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Abstract

Wavelet transform analysis of experimentally measured intensity fluctuations distinguishes the transition from low
frequency fluctuations at moderate feedback to stable operation at strong feedback. Comparison of these results with those of
a wavelet analysis of lowpass filtered solutions of the Lang-Kobayashi equations for deterministic evolution of a single
mode semiconductor laser with optical feedback finds substantial agreement in the part of the wavelet spectrum
corresponding to slow dynamics. Substantial disagreement is found in the fast dynamics, which lessens when noise is added
to the equations. q 1998 Elsevier Science B.V. All rights reserved.

PACS: 42.55.Px; 05.45.qb; 42.65.Sf

Semiconductor lasers with optical feedback have been
extensively studied in recent years. It is well known that
the linewidth of a single-mode laser diode can be reduced

w xconsiderably with optical feedback 1 , but optical feed-
back may also excite many external cavity modes and

w xinduce chaotic behavior 2,3 .
When the laser is operated well above its solitary laser

threshold, moderately strong feedback induces what has
w xbeen termed coherence collapse 4 , which is characterized

by apparently random intensity fluctuations and a broad
band spectrum. When the laser is operated near threshold,
moderate feedback induces what has been termed low

Ž .frequency fluctuations LFFs , which consist of abrupt
intensity drop-outs followed by gradual, stepwise, recover-

Ž .ies see the first column of Fig. 1 . These intensity fluctua-
tions lead to a broad feature at low frequencies in the
spectrum. For very strong feedback levels the power drop-

Žouts are suppressed and stable operation is achieved Reg-
w x.ime V of the Tkach-Chraplyvy classification 5 .

The dynamics of a single-longitudinal mode laser diode
with optical feedback has been often described by the

Ž . w xLang-Kobayashi LK model 6 . The model consists of
rate equations for the complex electric field, E, and for the
carrier density, N. The external cavity is described by two
parameters: the feedback strength, g , and the round-trip
time in the external cavity, t . A term proportional to

Ž .g E tyt accounts for the field reflected from the exter-
Žnal mirror. In spite of the limitations of the model it

considers only a single longitudinal mode of the solitary
.laser, and a single reflection in the external cavity , it

reproduces the observed behavior remarkably well over a
w xwide range of parameter values 2,3 .

The phenomenon of low frequency fluctuations has
been studied theoretically and experimentally by several

w xgroups 7–17 . The LFFs are actually a slow envelope
w x Žmodulation of a series of fast intensity pulses 12 of the

.order of picosecond pulse widths , and simulations based
w xon the LK model 7,10,12 and on a travelling-wave model

w x13 have shown similar fast pulses. After time averaging
the output power fluctuations of the numerical solutions
Žto simulate the bandwidth of the detectors used in most

.experiments , power drop-outs are also found.
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Ž .Fig. 1. Measured time dependence of the output power for increasing feedback 2000 data points are shown . The voltage in the
Ž . Ž . Ž . Ž . Ž .acousto-optic modulator is a 400 mV, d 300 mV, g 200 mV. Energy distribution among the wavelet bands for b Vs400 mV, e

Ž . Ž . Ž . Ž . Ž .Vs300 mV, h Vs200 mV. Reconstruction of the attractor 500 data points are shown . Ts7D t. c Vs400 mV, f Vs300 mV, i
Vs200 mV.

In spite of the successful simulations, there is still an
ongoing debate on the physical origin of the LFFs. Recent
experimental measurements by Huyet et al. show that the
probability distribution of the intensity fluctuations during
the drop-outs is strongly asymmetric and peaks at about

w xthe average intensity 15 , indicating the presence of fluc-
tuations from zero intensity to two or three times the
average intensity. This differs from simulations based on
the LK model, where the laser is switched off most of the

Ž .time between the short pulses and thus the intensity
probability distribution in this case is peaked at zero and
decreases continuously. Moreover, time resolved optical
spectra reveal that the emergence of LFFs is associated
with the excitation of several longitudinal modes; during
the power drop-outs they are synchronized and drop out

w xtogether 16,17 .
In this report we use the discrete wavelet transform

Ž .DWT to analyze the intensity fluctuations in the LFF
regime. The wavelet transform is particularly useful in the
study of non-stationary signals. It represents a signal in

Žterms of brief waveforms a wavelet is a smooth and
rapidly vanishing oscillating function with a good localiza-

.tion both in frequency and in time , and therefore the

wavelet transform is suitable to study singularities such as
transients or short pulses.

