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Modeling bidirectionally coupled single-mode semiconductor lasers
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We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in
a face-to-face configuration. Our study considers the propagation of the electric field along the compound
system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection,
passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to
moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum
of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode
operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to
rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agree-
ment between the complete and simplified models is found for small coupling. For larger coupling, higher-
order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic
solutions and in the dynamics of the optical power.
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I. INTRODUCTION

The nonlinear behavior of semiconductor~sc! lasers has
received a great deal of attention in the last decade. B
intrinsic interest in chaotic dynamics and practical appli
tions of sc lasers have spurred a wide range of studies, m
of them have been reviewed in Refs.@1,2#. Most of the stud-
ies have focused on instabilities induced by optical feedb
~from an external mirror! @3#, optical injection~from another
laser! @4#, current modulation, and their application in e
coded communication systems@5,6#. Only few studies have
centered on instabilities arising from the mutual coupli
among different lasers.

When the distance between the lasers is small, typic
much less than the laser cavity, mutually coupled lasers
be considered as a single cleaved-compound-cavity~C3! la-
ser. The evolution of the longitudinal modes in a C3 laser can
be described by means of a system of time-depend
coupled rate equations@7,8#. The analysis of C3 lasers is
usually classified in active-passive and active-active ca
depending whether one or the two cavities are biased ab
threshold. Under appropriate coupling conditions, there is
enhancement in mode selectivity that arises from the c
structive and destructive interferences of the fields in the
coupled cavities. Consequently, several achievements
been demonstrated: better single-mode operation@9#, fre-
quency tuning@10#, frequency-chirp reduction under curre
modulation@11#, and a lowering in intensity noise@12#.

A completely different operation regime appears when
distance between the lasers is enlarged@13#. Optical insta-
bilities arise from the delayed optical injection from a las
to its counterpart and eventually due to optical feedb
from the facet of the other laser. This last situation can
interpreted in terms of the behavior of mutually coupled no
linear oscillators. When the lasers have dissimilar relaxa
oscillation frequencies and intensities, their mutual coupl
strength may be asymmetric. In this case, Hohlet al. @14,15#
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have found that two coupled semiconductor lasers may
hibit a form of synchronization that is characterized by lo
amplitude oscillations in one laser, and large oscillations
the other one—localized synchronization. More recen
synchronization of an array of mutually coupled lasers s
ject to delayed Doppler-shifted light injections was report
by Otsuka and co-workers@16#. An abrupt transition from
asynchronous chaos to synchronous chaos via a ‘‘ph
squeezed state’’ was observed when the coupling betw
the lasers was increased. On the other hand, Heilet al. @17#
found that two coupled lasers may exhibit subnanosec
synchronized chaotic dynamics. Even in the case of ident
lasers they found an asymmetric role among both; there
leading laser that synchronizes its lagging counterpart. T
effect has been presented as an example of spontaneous
metry breaking since there exists a time lag, equal to
flight time from one laser to the other, between the dynam
of the two lasers.

In Refs.@14–18# the experimental observations were su
cessfully interpreted in terms of a phenomenological sing
mode rate equation model of weakly mutually coupled
lasers. In the model each laser is described by rate equat
one for the complex optical fieldE, and one for the carrier
densityN. The mutual coupling is accounted for by addin
the delayed field of laser 2 in the equation for the comp
field of laser 1 and vice versa. Optical feedback caused
reflections from the front facet of one laser back into t
other one is neglected because of the weak coupling. A m
detailed description of two multimode mutually couple
semiconductor lasers has been recently reported in Ref.@19#.
The latter, directly considers the spatiotemporal Maxwe
Bloch equations complemented with adequate boundary c
ditions. Such an approach can provide a very accurate
scription of the system, although the major drawback is
more difficult physical interpretation of the results and t
larger computational requirements.

