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Implications of How the Linewidth
Enhancement Factor is Introduced
on the Lang and Kobayashi Model

C. Masoller

Abstract—The implications of how the linewidth enhancement linewidth, affects the frequency chirp, the modulation re-

factor is introduced on the Lang and Kobayashi model of a single- sponse, the injection-locking range, and the effect of external
mode semiconductor laser with optical feedback are numerically feedback [2]

investigated. « is introduced on the model in the rate equation . . .
for the complex electric field by performing an expansion of the Optical feedback in semiconductor lasers has attracted the

frequency of the laser mode around its threshold values,. Two  attention of many researchers owing to its practical importance
different expansions of have led to two different sets of Lang as well as to the rich variety of nonlinear behavior observed.
and Kobayashi equations; in the first set, the intensity reduction ¢ i5 el known that a small amount of feedback can be

of the optical gain G is taken into account in the linearization . . . . L
of w, while in the second set it is neglected. Although in the useful for linewidth regluctloln, but the fgedpack intensities
literature the investigations of semiconductor lasers with optical that are likely to occur in optical communication systems can
feedback have been based on either of these sets, they are equdead to the occurrence of “coherence collapse,” in which the

only when a linear form for G is assumed. In this paper, it |aser linewidth is enhanced from a few megahertz to several
is shown that on which set of Lang and Kobayashi equations gigahertz

the investigations are based is an important fact to take into . . . .
account when interpreting the results, since it is shown that if ~ 1he theoretical studies of semiconductor lasers with external

the nonlinear gain is considered, the dynamics predicted by the feedback are commonly based on the Lang and Kobayashi
two sets are very different. In particular, itis shown that behavior - mgodel [3], which has proven to give a detailed understanding
of the external cavity modes and the stability properties of the ¢ \he ohserved laser characteristics, such as noise properties,
attractors differ greatly when the gain saturation coefficientz is . . . . .
varied. linewidth reduction, stability properties, spectral behavior, and
the onset of coherence collapse [4]-[9].

The model consists of rate equations for the complex electric
field and for the carrier density inside the laser cavity. The

N SEMICONDUCTOR lasers, the carrier density deperiield equation is the standard laser equation plus a single time-

dence of the refractive index plays a fundamental rolglelayed term that takes into account the field reflected from
since it introduces a coupling between the amplitude afige external cavity (since multiple reflections are neglected,
the phase fluctuations of the electric field. The couplingie model is valid for low to moderated feedback levels).
is basically caused by the fact that a change in the re@dsuming the laser oscillates in a single longitudinal mode
part of the susceptibility (proportional to the refractive inwith threshold frequency,, and writing the complex electric
dex) will be accompanied by a change in the imaginafield as E(t)exp[i(w.t + ¢(t))], the deterministic equations
part of the susceptibility (proportional to the gain) via theénhat were originally introduced by Lang and Kobayashi are
Kramers—Kroning relations. The coupling is described by the

I. INTRODUCTION

. . E id(t) 1 1 .
linewidth enhancement factor [1] diE$)c™V] _ [i(w —wo) + = <G - —)} E(t)e™®)
12 dt 2 r
o= 2k, 20 (1) k }
= o Ag + —E(t _ T)eiqb(t—‘r)e—iwo‘r (2)
wherek, is the free-space wave vector atdh/(Ag) is the dN(t) N(t) 2
change in the real part of the refractive index (in the electronic 7 J - . GE(t) 3)

gain per length) occurring when the carrier density is altered.

« is one of the fundamental parameters for semiconductshere w is the frequency of the longitudinal mode, =
lasers. It is responsible for the enhancement of the lagdrext/cis the round-trip time of the light in the external cavity
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Publisher Item Identifier S 0018-9197(97)03040-6. the current density.

