limit cycle is created, which oscillates around
feedback levels above 0.0066 the trajectory switches randortthg position of the unstable mode B. Our numerical results on



810 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 33, NO. 5, MAY 1997

0.0200 T T T T T T T T T T

0.0175 .

0.0150

0.0125

0.0100

Feedback Level k

0.0075

0.0050

0.0025

0'0000 i 1 L 1 . 1 + 1 L 1 1 Il 2 L 1 L
000 010 020 030 040 050 060 070 080 090 1.00
¢ (in units of 7.5x10% m?)

Fig. 6. Dependencies with the parameteof k. (with &), k. (with o), andk, (with dashed line) for attractor B. The dotted line shows the valuk; of
predicted by (8). A second limit cycle is created from the unstable mode B, and the dashed-dotted line indicates the feedback level above which a torus
emerges from this limit cycle, and tH&J) indicates the feedback level above which the attractor originated from this torus loses stability.

the birth of this limit cycle are consistent with previous studiesaturation is to increase the feedback level above which chaos
[5], [14] and suggest that the limit cycle is originated from aarises.

unstable limit cycle created from the unstable mode B, whichFor £ > 0.16, when attractor A loses stability attractor B
bifurcates into a stable limit cycle and an unstable torus. is still stable and therefore the trajectory evolves toward it.

For ¢ = 0, the second limit cycle originated from mode Brhus, for high values of not only the transition A B
exists for only a smalt interval, and for feedback levels aboveanstead of A— chaos occurs, but also the attractors have
k = 0.0085 the trajectory switches between attractors A amdmore complicated and higher dimensional structure. The
B again. However, an increase of the value of the parameteute to chaos becomes more complex, and in the attractors
¢ increases the feedback range where this new limit cydlee apparition of a third frequency or a high-order frequency
exists. Even more, for higher values of the parameteas locking are precursors of chaos. Nevertheless, for high values
the feedback increases the limit cycle follows the usual quask ¢, the effects of the parameteksande are still opposite:
periodic route and turns into a torus which evolves into @n increase of; causes an attractor to become chaotic and
chaotic attractor before losing stability. Therefore, in Fig. &ventually unstable, while an increasezafauses the attractor
the dashed-dotted line indicates the feedback level abdwerecover its stability and reverse the route. For example,
which a torus emerges from the second limit cy@e,), and Figs. 7 and 8 show the effects of the paramefeland e in
the (OJ) indicates the feedback level above which the attractattractors A and B foe = 0.4. Notice that according to Fig. 6,
originated from this torus loses stabilify. ). the transition to chaos for = 0.4 occurs, for attractor B,

Notice thatk, » andk, » are increasing functions ef and at & = 0.0131, and Fig. 8 shows that attractor B is already
that the feedback range where the second attractor B exigaotic for & = 0.0123. However, let us remark that the
also increases with the value of the parametdiowever, the transition to chaos occurs before the attractor loses stability.
feedback range where the “old” attractor B exists increas&he value ofk. plotted in Fig. 6 indicates not the critical
with ¢ for values ofe below 0.16, but for values of above feedback level above which attractor B becomes chaotic (this
0.16, it diminishes untik ~ 0.58, where it disappears. Thevalue is difficult to determine numerically precisely, since the
annihilation of the old attractor B seems to be caused by ttransition to chaos is a smooth transition), but the value of
apparition of the new attractor B, since both attractors coexistabove which attractor B loses stability (since the trajectory
for a short feedback interval, but the new attractor is strongbwitches to another attractok. is a value that is easier to
damped and eventually causes the trajectory to switch to itdetermine numerically).

It is interesting to compare the previous results with those Finally, let us revisit the results of [13], where the exper-
of our early work [15], where a linear gain was considere@mentally measured visibility curves of a laser operating in
For low values ofs (¢ < 0.16) the route to chaos found herghe coherence collapse state were numerically reproduced by
is essentially the same one that was found in [15], i.e., calculating the field autocorrelation function with the Lang
period-doubling route of a 2-D torus. The main effect of gaiand Kobayashi model (the equations employed in [13] were
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Fig. 7. Effect of the parameters and ¢ on the Poincd section of attractor A. For = 0.4 and increasing feedback, the torus undergoes a third
Hopf bifurcation and becomes a three-dimensional torus. For valuésaifove 0.0107, the attractor loses stability after a high-order frequency locking
(the points of the Poincérsection are indicated with small circles). By increasing the paramettre attractor reverses the route and after an inverse

Hopf bifurcations becomes a simple torus again.
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Fig. 8. Effect of the parameter's and  on the Poincd section of the “second” attractor B. Fer= 0.4 and increasing feedback, the torus undergoes
first a period-doubling bifurcation and then a third Hopf bifurcation and becomes a 3-D torus. Further incréasauses the torus to become a chaotic
attractor before losing stability. For increasiag the route is reversed in an identical manner, i.e., the chaotic attractor turns to into a 3-D torus, then

a period-doubled torus, and finally a simple torus.

