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Abstract

We study the regime of anticipated synchronization in unidirectionally coupled chaotic maps such that the slave map has
its own output re-injected after a certain delay. For a class of simple maps, we give analytic conditions for the stability of the
synchronized solution, and present results of numerical simulations of coupled 1D Bernoulli-like maps and 2D Baker maps,
that agree well with the analytic predictions. 2002 Elsevier Science B.V. All rights reserved.
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The synchronization of chaotic systems is a sub-
ject that has attracted a lot of attention in the past
years. Since the pioneering works [1] several different
regimes of synchronization have been found: complete
synchronization, phase synchronization [2], lag syn-
chronization [3], generalized synchronization [4,5],
synchronization by common noise force [6,7], among
others.

Anticipated synchronization is a recently discov-
ered synchronization regime that occurs in unidirec-
tionally coupled systems [8,9]. In this regime counter-
intuitive phenomena occur, since the slave system an-
ticipates the chaotic evolution of the master system,
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despite the fact that chaotic behavior implies long-
term unpredictability.

In the case of coupled time-delayed differential
equations the anticipation time is related to the dif-
ference between the intrinsic delay time of the sys-
tems and the delay time of the coupling [10]. In cou-
pled ordinary differential equations (as the Lorenz and
Rossler systems) the anticipation time must be small to
have a stable synchronization manifold [8]. However,
by using a chain of slave systems, anticipation times
that are multiples of the coupling delay time and that
exceed characteristic time scales of the chaotic dynam-
ics can be obtained [9,11]. Many additional numeri-
cal [12,13] and experimental [14,15] studies of antici-
pated synchronization have been performed.

Recently, analytic conditions for the synchroniza-
tion of coupled maps with delays were given by Ma-
soller and Zanette [16]. In the maps considered in [16]
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the chaotic behavior is induced by the delay term in the
map (in other words, without delay the master map is
not chaotic). In Ref. [16] the master map (xn) and the
slave map (yn) are of the form

(1)xn+1 = bxn + f (xn−N),

(2)yn+1 = byn + (1− η)f (yn−N) + ηf (xn−M),

with |b| < 1 andf a nonlinear function. The synchro-
nized solution is given byyn = xn−M+N . By study-
ing the evolution of a small perturbation of the solu-
tion it was shown that the synchronization is stable for
η = 1. The existence of a threshold value of the cou-
pling, ηc < 1, above which the synchronized solution
is stable, was also shown.

When the chaotic behavior of the master map is
not induced by a delay, to the best of our knowledge
no analytical conditions for anticipation have been
reported. In this Letter we study a system composed
by a chaotic map (master) unidirectionally coupled to
a second chaotic map (slave) which has its own signal
re-injected after a certain delay. We consider a master
map,xn, and a slave map,yn of the form

(3)xn+1 = f (xn),

(4)yn+1 = f (yn) + γ (xn−N − yn−M),

wheref is a nonlinear function. We show that the de-
layed auto-injection in the slave map leads to anticipa-
tion in the synchronization, and present analytic con-
ditions for the stability of anticipated synchronization.
An analytical treatment is possible because we con-
sider simple chaotic maps. We exemplify the results
with numerical simulations of coupled 1D Bernoulli-
like maps and 2D Baker maps.

The synchronization manifold of (3), (4) is given
by

(5)yn = xn−N+M,

and thus the slave variable is lagged byN − M steps
behind the value of the master variable (ifN − M < 0,
the slave map anticipates the dynamics of the master
map). To study the stability of the synchronized
solution we consider a perturbation of the form

(6)yn = xn−N+M + δn.

In the linear regime, the perturbation obeys the
following map

(7)δn+1 = f ′(xn−N+M)δn − γ δn−M,

wheref ′ = df/dx. Making the change of variables
δn = (zn)

n gives

(8)(zn+1)
n+1 = f ′(xn−N+M)(zn)

n − γ (zn−M)n−M.

Notice that the value ofN is irrelevant in the long-
term behavior, thus the stability of the synchronized
solution is the same in the anticipated and in the
retarded regimes (similar results were found in [16]).
Therefore, and without loss of generality, in the
following we considerN = 0.