0018-9197/97$10.0Q0 1997 IEEE



MASOLLER: HOW THE LINEWIDTH ENHANCEMENT FACTOR IS INTRODUCED 797

@ is the modal gain per unit timéG = v,g, wherev, main conclusion of our study is that even for low values of
is the group velocity). The intensity reduction of the gairg set of rate equations on which the investigations are based
which results from spatial and spectral hole burning and carriglays an important role in the results obtained.
heating, is included phenomenologically in the rate equationsThis paper is organized as follows. Section Il presents the
(2) and (3) by writingG in the formG = G,(1—¢E?), where numerical results and analyses of the attractors found when
G, is the linear gain7, = Gy(N — N,) (Gny and N, being sets 1 and 2 are integrated. In Section Ill, we study the
constants), and is the gain saturation coefficient. behavior of the external cavity modes of sets 1 and 2 when

« is introduced on the model by linearizing around its varies. Finally, Section IV summarizes our conclusions.
threshold valuew, = w(Ny,), where Ny, is the threshold
carrier density (which in the absence of feedback is determined II. RESULTS
by G(Ny) = 1/7,). The frequency of the laser cavity mode
depends on the refractive index and is givenuby: prre/n'l,
wherec is the velocity of the light] is the diode cavity length,
and p an integer number. Thus, linearizing around thresho
conditions and using (1)y can be written in terms of the
parameter as

In this section, we numerically integrate, with the same
initial conditions and parameters, sets 1 [(5) and (3)] and 2
{&6) and (3)]. We will show that even for very low values of
¢ the results obtained from them can be different.

In the numerical simulation, the values adopted for the
parameters are = 6, Gy = 1.1 x 1072 m3/s N, = 1.1 x

W =w,+ %ocAG. (4) 10 m3,7,=2NnS7, =2PSTin = 8PST = 2 NSw,T =
7w /2,J = 2Jy, (Ju, being the threshold current density). The

In the literature, two different expansions A in (4) have eedpack levek and the gain saturation coefficientare the
led to two different equations for the complex electric fieldree parameters of our study (in order to clarify the exposition
Writing w asw = w, +1/2a[G — G(Nw] = w, +1/20(G = of the resultsg is measured in units of 7.5 10-24 m3).

1/7p) and substituting in (2) yields Sets 1 and 2 are integrated with the same Runge—Kutta
d[E(t)ei¢®) 1+ i . 1 B0 method and the.same initial conditions, 'whic.h are chqsen in
dt = < 2 )( T—> (t)e the external cavity modes of the laser (i.e., in the stationary
1 P solutions of the rate equations). If we neglect the contribution
+ —E(t— 1)e®t"e7  (5) from nonlinear gain, sets 1 and 2 have the same stationary
Tin solutions that, written in the fornk?(¢) = I, ¢(t) = (ws —

Since the intensity dependence of theparameter is not w,)t, and N(t) = N, satisfy [4], [9]
well known, the intensity dependence &¥f in (4) has

been neglected [9]. Therefore, writing as [8] w = WsT — woT = —y7[rcos(w,T) + sin(ws7)]

wo +1/20(30G/ON)| N2y, AN = w, + 1/2aG N (N — Nyp) =—y7v 1+a? sin(wsT+arctan o) (7)

and substituting in (2) yields G, =1/7,— 2y cos(w,T) 8)
d[E®#)e*®]  [ia J=N,/7s—G,1, =0 (9)

GN(N—Nth)—i—% <G— i)} E(t)e¢®

dt T2 Tp

1 whereG; = Gy (N; — N,) and~. The modes are obtained by
+ Bt — 7)etm e, (6) first solving the phase condition (7) far,7, which may have
Tin multiple solutions, corresponding to multiple external cavity

The complete system of equations is obtained by combiningpdes. The values of, and N, of a given mode are then
(5) or (6) with the rate equation for the carrier density (3kalculated from (8) and (9).
These equations have succeeded in explaining week feedbacRince the value of;7v/1 + o2 determines the amplitude of
effects in laser diodes and have been studied by several grotifgssine term of (7), the number of solutions will increase as
[9]-[16]. the feedback increases. A small-signal analysis shows that, for

Equations (5) and (6) are equal only when a linear form féow values ofk, only one mode exists and is stable (we will
G is assumed. The aim of this paper is to determine whethefer to this mode as the perturbed laser mode or mode A),
or not set of equations (5) and (3) (we will refer to this seind that ag: increases, pairs of modes are created in saddle-
as set 1) and set of equations (6) and (3) (set 2) predict thede bifurcations. One mode is initially stable (we will refer
same dynamic response of the laser when gain nonlinearitiesthis mode as a compound cavity mode) while the other
are taken into account. mode is unstable of saddle type (we will refer to this mode as