Two of us have previously used the DWT to analyze
Ž .numerical simulations based on the LK model of the

transient dynamics from stable operation to the coherence
w xcollapsed regime 18 . It was shown that with the wavelet

transform the jumps among destabilized external cavity
modes could be easily distinguished, because they lead to
brusque variations in the energy distribution among the

Žwavelet bands in the phase delay signal. These jumps
could not be detected in the wavelet transform of the
intensity signal, because in the intensity signal the energy
is concentrated mainly in the wavelet band contaning the

.relaxation oscillation frequency of the solitary laser.
Here we use the DWT to analyze experimentally mea-

Žsured intensity signals, and time-averaged low-pass fil-
.tered solutions of the LK model, in the LFF regime.

A wavelet family c is a set of functions generated bya,b
Ž . w xdilations and translations of a mother wavelet c t 19–21 ,

tyby1r2< <c t s a c , 1Ž . Ž .a,b ž /a

where a, b gR are the scale and translation parameters
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respectively, and t is the time. As a increases, the mother
wavelet becames narrower, and thus we have a unique
analytic pattern and its replicas at different scales with
variable localization in time. The DWT is obtained for
special selections of the mother wavelet, and a discrete set
of parameters

a s2yj and b s2yjk , 2Ž .j j,k

Ž .with j, k gZ. The DWT of a signal x t is the set of
coefficients c , called wavelet coefficients, which arej,k

Ž .obtained by the decomposition of x t onto the basis of
functions c ,j,k

² :c s x t ,c t , 3Ž . Ž . Ž .j,k j ,k

where

c t s2 jr2c 2 jtyk . 4Ž . Ž . Ž .j,k

We have chosen a cubic spline wavelet basis and used
the pyramidal algorithm to compute nearly 2yj wavelet

< <coefficients for each jsy1, . . . , y log N . The DWT
breaks down a signal into successive logarithmically spaced
frequency bands. The experimentally measured intensity
signals consist of 10000 data points sampled with D ts1
ns. The DWT decomposes the signal into 13 wavelet
bands, the wavelet band yjs1 represents the frequency
band 0.25–0.5 GHz; yjs2: 0.125–0.25 GHz, yjs3:
0.062–0.125 GHz, yjs4: 0.031–0.062 GHz, yjs5:
0.015–0.031 GHz, etc.

Since the wavelet basis is orthonormal,

2 2² : < <x t A c , 5Ž . Ž .Ý Ý j,k
j k

Ž .and the energy associated with level j or scalogram is

< < 2e s c . 6Ž .Ýj j,k
k

ŽFor the experiments the laser Hitachi HLP 1400 emit-
.ting at 830 nm was biased 5% above the solitary laser

threshold, I s81 mA, and the feedback was varied withth

an acousto-optic modulator. The laser intensity as a func-
tion of time was measured with a fast photodiode. The

w xexperimental setup is described in detail in Ref. 17 .
The first column of Fig. 1 shows the intensity fluctua-

tions for three different values of the voltage, V, in the
Žacousto-optic modulator. The levels in the y-axis on the

first column of Fig. 1 are arbitrary, and because of the
ac-coupled data-adquisition system, the zero level is un-

.known. Also note that the larger the value of V, the lower
the feedback level.

The intensity shows abrupt drop-outs followed by grad-
ual, stepwise recoveries. For moderate feedback the drop-
outs are nearly periodic, and the average time between

Ž Ž ..consecutive drop-outs is about 40 ns Fig. 1 a . The
length of the steps in the build-up phase after the power
drop-out is about 3 ns. For greater feedback the drop-outs
become less frequent, and the laser reaches stable opera-

tion for sufficiently high feedback. At all feedback values
the duration of the build-up phase is about 10 steps.

The energy distribution among the wavelet bands is
shown in the second column of Fig. 1. For moderate
feedback the energy is carried by the bands yjFy5,
with approximately half of the energy carried by the band

Ž Ž ..yjs5 Fig. 1 b . This band contains the mean frequency
Ž .of the drop-outs. The low frequency bands yjG6 carry

very little energy. For higher feedback the drop-outs are
less frequent, there is not a well defined average time
between drop-outs, and the energy is distributed among a

Žlarger number of wavelet bands mainly in the bands
.yjs6, yjs7, and yjs8 .

By sliding a 128 data set window along the time series
we studied the time evolution of the energy distribution.
The energy in all wavelet bands increases in the time
intervals which contain a power drop-out. In these inter-
vals, the bands yjs5 and yjs6 carry the major part of
the energy. In the other time intervals, the bands yjs1

Žand yjs2 are the ones that carry more energy they
contain the frequencies of the fast oscillations in between

.power drop-outs .
In order to investigate in more detail the stabilization

process for increasing feedback we developed a filter
based on the wavelet transformation and obtained a
‘cleaner’ intensity signal.