To the best of our knowledge, the derivation of the ph
©2002 The American Physical Society15-1
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MULET, MASOLLER, AND MIRASSO PHYSICAL REVIEW A65 063815
nomenological model, describing two coupled lasers, fr
basic principles has not been reported in the literature ye
spite of the success of this model in describing the exp
mental findings, there is no systematic investigation of
range of validity as a function of the mutual couplin
strength. In this paper we reconsider the problem of t
distant mutually coupled semiconductor lasers. In Sec. II
start from Maxwell’s equations supplemented with adequ
boundary conditions, and derive equations for the field a
plitudes in each laser cavity. We also derive rate equati
for the total carrier number within each laser. In Sec. III w
study the case of weak coupling. In this case we arrive
rate-equation model previously used by several authors@14–
18#. For larger coupling we obtain a closed set of equatio
that we use in Sec. IV to calculate the monochromatic so
tions of the compound system. Studying the influence of
coupling strength on the stationary solutions gives insi
into the range of validity of the phenomenological mod
Finally, in Sec. V we develop a more detailed rate equat
model that accounts for higher-order terms in the coupli
We investigate the effect of these terms through several
amples.

II. THE MODEL

We start from Maxwell’s equations to obtain a wave equ
tion describing the propagation of the electric field along
compound system. In Sec. II B, we complement these eq
tions with boundary conditions, at each laser facet, for
two counterpropagating waves. In Sec. II C, we give eq
tions that describe the spatially averaged carrier dens
within each laser cavity. Finally in Sec. II D, we summari
the equations governing the evolution of the optical and m
terial variables.

A. Field equations

The electromagnetic analysis of the electric,EW(v), and
magnetic fields,BW (v), within the laser cavity starts from
Maxwell’s equations, expressed in Fourier domain. Assu

ing that ,W •EW(v)'0, the electric field verifies the standa
wave equation

¹W 2EW~v!1S v

c D 2

evEW~v!50W , ~1!

where

ev511xv
l 1xv

nl~N!1 i
sv

e0v
~2!

stands for the complex dielectric function.c51/Am0e0 is the
light speed in vacuum,e0 the vacuum permittivity,m0 the
vacuum permeability, andsv the electric conductivity of the
medium. Note that we have used

F̃~v![E
2`

`

dt eivtF~ t !
06381
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for the definition of the Fourier transform. The induced m
terial polarizationPW (v) can be expressed by

PW ~v!5e0xvEW~v![e0@xv
l 1xv

nl~N!#EW~v!, ~3!

wherexv
l represents the contribution to the optical susce

bility in absence of pumping whilexv
nl(N) stands for the

contribution of the active material when a current is injecte
N represents the density of electron-hole pairs excited in
active region of the semiconductor laser.

As it is usually done in a Fabry-Perot cavity, we expre
the electric field as the superposition of two counterpro
gating waves. For simplicity, we neglect the transverse
pendence of the field assuming a plane-wave-like solutio

Ej~z,v!5 Ẽj
1eik jz1 Ẽj

2e2 ik j z1c.c. ~4!

The polarization direction of the electric field is usual
transverse electric due to the geometry of the device.
modification of the propagation constants due to the prese
of a finite field distribution, lateral and transverse mod
could be accounted through the effective index method@9#.
Ẽj

6 are the amplitudes, at frequencyv, of the forward and
backward propagating plane waves inside each laser se
j 51,2 and in the external cavityj 50, while kj stand for
their respective propagation constants. The external cavi
defined by the physical separation between the two las
Upon substituting Eq.~4! into the wave equation~1!, we find
a dispersion relation for the propagation constantkj that
reads

kj5
v

c
nv~Nj !2

i

2
@gv~Nj !2av

int#, ~5!

for j 51,2, where we have defined

nv~N!5A11Rexv
l 1Rexv

nl~N!, ~6a!

gv~N!52S v

c D 1

nv~N!
Im xv

nl~N!, ~6b!

av
int5S v

c D 1

nv
F Im xv

l 1
sv

e0vG , ~6c!

with nv the modal refractive index,gv the modal gain, and
av

int the internal loss. The propagation in vacuum is d
scribed through

k05
v

c
1

i

2
av

ext , ~7!

whereav
ext stands for the total coupling loss accrued in t

external cavity.