By numerically integrating the two sets with the same initisdn antimode [9]). For example, for our parameter values and
conditions and parameters, and varying the paramgtensle, % = 0.006, (7) has seven solutions, one corresponds to the
we show that although when= 0 the two sets trivially give perturbed laser mode, three to compound cavity modes, and
the same results, when # 0, the behavior of the externalthree to antimodes.
cavity modes (which are the stationary solutions of the rate Also, neglecting nonlinear gain effects, we have shown
equations), the stability properties of the attractors, and tf7] that ask increases, the initially stable modes undergo
effect of the parameter in the dynamics of set 1 are verya quasi-periodic route, and each mode gives rise to periodic
different from those in the dynamics of set 2. Therefore, thascillations (i.e., a limit cycle) and quasi-periodic oscillations
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Fig. 1. Trajectories obtained from the numerical simulation of set 1 (first row) and from set 2 (second row). The initial conditions are chosen iromode A f
= 0, and the evolution of the attractor originated from this mode is studie# f8r0.0062 and increasing: is measured in units of 7.% 10724 m?).

(i.e., a torus). As the feedback level continues to increase, thaVhen the numerical simulation is based on set 1, the phase

torus become chaotic and eventually lose stability, and tpertraits shown in the first row of Fig. 1 indicate that an

trajectory switches randomly among them. increase of the parameter causes the attractor to reverse
Let us now show how these results change when the route to chaos that followed for increasing feedback. The

nonlinear gain is taken into account and how they depeatiractor shown in Fig. 1(a)k = 0.0062,e = 0) has a very

on set of rate equations employed in the numerical simuleemplicated appearance and was originated from a quasi-

tion. periodic route of mode A (we will refer to this attractor as
We begin by visualizing the dynamics with phase portraitattractor A). Attractor A reverses the route @ass increased

We project the trajectory, after a certain number of rourmhd is a simple torus in Fig. 1(b) and (c), then a limit cycle in

trips to eliminate transient effects, in the plane formed Hyig. 1(d), and finally a stable mode (indicated with a circle)

the normalized intensity/(t)//;,; and the phase differencein Fig. 1(e).

A(t) = w,T+ ¢p(t) — p(t — ) (since the instantaneous optical When the numerical simulation is based on set 2, the phase

angular frequencw (t) is given byw = w, + d¢(t)/dt, A/T portraits shown in the second row of Fig. 1 indicate that an

is the optical frequency averaged a round-trip tin)e increase of not only causes the attractor to reverse the route to
Figs. 1 and 2 show the differences between the dynamidsaos, but it also causes the attractor to have a phase difference

predicted by sets 1 and 2, when the parameter is increagedhat increases with.

from ¢ = 0 to e = 1. The first row of the figures shows The same results are found fdér = 0.0072. Fore =

the results of integrating set 1, while the second row shoWs[Fig. 2(a)], the trajectory switches randomly between two

the results of integrating set 2. The feedback level was seistable attractors: A and B. Attractor B is the attractor

to £ = 0.0062 in Fig. 1 and t& = 0.0072 in Fig. 2. In the originated from the first compound cavity mode (or mode

two figures, the numerical simulation was started do£ 0, B). Notice that while attractor A hag\ <0, attractor B

and the initial conditions were chosen in the perturbed ladeas A >0 (mode A has, for the parameter values of Fig. 2,

mode w.hich fore = 0 satisfies (7)—(9)]. The evolution ofw,7 = A ~ —1, while mode B has,7 = A x4.5).

the attractor originated from this mode was then studied for When the numerical simulation is based on set 1, an increase

increasinge. of £ causes attractor B to regain stability [in Fig. 2(b), we
Although it is not evident from the figures (the verticatan see that for = 0.25 attractor B is a complicated torus].

scales of Fig. 2(a)—(e) and (f)—(j) are different), the attractétowever, attractor A also recovers its stabilitysamcreases.

shown in Fig. 1(a) is equal to the attractor shown in Fig. 1(fl,herefore, where is increased frone = 0 to ¢ = 0.25 in

and the attractor shown in Fig. 2(a) is equal to the attracttire numerical simulation, the trajectory obtained will be in

shown in Fig. 2(f). This is a trivial result, since sets 1 andttractor A or in attractor B depending on where the trajectory

2 are equal wher = 0. Clearly, whene # 0, the results was before the value efwas increased. The first row of Fig. 2

obtained integrating set 1 differ greatly from those obtaineshows that further increase efcauses attractor B to reverse

integrating set 2. the route and to become a limit cycle for= 1.
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Fig. 2. Phase portraits fdr = 0.0072 and increasing (a)—(e) show the results of integrating set 1, while (f)—(j) show the results of integrating set 2.