A sufficient condition for the stability of the syn-
chronized solution will be that, forn > n0, wheren0
is some number of transient steps, all the solutionszi

n

of (8) (wherei labels the different solutions) satisfy
|zi

n| < 1. Whenf ′ depends onxn, an analytical treat-
ment of the stability of the synchronized solution is
in general not possible. However, there are particular
cases in which the study of Eq. (8) gives insight into
the parameter region where synchronization is stable.
As a first example we consider the 1D Bernoulli-like
map

(9)f (xn) = axn mod 1.

The map is chaotic fora > 1. f ′ = a, and thus the
solutions of (7) are linear combinations of functions of
the formδn = zn, with constantz. Thus (8) reads

(10)zM+1 = azM − γ.

Stability of the synchronized solution is obtained if all
the solutions of (10) satisfy|z| < 1.

For M = 1 the roots of Eq. (10) are the solutions
of a simple quadratic equation, so that it is simple to
check that they have|z| < 1 whenγ ∈ (a − 1,1). For
arbitraryM a necessary (but not sufficient) condition
for the stability of the synchronized solution isγ ∈
[a − 1, a + 1]. To show that, first note that forγ = 0,
Eq. (10) has one root atz = a > 1, and the otherM
roots are atz = 0. A simple analysis of perturbations
shows that a smallγ breaks the degeneracy of the roots
at the origin, which then move radially outwards in the
complex plane, whereas (ifγ > 0) the root that was
located atz = a diminishes its value, moving towards
the unit circle. Thus, stability of the synchronized
solution will be obtained by increasingγ if this last
root enters into the unit circle in the complex plane
before some of the otherM roots leave it. Finally,
for γ large enough, all the roots are outside the unit
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circle. Eq. (10) can be rewritten as

(11)zM = − γ

z − a
.

Thus, the value of|z|M is bounded between

(12)
γ

a + |z| � |z|M � γ

a − |z| .

At the limits of the stability region, some rootz
would satisfy|z| = 1, so that

(13)
γ

a + 1
� 1 � γ

a − 1
,

which leads toa − 1 � γ � a + 1. Therefore, only
within this interval a root might cross the unit circle,
leading to stability changes of the synchronized solu-
tion. In consequence the range ofγ leading to stable
synchronization is insideγ ∈ [a − 1, a + 1]. Further
insight can be gained from the study of the roots at the
boundaries of this interval. First we consider the case
γ = a − 1. For this value of the coupling Eq. (10) be-
comes

(14)zn+1 = azn − a + 1.

Clearly,z = 1 is a solution for alla andM. A small
perturbation of the value ofγ , γ = a − 1 + δγ leads
to a modification of the value ofz, z = 1+ δz. To first
order,δz andδγ are related by

(15)δz = − δγ

1− M(a − 1)
.

The denominator is positive ifM < 1/(a − 1)

and negative otherwise. Thus, ifM < 1/(a − 1),
by increasingγ , (δγ > 0), δz < 0 and a real root
enters into the unit circle. Since this value ofγ is
the smallest one for which crossing the unit circle
becomes possible, all the roots satisfy now|z| < 1 and
thus the synchronized solution becomes stable. On the
other hand, ifM > 1/(a −1), by increasingγ , δz > 0,
and a real root leaves the unit circle. In this case
the synchronized solution becomes more unstable, in
the sense that the rate of escape given by the largest
|z| increases by increasingγ . Thus,M < 1/(a − 1)

gives a limit of the number of stepsM for which
the synchronized solution can become stable. There
is a relation betweenM and the degree of chaos,
associated to the Lyapunov exponent loga, of the
master map: the largest the value ofa, the lower the

stable anticipation times. Ifa > 2, stable anticipated
synchronization becomes impossible.

Next, we consider the other boundary of the syn-
chronization region,γ = a + 1. In this case Eq. (10)
becomes

(16)zn+1 = azn − a − 1.

If M is even,z = −1 is a solution. Considering a
perturbation of the formγ = a + 1 + δγ , in the same
way as before it can be shown thatz = −1 + δz with
δz = −δγ /[1 + M(a + 1)]. Since the denominator
is always positive, ifγ grows, z decreases, so that
the root close toz = −1 leaves the unit circle. Thus,
we simply confirm that a necessary condition for the
stability of the synchronized solution isγ < a + 1.