(5) and (3) of part I). In the experiments, the amount of lighhough the theoretical analysis revealed that there was a best
fed back into the laser cavity was controlled with a variablealue ofe to fit the experimental measurements, good fits were
attenuator and the visibility was measured for four differemiso found using different values ef the higher the value of
attenuations of the light (the attenuation was measured dremployed, the higher the values of, v, ~vs, and 4 that
arbitrary units as 0.7, 0.8, 0.9, and 1.0; the value 0.7 (1.fited the measurementsy in [13] corresponds td:/my, in
corresponding to the lower (higher) feedback level). Evahis paper). These values are plotted as a functior af
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Fig. 9. Feedback levels employed in [13] to reproduce the visibility curves, as a function of the paraietar[13] corresponds té&/ 7y, in this paper).
~1 (the feedback level that fits the curve with higher attenuation) is indicated with a cjiclis, indicated with a squareys is indicated with a diamond,
and v4 (the feedback level that fits the curve with lower attenuation) is indicated with a triangle.

Fig. 9. Clearly, the plot shows four linear relations with th&vith the same positive slope. This suggests that the visibility of
same positive slope. This suggests that the visibility curve tife laser remains approximately unchanged if the values of the
the laser remains approximately unchanged if the parametpesametersk, <) are both increased or decreased according to
(k,e) are varied accordingly to this linear relation. This resuthe linear relation.
again emphasizes that the effects of the paraméteand Second, we have found that the value of the parameter
are opposite, even in the coherence collapse state. increases the stability region of an attractor by pulling up
the feedback level above which an attractor loses stability.
. CONCLUSION The feedback level above which the relaxation oscillations of

] ] a given mode become undamped and a periodic limit cycle
We have presented a detailed comparison of the eﬁeCtsa?ﬁ)ears{klc), the feedback level above which a quasi-periodic

Wegk optical feedba_lck and nonlinear gain in_the dynamics &us emerges from a limit cyclé,), and the feedback level
a single-mode semiconductor laser. The main conclusmnsagove which a chaotic attractor loses stabiliy,) are all

oulr:_sttjdy arr]e an fo"%\’\;f]' t thouah th dtesd increasing functions of the parameterThe value ofk;. and
Irst, we have found that even tough he parameies itls dependency with the parameteis accurately predicted by

5.play Very d'ﬁeref‘t roles in the Lang anq Kobayashi mOd‘%'he analytical expression derived from a small-signal analysis
since they appear in terms that represent independent physu%a{ .
Qf the rate equations.

contributions to the rate of variation of the complex electric A litati lanati f the d denci fthe |
field, they effect is surprisingly opposite in all the parametﬁ)r quafitative expianation of the dependencies ot the 1aser

regions studied. We have found that the route to chaos t gthavior on the amount Of_ thicgl feedback and_ variations
the attractors follow for increasing and a fixed value of of the gain saturation coefficient is that both an mcre_ase of
¢ is reversed in an almost identical manner for increasingth® féedback term and a decrease of the gain saturation term
and a fixed value of. Also, we have shown that the Poinear contribute to increase the intensity of the light inside the laser
section of an attractor remains approximately unchanged if th@vity. Our results are consistent with those of [16], where the
values of the paramete(s, <) are both increased or decreasefifféct of strong feedback was shown to result in an additional
certain amountéAk, Ae). The variationg Ak, Ae) that leave cOmplex gain term, the real part being related to the gain due
a Poincaé section unchanged depend on the attractor, B@tthe optical feedback, and the imaginary part being related
in all cases studied they satisfxkAe >0, i.e., an increase to a frequency shift.