When the numerical simulation is based on set 2, the phake transversal cut of the trajectory shown in Fig. 2(a) and
portraits shown in the second row of Fig. 2 demonstrate thatlicates that for these parameter values the trajectory switches
an increase of, in addition to causing attractor B to becomdetween two different attractors.
stable and to reverse its route, also causes the attractor to havehe first columns of Figs. 2 and 3 are equal, since for
a phase differencé\ that increases with. e = 0 sets 1 and 2 are equal. Clearly, the results obtained

Even for very low values of, the set of rate equationsin the rest of the colums are very different; the sections of
employed in the numerical simulation plays a fundamenttie attractors and the effect of the parameter differ strongly.
role in the results obtained. As an example, we show thethe dynamics of set 1, the effect of increasing opposite
results of integrating the two sets in the parameter regié® the effect of increasing:. Notice in Fig. 3 that where
0.0062 < k < 0.0072, andd < ¢ < 0.1. In this region, increases attractors A and B recover stability and undergo

attractors A and B are complicated attractors and thdfiverse period-doubling bifurcations. On the contrary, in the
dynamics are best visualized using the Poiacaection dynamics of set 2, there are parameter regions where the effect
technique [18], which consists of investigating, instead & € on the Poinca sections of the attractors is similar to
the complete trajectory, only the intersection points of tH@€ effect ofk. For example, notice that in Fig. 4 fdr =
trajectory with a two-dimensional plane. Here we plot th8-0072,& = 0.02, attractor B is a limit cycle, and when
transversal cut of the attractor with the plane= N, on ¢ increases the limit cycle turns into a torus that period

the plane formed by the normalized intensttt)/1,.;, and doubles. _ .
the phase delay(t) — ¢(t — 7). The results obtained are Also, the parameter regions where attractors coexist are

arranged in a matrix; the columns correspond to PomcaQifferent. There are parameter regions where in the dynamics
sections that have equal and increasingk, while the of set 1 only attractor A is stable, while in the dynamics of
)

rows correspond to Poindarsections that have equaland set 2 attractors A gnd _B are both stable (for examplekf@f_
increasinge 0.0064,s = 0.02 in Fig. 3, we see only attractor A, while

Fig 3 shows the resuls cbiained ineyaing st 1, unfl 76 1 1 see Sacios & sne ©) b sadtor, e o
Fig. 4 shows the results obtained integrating set 2. The 2 9

ectories originated from initial conditions in modes A and Eze\tractorA is stable, while in the numerical simulation of set 2
J 9 attractor B is stable (for example, notice that foe= 0.0066,

are plotted together in order to |Ilust_rate the parameter regions g 4 in Fig. 3 we see attractor A, while in Fig. 4 we see
where the attractors A and B coexist.
L i . ttractor B).

The Poincat section located in the upper left corner o?
Fig. 3 (¢ = 0.0062,c = 0) is the transversal cut of the
trajectory shown in Fig. 1(a) with the plan¥ = Ny, and Ill. DiscussioN
indicates that attractor A is a torus that period-doubled atin order to explain the results obtained in the previous
a lower feedback level. Also, the Poineasection located section, in this section, we study the behavior of the modes of
in the lower left corner of Fig. 34 = 0.0072,e = 0) is sets 1 and 2 when the parameteraries. Taking into account
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Fig. 3. Coexistence of attractors A and B in the dynamics of set 1 for 0.8062 < 0.0072, and 0< ¢ < 0.1. The transversal cuts of the attractors
A and B with the planeN = Ny;, are plotted together (for each attractor, 2000 points are shown).