B. Boundary conditions

The situation of two device-identical semiconductor las
coupled in a face-to-face configuration, as the one depic
in the Fig. 1, consists in two Fabry-Perot cavities with leng
5-2
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MODELING BIDIRECTIONALLY COUPLED SINGLE- . . . PHYSICAL REVIEW A 65 063815
L and separated by a distanceLe determining the externa
cavity. We consider the laser facets as mirrors with an in
nal ~external! reflectivity and transmittivityr 8, t8 (r ,t). The
Stokes relationships imply thatr 52r 8 and tt8512r 2. Im-
posing continuity of the electric field and its derivative at t
laser facets, we arrive to the following boundary conditio
for the amplitudes of the counterpropagating waves

z52~L1 l !, e2 ik1(L1 l )Ẽ1
15r 8eik1(L1 l )Ẽ1

2 , ~8a!

z52 l , eik1l Ẽ1
25r 8e2 ik1l Ẽ1

11teik0l Ẽ0
2 , ~8b!

e2 ik0l Ẽ0
15reik0l Ẽ0

21t8e2 ik1l Ẽ1
1 , ~8c!

z5 l , eik2l Ẽ2
15r 8e2 ik2l Ẽ2

21teik0l Ẽ0
1 , ~8d!

e2 ik0l Ẽ0
25reik0l Ẽ0

11t8e2 ik2l Ẽ2
2 , ~8e!

z5L1 l , e2 ik2(L1 l )Ẽ2
25r 8eik2(L1 l )Ẽ2

1 , ~8f!

with l[Le/2. Due to the high degree of symmetry, we ha
taken the origin of thez axis at the middle of the externa
cavity. We note, however, that the final equations govern
the system are independent of this arbitrary choice. By us
Eqs. ~8b!–~8e! we derive the coefficients of the scatterin
matrix S, defined through

S eik1l Ẽ1
2

eik2l Ẽ2
1D 5S S11 S12

S21 S22
D S e2 ik1l Ẽ1

1

e2 ik2l Ẽ2
2D . ~9!

The coefficients of the matrix are

S115S225r 8F12
~12r 2!ei4k0l

12r 2ei4k0l G , ~10a!

S125S215
~12r 2!ei2k0l

12r 2ei4k0l
. ~10b!

These coefficients are similar to those given in Ref.@9# when
describing C3 lasers. On the other hand, the propagation c
stants within each medium are given by Eq.~6c!. In the
external cavity we express the propagation constant as
lows:

ei2k0l5jeivt, ~11!

FIG. 1. Sketch of two mutually coupled Fabry-Perot semico
ductor lasers. The internal~external! laser facets have a reflectivit
and transmittivityr 8, t8(r ,t). Only a fractionj2 of optical power is
transmitted by the effective coupler located within the exter
cavity.
06381
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t[Le /c being the one-way lag time.j2[exp(2av
extLe) can

be regarded as the fraction of optical power transmitted by
equivalent coupler located in the external cavity~see Fig. 1!.

Upon substituting Eqs.~8a! and ~8f! into the scattering
matrix we arrive at equations relating the outgoing field a
plitudes in both lasers,Ẽ1

2 and Ẽ2
1 , that read

@12r 8S11e
i2k1L#eik1l Ẽ1

25r 8S12e
i2k2Leik2l Ẽ2

1 , ~12a!

@12r 8S22e
i2k2L#eik2l Ẽ2

15r 8S21e
i2k1Leik1l Ẽ1

2 . ~12b!

Similar equations govern the dynamics of the amplitudesẼ0
6

within the external cavity.
Finally, there is a subtle point that deserves some disc

sion. In this section we have described the interfa
semiconductor/air through a set of reflection and transm
sion coefficients. All through this paper we will consid
these coefficients as constants~independent of propagatio
constants!. An alternative description of the interface is
include the different dielectric constants in the boundary c
ditions. Recently, Duarte and Solari@20# have studied the
equivalence between these two approaches, in the case
semiconductor laser with optical feedback. They showed
the two descriptions lead to similar results, for low and lar
coupling strengths. However, the approximation of const
coefficients fails for intermediate couplings where the me
morphosis~of the solitary laser solutions towards the com
pound cavity solutions! occurs. In this paper we assume th
the mutual coupling strength is such that it allows us to c
sider the reflection and transmission coefficients as c
stants. Even in the last section of the paper, where we
derive rate equations that take into account high-order te
in the coupling, the coupling is still weak~such that it is
physically meaningful to consider the longitudinal modes
each laser instead of longitudinal modes of the compo
system!.