With the DWT a signal can be decomposed in smother
versions, plus the details that take into account the high
frequencies corresponding to each level. In other words, at
level j a residual signal can be obtained, which is a
smoothed version with less high frequencies than the

Ž . w xprevious level jq1 j-0 22,23 . The residual signal
has half the data of the previous level, and an interpolation
with spline functions was used to obtain the remaining

w xdata 24 . This method allows the elimination of frequency
bands not desired that mask interesting phenomena. Due to
the orthogonality of the wavelet functions employed, the
filter extracts the desired frequency bands without distort-
ing the retained bands. We filtered out the bands yjs1
and yjs2, thereby discarding many of the fast oscilla-
tions that occur in between the power drop-outs. As an

Ž .example, Fig. 2 a shows the filtered intensity signal corre-
sponding to a voltage Vs300 mV in the acousto-optic

Ž Ž .modulator the solid line in Fig. 2 a indicates the filtered
signal and the dashed line, the experimentally measured

.signal .
We reconstructed the underlying attractor applying the

time delay method. The results, shown in the third column
of Fig. 1, suggest a behavior which is typical of intermit-
tency. We have only shown the first 500 data points
Ž .corresponding to the first 500 ns of evolution to make the
plot readable. It is clear that the attractor has a ‘tunnel’
which becomes narrow for increasing feedback. This might
be the reason why the drop-outs become less frequent for
increasing feedback. When the trajectory arrives near the
entrance of the tunnel, a drop-out occurs. Our results are
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Ž . Ž . Ž . Ž .Fig. 2. a Experimentally measured intensity signal for Vs300 dashed line and filtered signal solid line . b Numerically simulated
Ž . Ž .intensity signal for gs150 GHz dashed line and filtered signal solid line .

w xconsistent with the interpretation of Refs. 15,16 that noise
induces the drop-outs and that the laser recovers in a
deterministic fashion.

For comparison, we have numerically solved the deter-
ministic LK model. The LK equations are

d E 1q ia 1
yiv t0s Gy Eqg E tyt e , 7Ž . Ž .ž /d t 2 tp

d N N 2sJy yG E . 8Ž .
d t ts

In these equations the slowly varying complex electric
< < 2field is normalized such that V E is the total photon

number in the laser waveguide, where V is the volume of
the active region. t is the carrier lifetime, and t is thes p

photon lifetime. v is the solitary laser frequency. The0
Ž . Ž < < 2.optical gain is GsG NyN r 1qe E , where GN 0 N

is the modal gain, N the carrier density at transparency,0

and e the gain saturation coefficient. a is the linewidth
enhancement factor, and J is the current density in carriers
per unit volume and unit time. The equations were inte-
grated with a fourth-order Runge-Kutta method, and the
parameters were chosen to keep our simulations close to
the experiments. The parameters are: t s1 ns, t s1.4s p

ps, ts3 ns. v ts6 rad, G s1.06=10y12 m3 sy1, N0 N 0

s3.55=1024 my3, es2=10y24 m3, as4.5, Vs1.2
=10y16 m3, and Js1.05J , where J is the thresholdth th

Žcurrent density J sN rt , where N is the thresholdth th s th
Ž . .carrier density, which satisfies G N yN s1rt . ForN th 0 p

Žthese parameters, the threshold current I seVJ whereth th
.e is the electron charge is 81 mA, and the relaxation

oscillation frequency of the solitary laser is about 2 GHz.
The numerically simulated intensity signal shows fast,

picosecond pulses, as has been found previously in the
w xliterature 10,12 . To make comparisons with the experi-

ments, the finite bandwidth of the detectors used in the
experiments must be taken into account. Since in the
experiments the intensity was measured with a 6 GHz

w xbandwidth detector 17 , we averaged the simulated fast
pulsing intensity over 1 ns. The first column of Fig. 3.
shows the results obtained for three different feedback
levels.

The time-averaged intensity exhibits irregular drop-outs
and subsequent recoveries that are similar to those ob-
served in the experiments. However, there are important
quantitative deviations. The steps in the build-up phase
after a drop-out, and the fast oscillations that occur in
between two consecutive drop-outs are much more pro-
nounced in the calculated time-averaged intensity than in
the experimentally measured intensity. Moreover, the mean
value of the experimentally measured intensity is rougly
constant before a drop-out, while the mean value of the
simulated time-averaged intensity shows important fluctua-
tions, indicating that in the simulated signal, when a
drop-out occurs the intensity did not totally recover of the
previous drop-out.