gain saturation effects, the modes of set 1 satisfy (7)—(9) withThe classification of the fixed points into modes and anti-
Gs = Gn(Ns; — N,)(1-el,) while the modes of set 2 satisfymodes would require a stability analysis. However, the direct
numerical simulation of set 2 shows that in the direct saddle-
node bifurcations the pair of fixed points created are both
linstead of (7)] and (8) and (9). unst_able; one of them becqmes s_table whmcr_easeg and, in_
Since the phase condition (7) is independentcofthe the .m.verse saddle-node bifurcations, the pair of fixed points
number of modes of set 1 and theisr values are independent@ninilated are one stable and one unstable. .
of e. Becauses, depends om, the stationary field amplitude 1 ne behavior of the modes of set 2 whenaries explains
I, and carrier density, of a given mode depend an In the the results found in the previous section. First, increasing
Appendix, we demonstrate that the stationary field amplitu§@uses the creation and annihilation of pairs of modes, and as
of the modes decreases with while the stationary carrier @ consecuence the value &f = w,7 of the modes increases
density increases with. The rate of variation withe is the With . Therefore, the value oh of the attractors originated
same for all the modes and in a very good approximatidfPm these modes will also increase with Second, when
depends only on the productyr, and not on other laser & pair of modes is created, one of the modes is unstable and
parameters or external cavity parameters. becomes stable increasingTherefore, the attractor originated
In contrast, the number of modes of set 2 and thgjir from this mode will be unstable and will become stable and
values depend on since (10) can be rewritten with an explicitreverse the route to chaos, increasing
¢ dependency as [11], [12] With the purpose of explaining the differences found inte-
T, ) grating sets 1 and 2 for very low valuesegfwe calculated the
WsT = WoT = E@ (e)s(e)e — y7ler' (e) cos(wsT) value of {(t) = —Gn(N — N,)eE?, which is the difference
+sin(w,7)] betweenG — 1/7, andG (N — Nw,), i.e., it is the difference
between (5) and (6). It was found that although- 0 when
wherea/(e) = a/(1 — el,). The values otv,7, I,, and N, of & — 0, whene # 0 the value of(¢) cannot be neglected
the exact stationary solutions of set 2, for= 0.006 and 0 in comparison with the value ofGn (N — Ny,)). For our
< e < 1, are shown in Fig. 5. Notice that although the numbgarameter values arid= 0.0072,c = 0.1(¢(t)) ~ —0.6 while
of modes remains approximately the same (between 5 and (T}, (N — Ny, )} = 0. The value of;(¢), which is neglected in
ase increases pairs of modes are created and destroyed. set 2 while taken into account in set 1, is probably the origin

wsT — woT = 1/2aG N (N5 — Ny )7 — y7sin(w,s7)  (10)

(11)
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Fig. 4. Coexistence of attractors in the dynamics of set 2, for the same initial conditions and parameter values as in Fig. 3. Taesé€iinnaof the
limit cycle originated from mode B is indicated in the figures with a small circle.

of the differences found for low values efin the numerical followed for increasing feedback. The effects of the parameters
simulation of sets 1 and 2. k and ¢ in the dynamics of set 1 are apparently opposite,
Finally, and in order to determine if not only the intensityand the detailed comparison between them is presented in the
dependence off but also the intensity dependence@fhas companion paper [20]. In the numerical simulation of set 2, in
important effects on the dynamics, we numerically simulategidition to causing the attractors to reverse the route to chaos,

set 1 withaw = a,/(1 — eE?), a, being constantd, = 6) an increase of also causes an increase of the phase difference
[19]. We did not find any important difference with respect t\(¢) = w,r + ¢(¢) — (¢t — 7) of the attractors.

the results obtained whem = c,. These results were understood by studying the behavior of

the modes of sets 1 and 2 wheraries. It was shown that the
IV. CONCLUSION number of modes of set 1 and theiyr value are independent

. L . . of . An increase of the value of causes a decrease of the
In this paper, we have studied in detail the dynamics of tw

. ) . . SCfationar intensity, and an increase of the stationary carrier
different versions of the Lang and Kobayashi equations for y Y y

. . . . ensity NV, but leaves th = value of the modes
single-mode semiconductor laser with optical feedback. The Y s, eA wsT

) nchanged.
two versions are (5) and (3) (set 1) and (6) and (3) (set 2), . . .
and they differ in the way the linewidth enhancement factor I_n the dynamics of set 2, it was shown thqt wlgencreasgs
o is introduced in the rate equation of the complex electrR@irs of modes are created and destroyed via direct and inverse

field. The two sets are equal when a linear gain is assum&gddle-node bifurcations, and, as a consequence, although
but if the nonlinear gain is taken into account, we have sho#fi¢ number of modes remains approximately the same, their
that the dynamics they predict is very different, even for logt = «s7 Value increases witlz. Therefore, the attractors
values of the gain saturation coefficient originated from these modes will have /& value that will

We found that the behavior of the external cavity modes, tHecrease witfe. In contrast to what occurs whéris increased,
parameter regions where two attractors coexist, and the effégtene is increased the pair of fixed points created are both
of the parameter depend on set of equations on which théitially unstable, but as increases one of the points becomes
investigations are based. a stable mode before colliding with an antimode.