C. Carrier equations

The above equations that describe the optical propaga
of the electric field along the whole system have to
complemented with equations describing the interaction w
the active material. The evolution of the carrier dens
within each laser is governed by

]Nj~rW,t !

]t
5

Jj~rW !

ed
2geNj1D]2Nj

]z2
2

i

\
@Pj~z,t !Ej* ~z,t !

2Pj* ~z,t !Ej~z,t !#, ~13!

with j 51,2. Jj (rW) is the current-density distribution,d is the
active layer thickness,e the absolute value of the electron
charge,ge is the spontaneous recombination rate, andD is
the diffusion coefficient. In the mean-field approximation w
neglect the carrier diffusion and we introduce the total car
numberNj ,

-

l

5-3
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Nj[E
active

Nj~rW !d3rW, ~14!

where the integration limits correspond to the active reg
of each laser. By assuming that the material polarizat
Pj (z,t) adiabatically follows the evolution of the electr
field, Eq. ~13! can be approximated by

Ṅj~ t !'
I j

e
2geNj1

2«0V

\
Imx~v,Nj !

1

LEz0

z01L

uEj~z,t !u2dz,

~15!

whereI j stands for the total injection current in each laserV
is the active region volume,z0 is the origin of the laser
cavity, andL stands for its length. In the case of a monoch
matic solution at frequencyv, the integral term on the right
hand-side of the above equation can be determined by
stituting Eq.~4! into Eq.~15! and taking into account that th
amplitudes of the counterpropagating wavesẼj

6 in each laser
are related through Eqs.~8a! and ~8f!,

Ṅj~ t !'
I j

e
2geNj2

2«0Vnec

\v
gv~Nj !G j ueik j lE j

7~ t !u2,

~16!

where the sign2(1) corresponds toj 51 ( j 52).
The integral termsG j are defined through

G j[
1

LE0

L

ur 8eik j (z1L)1e2 ik j (z2L)u2dz. ~17!

A subtle point in the determination of the carrier variab
enters into the definition of theG1,2 terms. These integral
represent the longitudinal average of the optical power
sulting from the longitudinal standing wave inside the cav
that in turn, is determined by the propagation constants.
evaluating the integral in Eq.~17! we can obtain explicit
functional forms of these terms that read

G j~u j !5e2Im u jF2r 8sinc~Reu j !

1
eIm u j1r 82~12e2Im u j !21

Im u j
G , ~18!

u j52Lkj being the dimensionless propagation constant
the case of a free-running laser, the propagation consta
determined by the well-known round-trip condition@9#

eiusol
5

1

r 82
. ~19!

In such a case the integrals read

Gsol[G j~usol!5
2~12r 2!

r 2ln
1

r 2

. ~20!
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In many situations this term can be rescaled into the defi
tion of the electric field, as we will see later.

Finally, the gain functiong at a given frequencyV is
approximated by

gV~Nj ![S GN

vg
D ~Nj2Nt!

11suE j
7u2

, ~21!

with GN[]gv(N)/]NuV the differential gain~in rate!, vg
[c/ng the group velocity,Nt the carrier number at transpa
ency, ands the gain suppression parameter.

D. Dimensionless model

In this section, we summarize the equations governing
electric field and carrier dynamics which constitute o
model. For the sake of clarity and numerical purposes,
rescale the dynamical variables through the following de
nitions:

Ãj[A2«0Vneng

\v

gGsol

geNt
eik j l Ẽj

7 ,

D j[
Nj

Nt
21,

whereGsol is defined in Eq.~20! and

g5
c

ng
Fa int1

1

2L
ln

1

r 2G ~22!

stands for the total cavity decay rate. In the case of fr
running operation, the rescaledAj represent the outgoing
fields calculated at the outer laser facets. By inserting
definition of theSi j coefficients and expressing the electr
fields in terms of the rescaled ones, Eqs.~12a! and ~12b!
reduce to

@12r 2ei4k0l2r 2~12ei4k0l !ei2k1,2L#Ã1,2

5r 8~12r 2!ei2k0lei2k2,1LÃ2,1. ~23!

