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Abstract:  We study theoretically the linear and nonlinear propagation of 
light in one-dimensional bi-periodic arrays of fibers, with the propagation 
constant periodically modulated along the propagation direction. We predict 
analytically and observe numerically subdiffractive propagation along such 
fiber arrays, and characterize the light propagation properties. We also 
predict novel subdiffractive discrete solitons in the presence of Kerr 
nonlinearity, both of focusing and defocusing cases, which are essentially 
different from the usual discrete solitons in waveguide arrays.  
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1. Introduction 

The ability to realize an optical medium in which light propagates without diffraction would 
have important implications for today’s fiber-optic-based telecommunications. It was recently 
shown that photonic crystals (PCs) can provide a mean for achieving this goal. The PCs, in 
addition to their well known properties of manipulating the temporal dispersion, i.e. of 
introducing the band gap for the light propagation [1, 2], were recently shown to be able to 
manipulate the spatial dispersion (diffraction) properties [3-6]. While circular sectors in 
dispersion curves (the iso-frequency lines in the wavevector space) indicate the normal 
dispersion, and convex segments in these curves indicate negative diffraction, the "flat" 
segments that arise for specific PCs architectures, indicate zero diffraction (or more precisely 
sub-diffraction, as the first-order diffraction term vanishes for frequencies within the flat 
segments, but higher-order terms remain). 

In this Letter we describe the sub-diffractive propagation of light in a one-dimensional 
array of coupled waveguides. The scheme of the fiber array proposed here aims to imitate the 
phenomena occurring in sub-difractive photonic crystals, i.e., we consider a modulated fiber 
array whose structure is similar to that of sub-diffractive PCs. The key ingredient of our 
scheme is that the propagation constant in the fibers is modulated along the longitudinal 
(propagation) direction. One can implement the modulation of the propagation constant by 
periodically changing the thickness of the individual fibers in an alternating order, as depicted 
in Fig. 1. The periodic variation of the propagation constant along the z-direction can also be 
obtained by fine temperature control, or it can be realized modifying directly the refractive 
index of the fibers (incorporating in the fibers periodic profiles of impurities). The fabrication 
and manipulation of these structures at the nanoscale is nowadays possible using, e.g., 
lithography. 

 
 

 
 
 
 

 

 

 

 

 

 

 

Fig. 1. Qualitative representation of the modulated fiber array. The grey regions indicate the 
thickness of the fibers. Notice the alternating periodic variation of the thickness along the z-
direction: for values of z such that the thickness of the fiber j is maximum, the thickness of the 
neighboring fibers, j-1 and j+1, is minimum. It can be also observed that the distance between 
the cores of the fibers is constant along the z-direction. 

 
The main aim of our work is the demonstration of linear sub-diffractive propagation of 

light in such modulated fiber array. In addition we study the influence of the Kerr 
nonlinearity, and demonstrate the sub-diffractive propagation as well as formation of soliton-
like localisations. Recently, there has been a lot of interest in diffraction management in 
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discrete systems and the so-called discrete solitons [7-12]. The soliton-like structures reported 
here resemble those found in Refs. [7-12], in the sense that they reside in nonlinear fiber 
arrays. However, they originate from different physical mechanisms: while the discrete 
solitons reported previously rely on the interplay of focusing/defocusing and positive/negative 
diffraction, the solitons reported here appear at regions of zero diffraction (more precisely, at 
flat segments of the spatial dispersion curve, where the first-order diffraction term vanishes).  

The modulated fiber array that we propose also has similarities with the fiber arrays 
proposed in Refs. [13-16], inspired in diffraction management in photonic crystals, and 
exploiting the fact that diffraction vanishes for specific values of the propagation constant. In 
Ref. [15] Peschel and Lederer proposed a longitudinal periodic variation of the coupling 
constant, while in Ref. [16], Longhi considered sinusoidally curved arrays. The advantage of 
the configuration proposed here is that it allows eliminating not only the first-order diffraction 
(second order spatial derivatives), but due to symmetry, also all the odd-order derivatives. The 
remaining terms can be approximated, at the lowest order, by the fourth-order spatial 
derivative (recently, a similar effect was shown to happen in symmetric PC [17]), and allows 
the existence of localized soliton-like solutions, similarly as in symmetric nonlinear PCs, and 
in Bose-Einstein condensates in periodic in space and in time potentials [18].  