In the numerical simulation of set 1, increasing the value of It should be noted that in the literature the investigations
the parameter has a stabilizing effect in the dynamics, sineklaser dynamics have been based on either of the two sets
it causes the attractors to reverse the route to chaos that tbhéjang and Kobayashi equations studied here. Therefore, our
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present a shift that is related to the magnitude of the nonlinear

gain coefficient.
Also, we expect that neglecting or taking into account the
o nonlinear gain in the expresion of the optical frequency
<3 should lead to different results when the solitary laser is
operated under modulation of the injection current, or when
0 T there is external light injection from another laser. All these
-10 — e —— effects, which are very common in laser-based devices, lead to
0.0 0.2 0.4 0.6 0.8 1.0 L . .
variations of photon density. Therefore, we expect nonlinear
1.006 optical phenomena to play an important role and different
dynamics if we asume that depends on the photon density
1.002 . . L
. than if we assumev is photon density-independent.
<F 0998
0.994 APPENDIX
0.990 s ! L In this appendix, we show that the stationary intendity
00 02 04 06 08 1.0 (the stationary carrier density,) of the modes of set 1
0.004 ——y — decreases (increases) with the value of the parameter
The values ofN, and I, of a given mode satisfy
_  0.002
Z'g | Ny(e) =Jrs — Grs1s(e) (A1)
2 0000 == 1 I(e) ={B + 4e
= ] — B\/1+2[(2G, — A)/BJe + [A2/B2e?}/2B¢
00026 02 04 06 08 10 (A2)

e (in units of 7.5x10% m®?)
whered = Gy (J7s— N,) and B = GnG,7s5. Since for set 1

Fig. 5. Bifurcation diagram of the stationary solutions of set 2, obtaingghe yalue ofy.7 of a given mode is independent@fthe value
solving (10), (8), and (9) fok = 0.006 and 0< ¢ < 1. The dashed lines s

represent antimodes while the solid lines represent modes that are unst%lgs =Gn(Ns =N, )(1 _.EIS) = 1/7p =2 cos(w,7) is also
when they are created but become stable before they disappear. independent ot. Expanding the square root to second-order

in £, we obtain

results show that if the nonlinear gain was considered, one A—G, GA-GY)

must take into account the particular set of equations employed I,(e) = - 5 € (A3)
when interpreting the results. B a A j_BG
An important parameter in this study in the pump factor Ny(e) =N, + > + €. (A4)

2
J/Ju (WhereJy, is the threshold current density). The photon Gy Gy

density E2 in semiconductor lasers is very high, even for low ) o )

output powers, because of the small cross-sectional area of fhif'® nonlinear gain is neglected, and I, satisfy /,(0) =
active region. Therfore, the nonlinear gain can be neglected — Gs)/B; Ns(0) = Ny + G/G . Therefore,

when the laser is operated close to threshold, but nonlinear

optical phenomena will occur when the laser is driven far I(e) = L,(0) {1 __° } (A5)
above threshold. Therefore, we expect that the differences GNTs

predicted by sets 1 and 2 would not be as relevant close

to threshold as they are far above threshold (here we used
J/ i = 2).

Another important parameter is the external cavity lengtiuhere
Semiconductor lasers are commonly employed in optical fiber
communication systems, and it would be interesting to study ~ _ (@ = D)GNNo + (a = 1)/7, + 2y cos(wsT)
the behavior predicted by sets 1 and 2 when the optical GNNo, + 1)1, — 2y cos(w,T)
feedback is from a large external cavity. We speculate that
the distance from the remote reflector to the laser souraed « = J/Jy, is the pump factors is a coefficient in-
and the nonlinearities of the active medium should modifgependent of, which for typical parameter values can be
drastically the laser operational characteristics, sincer asapproximated ass ~ (a — 1). Equations (A5) and (A6)
increases more external cavity modes come into play. Thédierefore show that the value &f of all the modes decreases
ws frequency, according to set 1, should be independent of twéh ¢ while the value of N, increases withe, and that the
gain nonlinearity, while accordingly to set 2, their should rate of variation withe is the same for all the modes.

N,(e) = N,(0) [1 to } (A6)

NTs
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