Next we show results of numerical simulations
that confirm these analytic arguments. Fig. 1 shows
simulations of Bernoulli-like maps, in which the slave
anticipates the master in five steps. During the first
5000 steps the maps evolve independently. Then we
set the value of the coupling toγ = 0.15 and after a
very short transient the anticipation of the slave to the
master is evident. Fig. 2 shows, for the same value of
the parametersa andM, and increasing couplingγ ,
how the roots of Eq. (10) move in the complex plane.
For low coupling Eq. (10) has one real rootz1 ∼ a > 1,
one real rootz2 < 1, and four complex conjugate
roots with modulus less than 1 Fig. 2(a). As the
coupling increases,z1 decreases while the other roots
increase their modulus, approaching the unit circle.

Fig. 1. Time series of Bernoulli-like maps (xn solid line,yn dashed
line) for a = 1.1, γ = 0.15, M = 5. The coupling is set on at
n = 5000, leading to anticipated synchronization.
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Fig. 2. Roots of Eq. (10) fora = 1.1, M = 5 and (a)γ = 0.005, (b)γ = 0.11, (c)γ = 0.15, and (d)γ = 0.8.

Forγ � 0.1= a − 1 all roots of Eq. (8) have modulus
less than 1 Fig. 2(b) and (c) and the synchronized
solution is stable (Fig. 2(c) corresponds to Fig. 1). For
even larger coupling, pairs of complex-conjugate roots
cross the unit circle Fig. 2(d), and synchronization is
unstable again.

For values of the coupling such that all roots of
Eq. (10) are inside the unit circle, the distance between
the two trajectories decreases exponentially,|xn+M −
yn| ∼ |xM − y0|exp(−n/τ), with the transient time to
synchronization given by the inverse of the logarithm
of the modulus of the largest root,τ = −1/ ln |z1|.
Fig. 3 shows the transient evolution of|xn+M − yn|,
for the parameters of Fig. 1. We observe a damped
oscillatory behavior. While the damping time isτ , the
frequency is associated to the phase ofz1.

As a second example we consider the 2D Baker’s
map that transform the unit square into two nonover-

Fig. 3. Transient decay of|xn+M − yn| for a = 1.1, M = 5 and
γ = 0.15. The solid line indicates the value of|xn+M − yn| and
the dashed line indicates the value of|xM − y0|exp(−n/τ) with
τ = −1/ ln |z1| ∼ 15.55 as explained in the text.
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lapping rectangles: the master map, (xm
n , ym

n ), and the
slave map, (xs

n, y
s
n), are

(17)

{
xm
n+1 = fx

(
xm
n , ym

n

)
,

ym
n+1 = fy

(
xm
n , ym

n

)
,

(18)

{
xs
n+1 = fx

(
xs
n, y

s
n

) + γ
(
xm
n − xs

n−M

)
,

ys
n+1 = fy

(
xs
n, y

s
n

) + γ
(
ym
n − ys

n−M

)
,

where

(19)fx =
{

axn, if xn < 1/a,

a(xn − 1/a), if xn � 1/a,

(20)fy =
{

byn, if xn < 1/a,

byn + (1− b), if xn � 1/a,

a > 1 andb < 1 are the expansion and contraction
rates, respectively. It is easy to see that for the stability
of the synchronized solution we obtain a pair of
equations of the same form as Eq. (10), where nowa

is equal to the expansion and to the contraction rate,
respectively. Both equations must have roots with
modulus less than 1, for the synchronized solution to
be stable. In Fig. 4 we present results of numerical
simulations that show anticipated synchronization by
one step. The coupling is set on atn = 30, and after a
transient the map solution approaches the anticipated
synchronization state. We find synchronized solutions
for parameter values such that the equations analogous
to (10) have roots with modulus less than 1. The
duration of the transient, again, is related to the
modulus of the largest root.

Fig. 4. Time series of the 2D Baker map (xm
n solid line,xs

n dashed
line) for a = 1.333,b = 0.777,γ = 0.7, andM = 1. The coupling
is set on atn = 30, leading to anticipated synchronization.

In summary, we have studied the regime of an-
ticipated synchronization in unidirectionally coupled
chaotic maps. In a general case is not possible to give
analytic conditions for the parameter region where
anticipated synchronization occurs, but we have pre-
sented two class of maps, 1D Bernoulli-like maps and
2D Baker maps, in which an analytic treatment of the
stability of the synchronized solution is possible. The
results of numerical simulations are in good agreement
with the analytic predictions.
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