In the first part of this Letter we present analytic results that demonstrate the existence of 
regimes of sub-diffractive linear propagation. We calculate the spatial dispersion, and show 
the formation of the flat segments of the dispersion curves: the light with wavevector within 
these segments propagates sub-diffractively. Next we present results of numerical simulations: 
we characterize the sub-diffractive linear regime in the parameter space of coupling strength, 
and modulation depth. In the third part of the Letter we show the possibility of sub-diffractive 
discrete solitons in the nonlinear case (with both types of Kerr nonlinearities, of the focusing 
and defocusing sense), followed by conclusions. 

2. Model 

We consider the scheme depicted in Fig. 1, where the propagation constant in the j-th fiber is 
given by:  

( ) ( ) )cos(120 qzz j
j −Δ+= βββ , (1) 

where the factor ( ) j1−  is responsible for the alternating character of the longitudinal 
modulation, Nj ,...2,1= , is the fiber number, βΔ  is the modulation depth, and q is the 
longitudinal modulation wavenumber, which without loss of generality we consider equal to 
unity throughout the paper, since the longitudinal coordinate z is re-scaled as: zzq →  below.  
In the slow varying envelope approximations and assuming single-mode fibers, the equations 
describing light propagation in the j-th fiber read:  

( ) ( ) ( ) jjjjj
jj AAiAAicAzi

dz

dA 2

11cos12 γβ +++−Δ⋅= +− , (2) 

where
jA  is the complex amplitude of the field in the j-th fiber,  c is the strength of the 

coupling between the neighbouring fibers, as occurs through the overlapping evanescent 
fields, and γ  is the strength of the Kerr nonlinearity, which is considered to be focusing if 

0>γ  and defocusing if 0<γ . In Eq. (2) the amplitudes 
jA  and the parameters are 

dimensionless. The procedure for deriving Eq. (2) from the discrete nonlinear Schrodinger 
equation, as well as the normalisations of field amplitudes and constants in Eq. (2) is the same 
as that described in Ref. [15]. The transverse coordinate, in addition, is normalized to the 
distance between the neighbouring fibers, and the longitudinal coordinate, to the inverse wave 
number of longitudinal modulation 1−q . In general c and γ  might also be modulated along the 
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array of fibers and/or along the propagation direction, depending on the specific fabrication 
details. Because we consider weak modulation, ββ <<Δ , and because the distance between 
the core of the fibers is constant along the array and along the propagation direction, we 
neglect all variations of  c and γ . 

First we investigate the linear propagation of light when 0=γ . We look for a probe 
solution in the form of a discrete Bloch mode:  

( )∑
∞

−∞=

⋅Δ⋅ −=
n

izn
n

njjiikz
j eaeeA 1ϕ , (3) 

Here k  is the wavevector of the Bloch mode, ϕΔ   is the phase shift between the light fields 
between the neighbouring fibers in the Bloch mode (corresponds to the tilt of the mode), 

na  is 

the complex amplitude of n-th (longitudinal) harmonics of the Bloch mode (
0a  is the 

amplitude of the homogeneous component, and 
1±a  are the amplitudes of the most significant 

first harmonics of the Bloch mode). The odd Bloch mode components have the alternating 
shape across the fiber array, which is considered by the factor ( ) nj⋅−1  in Eq. (3).  Substituting 
Eq. (3) in Eq. (2), collecting the same exponents of the longitudinal harmonics, we obtain the 
following system of coupled equations for the harmonic components:  

( ) ( ) ( ) ( ) n
n

nnn aicaaianki ϕβ Δ−++Δ=+ +− cos1211  (4) 

3. Linear subdiffractive propagation 

To solve Eq. (4) we have to truncate this system, i.e., to keep a certain, finite number of 
harmonics.  Figure 2 displays a particular solution of Eq. (4), obtained by truncating to three 
lowest harmonics 1,0,1 +−=n , which is in fact the spatial dispersion curve ( )ϕΔk  of the Bloch 
modes.  