The energy distribution among the wavelet bands for
each feedback level is shown in the second column of Fig.
3. Comparing with the second column of Fig. 1 it is clear
that the results obtained from the simulated time-averaged
intensity are similar to those obtained from the experimen-
tal data. However, at all feedback levels the energy in the
first wavelet band is much larger in the simulated data than
in the experimental data.

To make more precise comparisons, we filtered out the
first two wavelet bands of the numerically simulated time-

Ž .averaged intensity. In Fig. 2 b we show the results for a
feedback level gs150 GHz. The solid line indicates the
filtered signal, and the dashed line indicates the original
signal. The underlying attractors, reconstructed by the
time-delay method, are shown in the third column of Fig.
3. To make the features of the attractor more clear, only
the first 500 data points are shown.

The size of the attractor grows with the feedback level
Žas occurs with the size of the attractor reconstructed from

.the experimental signal . However, while the tunel in the
‘experimental’ attractor becomes narrower with the feed-
back, the tunel in the ‘simulated’ attractor grows together
with the attractor size.

This is related with the fact that the way the stable
operation regime is reached for increasing feedback in the
LK model differs from that in the experiments. In the
numerical simulations the stable regime is reached after a
long LFF transient that becomes shorter with increasing
feedback. This is explained by the fast dynamics underly-
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Ž . Ž .Fig. 3. Results of the numerical simulation of the LK equations 2000 data points are shown . The intensity was averaged over 1 ns a
Ž . Ž . Ž . Ž . Ž .gs110 GHz, d gs150 GHz, g gs190 GHz. Energy distribution among the wavelet bands for b gs110 GHz, e gs150 GHz, h

Ž . Ž . Ž . Ž .gs190 GHz. Reconstruction of the attractor 500 data points are shown . Ts7D t. c gs110 GHz, f gs150 GHz, i gs190 GHz.

ing the LFFs. For moderate feedback the laser jumps
among a large number of destabilized external cavity

w xmodes 7,10,12 . The oscillations become larger for in-

creasing feedback, and eventually the laser reaches the
Žexternal cavity mode with lowest threshold gain or one of

.its neighbors , which are stable as shown by Levine et al.

Ž . Ž . Ž . Ž .Fig. 4. a , b Results of the deterministic LK equations. gs100 GHz. c , d Results of the stochastic LK equations. gs100 GHz, and
the noise strengh is 50 GHz.
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w x Ž25 . Then, the laser remains in this stable state which
persists over a certain feedback range if we slowly de-

.crease the feedback level . Moreover, this state is stable
when moderate noise levels are included in the rate equa-

w xtions 26 . However, in the experiments the drop-outs
gradually become less frequent for increasing feedback,
until they disappear.

To check whether the discrepancies found might be
related to the absence of spontaneous emission noise in the
simulations, we included in the field rate equation a
Langevin noise term of strength comparable to the feed-

Ž . Ž . w Ž . Ž .xback term. Figs. 4 a , 4 b Figs. 4 c , 4 d can be used to
compare the results obtained from the deterministic and
stochastic models. Clearly the inclusion of noise leads to a
better agreement between the numerical simulations and
the experiments. Noise makes the drop-outs less frequent,

Ž w xand the time-averaged intensity less noisy. Hohl et al. 11
have shown that in certain parameter regions the inclusion
of noise has important effects on the statistical distribution

.of the drop-outs. However, the fast oscillations are still
more important in the time-averaged intensity obtained
from simulation of the stochastic model than in the experi-
mental intensity, and while the energy distribution among
the wavelet bands in the first case is concentrated in the

Ž Ž ..wavelet band yjs6 Fig. 4 d , in the experimental
intensity it is distributed among a larger number of wavelet

Ž Ž ..bands see, e.g., Fig. 1 h .
In conclusion, we find that the discrete wavelet trans-

form gives more compact information about LFFs, and
after filtering it gives a better reconstruction of the mea-
sured dynamics than does Fourier analysis. The advantage
of the wavelet method over traditional filtering is that
removing certain frequency bands does not modify the
dynamics relying on the remaining bands. The key of this
success is that wavelets are localized oscillations which do
not have the correlations of sine waves over extended time.
The wavelet transform can separate the amplitudes of the

Ž .fast and slow components in the wave-packet bases of a
Žsignal, and can be used to reconstruct the signal by

wavelet transforming, selecting only some of the wavelet
amplitudes, and then inverse transforming and interpolat-

.ing .
Our results show that the experimental intensity signal

looks more like a ‘wavelet-transform filtered’ simulated
intensity than a simple averaging of the simulated inten-
sity. The wavelet analysis shows that the difference be-
tween the experimental data and the simulations based in
the LK model is in the ‘fast and short’ components of the
signal. This suggests that the LK model is useful for a

Žqualitative description of LFFs since it describes the
average features of LFFs in good agreement with experi-

.ments , but quantitative differences remain which need
further explanation. We speculate that the Lang-Kobayashi
equations are too ‘stiff’, and a more accurate model will
have to have additional field andror population variables
whose dissipation softens the impulse response of the LK
equations to abrupt changes.