of the feedbackAk can be compensated by an increase of The stabilizing effect of nonlinear gain and the destabilizing
the parameter in Ae. In addition, we have shown thateffect of optical feedback are well known and have been ob-
the values ofk and ¢ that were used in [13] to fit four served experimentally. However, the surprising and intriguing
experimentally measured visibility curves of a laser operatingay in which both effects are opposite and compensate each
in the coherence collapse regime satisfy four linear relationther has not been reported previously to our knowledge.
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Even though the phenomenon is beyond the possibilities Dierefore, substituting (A4) and (A7) in (A6), we obtain
experimental detection, since the parameter cannot be varied iny )

the experiments, it is an interesting phenomenon that desen8g = [Lso1/Tp+27 cos(wsT) [(GnTs)|GN [1- 07 (e /Gy )]
further clarification. (A8)

which is independent to first-order of the value of the param-
APPENDIX etere. Moreover, the effect of the feedback on the stationary
Since in the literature the previous stability analysis weigtensity /; can be neglected compared to the value of the
based on (6) and (3) of part | [5], [17], in this appendix, wétationary intensity of the solitary laséy,, and thereforel g
perform a small-signal analysis of the rate equations (3) ap@n be approximated by
(4) near an initally stable modél,,w,, N,) and derive an
analytical expression for the fegjback Ie\l)@ above which Qf ~ Gulsor/7p = Wk (A9)
the mode loses stability and a limit cycle appears.

; e _ wherewp, is the relaxation oscillation frequency of the solitary
To first-order, the deviatio(¥, 6¢, 6N) from the stationary

. L ) laser.
solution satisfies the equations I' is the decay rate of the relaxation oscillations and is given
by
% =L,G'NON — G’ I,61 — vy cos(wsT) /1
= 2vL sin(w,T)[6¢(t) — 6 (t — 7)] (A1) 1(1 Lo
d(éd)) 1 1 ~ 5{_ + G]\‘r-[sol + 15} = FR (Alo)
7 = §OéG/ 6N — §OCG5€/6_[ Ts Tp
Yo whereI'r is the decay rate of the solitary laser (in (A10)
+ oL sin(wa)[61(t) — 6I(t — 7)] the effect of the feedback on the stationary intensity was also
— 7y cos(w,m)[66(t) — 86(t — 7)) (A2) neglected).
d(6N) ) ) Assumingw?, > 2, w% > 71, andw} > Ly, the
7 =—(1/7s + LGN )ON + (L,G,e" — G,)01(1) system determinant can be approximated by
(A3) D(s) = s® 4+ 2[y(1 = ¢7°7) cos(wsT) + ['g]s* + whs
where + wh(cos(w,T) — asin(w,7))y(1 —e™7) (All)
v =k/Tim, Gy = Gn(1 —el,), e =¢/(1 —el,) (notice that in (Al11l) the parameter appear only in the value
G, =Gy (N, = N,) = 1/, — 2ycos(w,r).  (ad) O I'r)

A stable mode becomes unstable when a zeraDo$)
passes the imaginary axis. By inserting= ;< in (All)
and separating the real and imaginary parts, we obtain the
following relations:

Since for typical parameter valued, < 1,G ~ Gy and

¢’ a2 «. In the following, we will replace,, by Gy and &’

by . The determinant of the Laplace transform is

—2[1c(1 = cos(Q27)) cos(w,T) + I'g]Q2?

+ wh(cos(wsT) — asin(ws 7)) ye(1 — cos(27)) = 0
(A12)

D(s) =s* 4+ 2[y(1 — ¢™°7) cos(w,T) + I'|s?
F (L= ) 4 201 — e7)
- (cos(wsT) — asin(wsT)) + 40 vy(1 — e7°7)
-cos(wsT) + Q%]s
+ 20Ny (1 — 7 )? 4+ QFy(1 — e%7)
- (cos(wsT) — asin(wsT)) (A5)

— % — 275 8in(Q7) cos(w,7)02?)
+ W Q + wh(cos(wsT — asin(w,sT) )y sin(Q7) = 0.
(A13)

The onset angular frequen€yand the onset feedback level
k. can be found solving the coupled equations (Al2) and
(A13). In generalQ2 will be close towg [4], [5], [17], and if
wrT = (2n + 1)m with n integer, the feedback level above

where

Iy =1/2(1/7, + Gy 1)

I'r =1/2G;el, which the mode becomes unstable and a limit cycle appears is
F=I'r+Iy —rlR
Q% =G ILGN[1+¢/(GnTs)). (AB) ke = i (A14)

cos(wsT) + asin(wsT)

As was discussed in part |, the stationary intengjtyatisfies  As disscused in [17], this is a lower limit of the actual
[11, eq. (A.5)]): value of k;., which depends on the value afg7. We show
in Section Il that for our parameter values (Al14) provides a
I _ Lso1/Tp + 2y cos(wsT)/(GNTs) {1 __° } (A7) Vvery good approximation of the feedback level above which
’ 1/7p — 27 cos(w,T) GNTs a mode becomes undamped.
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