The appearance of the horizontal plateaus in the dispersion curves shown in Fig. 2 
indicates the existence of regimes of subdiffractive propagation. Indeed, these plateaus mean 
that the longitudinal wavevectors k  of the corresponding Bloch mode do not depend on ϕΔ , 
i.e., that the components that are tilted at different angles do not dephase during the 
propagation. This means that the beam (or any arbitrary pattern), being a Fourier composition 
of differently tilted components of Bloch modes, does not broaden or blur during the 
propagation. (Obviously, there are high-order terms of diffraction that do not vanish, as 
investigated below, therefore, we refer to subdiffractive- rather to nondiffractive propagation).  

The appearance of plateaus at 0≈Δϕ  is essentially the result of the interaction of two 
uncoupled dispersion curves, those with 0,1−=n , as can be seen from the Fig. 2 (the plateaus 
at πϕ ±≈Δ  result from the interaction of the other two curves 0,1=n .), as the disshaping (lift 
of degeneracy) of the dispersion curves occurs at (and due to-) the cross of two dispersion 
curves. As we focus on the case 0≈Δϕ , this allows the truncation of the system of equations 
(4) to only two Bloch modes in the limit of 0≈Δϕ . This leads to simple and useful analytical 
predictions. The truncated system reads:  

                                          ( ) 010 cos2 aicaiika ϕβ Δ+Δ= − ,                                            (5a) 

                                               ( ) ( ) 101 cos21 −− Δ−Δ=− aicaiaki ϕβ .                              (5b) 

The eigenvalues of Eq. (5) read:  
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                      ( ) ( )( )22 cos414
2

1

2

1 ϕβϕ Δ⋅−+Δ±=Δ ck ,                                (6a) 

 and the associated eigenvectors:   

( ) ( )( ) ⎟
⎠
⎞⎜

⎝
⎛ ΔΔ⋅−+Δ±Δ⋅+− βϕβϕ 2,cos414cos41 22 cc . (6b) 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Spatial dispersion curve obtained by solving Eq. (4) truncated to three modes. The 
wavenumber is plotted vs. the tilt of the Bloch modes. The dotted curves correspond to the 
limit of small modulation, 0→Δβ , when the three equations become uncoupled. The 

parameters are  25.0=c , 2.0=Δβ  (dashed) and 4.0=Δβ  (solid),  and correspond to the case 

when the uncoupled curves just touch one another. In this situation, an increase of the 
modulation depth βΔ  broadens the subdiffractive plateau. 

 
 
Equation (6) allows us to explore analytically the basic regimes of the propagation. The 

condition for the appearance of the flat segments (zero curvature plateaus), 022 =Δ∂∂ ϕk , is 
fulfilled for 25.0=c  and for the arbitrary values of the modulation amplitude βΔ , as can be 
easily found from Eq. (6a). A variation of βΔ  results in a change in the width of the plateau 
only, as can be anticipated from Fig. 2. The half-width of the plateau, evaluated from Eq. (6), 
is βϕ Δ≈Δ 2plateau

.  Another interesting point is that there are two plateaus (see Fig. 2). The 

plateaus of the dispersion curves are separated at 0=Δϕ  by βϕ Δ=Δ 22 sep
 as follows easily 

from Eq. (6a). In the case of subdiffractive PCs, where only one plateau has been found [17], 
the initial beam projects essentially on two modes – diffractive and subdiffractive. The first 
one diffracts quickly and vanishes, while and the second one continues to propagate 
collimated. Here, the initial beam projects into two sub-diffractive modes, which propagate 
together without broadening (there is actually a weak, subdiffractive broadening evaluated 
below). As these two modes have different propagation constants a “beating”, i.e., periodic 
pulsations with respect to the longitudinal coordinate, can be expected. These pulsations are 
clearly seen in the simulations presented below.  