Acknowledgements

We wish to acknowledge useful discussions with G.
Mindlin. This research work was partially supported by the

Ž . Ž .PEDECIBA Uruguay , and the CONICET Argentina .

References

w x1 G.P. Agrawal, N.K. Dutta, Long-Wavelength Semiconductor
Lasers, Van Nostrand Reinhold, New York, 1986

w x Ž .2 K. Petermann, IEEE J. Sel. Top. Quantum Electron. 1 1995
480.

w x3 G.H.M. van Tartwijk, D. Lenstra, Quantum Semiclass. Opt.
Ž .7 1995 87.

w x4 D. Lenstra, B.H. Verbeck, A.J. den Boef, IEEE J. Quantum
Ž .Electron. 21 1985 674.

w x5 R.W. Tkach, A.R. Chraplyvy, IEEE J. Lightwave Technol. 4
Ž .1986 1655.

w x6 R. Lang, K. Kobayashi, IEEE J. Quantum Electron. 16
Ž .1980 347.

w x Ž .7 T. Sano, Phys. Rev. A 50 1994 2719.
w x8 P. Besnard, B. Meziane, K. Ait-Ameur, G. Stephan, IEEE J.

Ž .Quantum Electron. 30 1994 1713.
w x9 E. Cerboneschi, F. de Tomasi, E. Arimondo, IEEE J. Quan-

Ž .tum Electron. 30 1994 2277.
w x10 G.H.M. van Tartwijk, A.M. Levine, D. Lenstra, IEEE J. Sel.

Ž .Topics Quantum Electron. 1 1995 466.
w x11 A. Hohl, H.J.C. van der Linden, R. Roy, Optics Lett. 20

Ž .1995 2396.
w x12 I. Fischer, G.H.M. van Tartwijk, A.M. Levine, W. Elsasser,

Ž .E. Gobel, D. Lenstra, Phys. Rev. Lett. 76 1996 220.
w x Ž .13 P.S. Spencer, K.A. Shore, Quantum Semiclass. Opt. 9 1997

819.
w x14 B. Tromborg, J. Mork, V. Velichansky, Quantum Semiclass.

Ž .Opt. 9 1997 831.
w x15 G. Huyet, S. Hegarty, M. Giudici, B. de Bruyn, J.G. McIner-

Ž .ney, Europhys. Lett. 40 1997 619.
w x16 M. Giudici, C. Green, G. Giacomelli, U. Nespolo, J.R.

Ž .Tredicce, Phys. Rev. E 55 1997 6414.
w x17 G. Huyet, S. Balle, M. Giudici, C. Green, G. Giacomelli, J.R.

Ž .Tredicce, Optics Comm. 149 1998 341.
w x Ž .18 A. Figliola, C. Masoller, Phys. Rev. A 56 1997 1492.
w x19 I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadel-

phia, 1992.
w x20 Y. Meyer, Wavelet Alghoritms and Applications, SIAM,

Philadelphia, 1992.
w x21 C. Chui, An Introduction to Wavelets, Academic Press, San

Diego, 1992.
w x22 R.R. Coifman, Adapted Multiresolution Analysis, Computa-

tion, Signal Processing and Operator Theory, Proc. Interna-
tional Congress of Mathematicians, Kyoto, Japan, Springer-
Verlag, 1990, pp. 879–887.

w x23 S. Blanco, A. Figliola, R. Quian Quiroga, O.A. Rosso, E.
Ž .Serrano, Phys. Rev. E 57 1998 932.

w x24 I.J. Schoenberg, Cardinal spline interpolation, SIAM,
Philadelphia, 1993.

w x25 A.M. Levine, G.H.M. van Tartwijk, D. Lenstra, T. Erneux,
Ž .Phys. Rev. A 52 1995 R3436.

w x Ž .26 J. Wieland, C.R. Mirasso, D. Lenstra, Optics Lett. 22 1997
469.