Summarizing: the analysis based on Eq. (5) and Eq. (6) allowed to calculate analytically:  
(i) the minimum half-width of nondiffractive beam,  βπϕπ Δ=Δ≈Δ plateaux 2  as 

follows from the width of the plateau. When the initial beam is narrower than the minimum 
width, then the beam rapidly recovers the minimum width xΔ , and continues to propagate 
with a weak subdiffractive spreading as governed by the second order diffraction; 
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(ii) The character of the sub-diffraction at zero diffraction point 25.0=c is described by 
the next, non-vanishing order derivative of the dispersion relation. As the third order 
derivative vanishes, due to the symmetries, the fourth order derivative becomes dominating. 
The second order diffraction is: ( ) ( )βϕ Δ=Δ∂∂= 241!41 44

4 kd , and can be used to evaluate 
weak spreading in the long range propagation as in [17] for the case of photonic crystals.  

(iii) The spatial period of the beat is βππ Δ=Δ≈Δ 22 sepkz  as follows from the 

separation of the dispersion curves. The initial Gaussian beam projecting into two modes 
results in a spatial beat. Especially prepared initial beams, corresponding to the envelopes of 
the eigenvectors of the Bloch modes (6), propagate steadily, without the beat. At the zero 
diffraction point 25.0=c  and for the almost parallel propagation, 0≈Δϕ , the eigenvectors 
(6b) simplify to: ( )1,1± , which means 100% modulation of the fields.  

Next we present results of numerical simulations of Eq. (2), in order to check the above 
analytical predictions. We consider an array of N=120 fibers with periodic boundary 
conditions. Figure 3 displays the width of the final beam (after propagating a distance L=100) 
in the parameter space ),( βΔc  (the width is normalized to c ). The initial condition is a 
Gaussian beam of half-width 3=Δx  (normalized to the distance between the fibers). The 
color scale is such that the red regions correspond to large-, and blue- to small, final width of 
the beam (obviously always larger than the initial beam). A clear region of subdiffractive 
propagation for 25.0=c  can be observed, in a good agreement with the above analysis. (We 
note that the analytic expressions are valid for 1<<Δβ .)  For the moderate modulation depth 
( 3.0≥Δβ ) the minimum width is obtained for coupling values different from the predicted 
value, 25.0=c . In addition, another sub-diffractive branch can be observed at larger c, absent 
in the analytical treatment when the expansion (3) is truncated to two or three Bloch modes, 
but that can be found when at least 5 modes are included in the expansion.  

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The width of the beam in the parameter space ),( βΔc  as obtained by numerical 

integration of (2) over propagation distance of L=100, and starting from initial Gaussian beam. 
The color scale is such that the red regions correspond to large-, and the blue- to small final 
width of the beam. 
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Fig. 4. Sub-diffractive propagating of beams, as obtained by numerical integration of (2) with 
c=0.25 and 1.0=Δβ . The top row displays the initial condition, the second row displays the 

density plots of the beam propagation, the third row displays the evolution of the intensity in 
the central fiber, and the bottom row - the Fourier power spectra of the intensity evolution. 
Different columns correspond to different initial conditions: left column – envelope of the ( )1,1  

Bloch mode; Middle column – envelope of ( )1,1−  Bloch mode. Right column – Gaussian 

beam, with eigenvector ( )0,1 , which can be considered as a combination of  the Bloch modes: 
( ) ( ) ( )( ) 21,11,10,1 −−=  
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Typical examples of sub-diffractively propagating beams are given in Fig. 4. The density 
plots represent the beams spreading much less than those in arrays of homogeneous fibers. We 
note that the analog of the Rayleigh length (the distance at which the beam spreads by the 
factor of 2 ) for the array of not modulated fibers 0=Δβ  is ( )cxLR 22Δ= , which for the 
given conditions results in 20≈RL .  The shapes of the entering beam are also indicated in the 
Fig. 4. They are either the Gaussian beam, or the envelopes of the two Bloch modes with 
eigenvectors ( )1,1± , as following from (6b). 

According to the expectations, the envelopes of the pure Bloch modes propagate almost 
without oscillations in the longitudinal direction. Dominating oscillations of spatial period of 

π2  of the longitudinal modulation are pronounced in the temporal plots as well as the Fourier 
power spectrum in Fig. 4.  In fact the weak oscillations are also visible as weak sidebands, due 
to not exact matching with the “true” Bloch mode (appearing in the infinite expansion of (3)). 
The Gaussian input, however, results into pronounced “beats” along the propagation direction, 
since the initial Gaussian beam projects nearly equally into two nondiffractive Bloch modes 
with different propagation constants. The calculation of this beat period are in a quantitative 
agreement with analytics: βππ Δ=Δ≈Δ 22 sepkz .  

4. Sub-diffractive solitons 

After demonstration of the sub-diffractive propagation of the beams in the linear case, we 
consider the nonlinear propagation with the Kerr nonlinearity. Exactly at the zero diffraction 
point one can expect the spatial solitons for defocusing Kerr nonlinearity, in analogy to the 
continuous case [18]. These solitons are the stationary envelopes of the particular Bloch 
mode, where the second order diffraction (fourth order derivative) is compensated by the 
nonlinearity. However, differently from [18] where the solitons occur only for defocusing 
Kerr nonlinearity (as compensating the second order diffraction of positive sign), the solitons 
here can occur for both types of nonlinearity. For defocusing nonlinearity the solitons would 
involve the radiation on one Bloch mode (with the positive sign of the second order 
diffraction), and for the focusing nonlinearity – on the other mode. 

The results of numerical integration indeed show that expected result. An attempt to 
generate solitons as the envelopes of the Bloch modes with the “wrong” combination of the 
signs of nonlinearity and diffraction does not lead to soliton solution (cases (a) and (e) in Fig. 
5). The correct combination of signs, (b) and (d), corresponds to self-trapping into solitons. 
Finally, the initial Gaussian beam leads to the transient selection: half of radiation projecting 
into the “wrong” Bloch mode diffracts away, and the other half, projecting into the “correct” 
mode, self-traps into the soliton-type beam and propagates steadily along the array of fibers. 
The latter phenomena, we note, occurs for the both signs of the nonlinearity [cases (c) and (f) 
in Fig. 5]. 

In order to check the conclusions of the nonlinear soliton propagation we integrated (2) 
over long propagation distances, and filtered out the outgoing radiation at the boundaries of 
the integration region in the transient stages of the solitons formation. We found that: i) the 
shapes reached the stationary state after the transient evolution (apart from the small scale 
oscillations of the Bloch mode) and ii) the width and the amplitude of the solitons depend on 
the initial conditions, which indicates at least one parameter family of soliton-type solutions. 
The detailed investigation of the solitons properties fall out of the scope of the article, and will 
be presented elsewhere. 

5. Conclusions 

Concluding, we demonstrated the sub-diffractive propagation of light in one-dimensional 
arrays of fibers, which have their index of refraction periodically modulated along the 
propagation direction in the alternating order. We calculated analytically the main 
characteristics of the propagation: the minimum width of the beam, the asymptotic 
broadening, and the spatial beat between two nondiffractive Bloch modes, and we checked 
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these conclusions by numerical integration of the full model equations. We also analyzed the 
influence of Kerr nonlinearity and found sub-diffractive discrete solitons for both, focusing 
and defocusing nonlinear terms. The solitons reported here are nonlinear localizations which 
differ from previously reported discrete solitons because they are based on the second-order 
diffraction, and not on the first one (positive or negative) as usual. Therefore, it can be 
expected that they scale differently (this study is in progress and will be reported elsewhere). 
In addition, due to the simultaneous presence of several dispersion curves, the sub-diffractive 
solitons can occur on one of two possible branches for a given nonlinearity, and in this sense 
they also differ from previously reported discrete solitons. Concerning the level of optical 
power required for soliton generation, we speculate that the intensities are significantly 
smaller than those for needed for usual discrete solitons. Because the solitons in general are 
formations where nonlinearity balances the dispersive-diffractive spreading, and in our case 
diffraction is very weak (sub-diffraction), it can be expected that a weaker nonlinearity is 
required for this balance. Concerning the type of fiber needed, the same type of fibers (but 
modulated) are to be used in our proposal as those that have been used in previous studies.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Sub-diffractive propagation in the presence of positive and negative nonlinearities 
( 1.0=γ  in the top row, 1.0−=γ  in the bottom row, other parameters and initial conditions as 

in Fig. 4). 
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