On the other hand, the equations for the normalized car
densities read

Ḋ j~ t !5geFm j2D j2Gj

G j

Gsol
uA j u2G , ~24!

where the gain function can be expressed as

Gj[
aDj

11«uA j u2
. ~25!

Finally, we have introduced the following dimensionless p
rameters:

m j[
I j

eNtge
21, «[

geN t

gGsol

\v

2«0Vneng
s, a[

NtGN

g
.
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The injection current is also commonly measured with
spect to the solitary laser thresholdpj[I j /I th

sol , thus result-
ing m j5pj (111/a)21.

Equation~23! for the optical fields, together with Eq.~24!
for the carrier densities constitute our model. In the follo
ing section, we proceed by commenting on how these eq
tions can be transformed from frequency to time domain
order to investigate their dynamical properties. We presen
Sec. III a simple rate-equation model valid in the limit
weak coupling and single-longitudinal-mode operation. G
ing beyond this approximation, we show in Sec. IV the sp
trum of monochromatic solutions taking into account po
sible higher-order terms but still in the slowly varyin
amplitude~SVA! limit. As a final step, we develop a mor
detailed dynamical model that is able to include the effec
the higher-order terms into the dynamics.

III. RATE EQUATIONS UNDER WEAK COUPLING

In the absence of couplingj50, the propagation con
stants of the free-running lasers obey the usual round
condition that leads to

usol[2Lksol52pM1 i ln r 82, ~26!

with j 51,2 andM being an integer number labeling the lo
gitudinal modes. The second term on the right-hand-side
the equation accounts for the losses through the mirrors.
express the propagation constants in terms of the f
running values, modified by a small perturbation due to
mutual coupling, i.e.,u j[usol1Du j .

We consider the case of two device-identical semicond
tor lasers, except for their free-running emission frequenc
~at threshold! that we assume to be single longitudinal mo
around nearly identical optical frequencies,V1'V2.
Through the temperature dependence of the refractive in
frequency tuning can be achieved by simply controlling
temperature of these devices.

We define the SVA of the electric fieldsAj around the
symmetric reference frameV[(V21V1)/2 by means of

Aj~ t ![Aj~ t !e2 iVt. ~27!

Since the fields are nearly monochromatic aroundV,
Ãj (v)5Ãj (v2V) is nonvanishing foru[v2V'0. Upon
expanding Eq.~6c! aroundV and keeping only dominan
terms, we obtain

Du1,2' i t inF6 iD2 iu2
1

2
~12 ia!g~G1,221!G . ~28!

We define the relative detuning asD[(V12V2)/2, the
group velocity vg

215(]/]v)@(v/c)nv#uV , the internal
round-trip time t in52Lvg

21 , the alpha factor a
5(]Re k/]N)uV /(]Im k/]N)uV , the material gainG1,2 @Eq.
~25!#, and the cavity decay rateg @Eq. ~22!#. We have also
neglected gain differences between the two lasers du
their slightly different positions with respect to the ga
curve when a detuning is present.

Upon introducing the following relationships
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v5V1u, ei2kjL5
1

r 2
eiDu j

into Eq. ~23!, we arrive at

@12r 2ĵ2ei2ut2~12 ĵ2ei2ut!eiDu1,2#Ã1,2

5
~12r 2!

r
ĵeiuteiDu2,1Ã2,1, ~29!

ĵ[jeiVt being the effective coupling parameter. Equati
~29! represents our optical model for the Fourier compone
of the electric fields in both lasers. In order to obtain a d
namical model, we have to take the inverse Fourier tra
form of the above equations. For the sake of clarity, we le
this point until Sec. V. We instead express all the terms in
~29! to lower order in the coupling parameterj. The left-
hand side of these equations simply reduces to@12eiDu j #
' iDu j , while for the right-hand term it is necessary to a
sume that the change in propagation constants behave
o(j) in order to approximateĵeiDu j'ĵ. Upon introducing
Eq. ~28!, the lower-order equations read

2 iuÃ1,257 iDÃ1,21
1

2
~12 ia!g@G1,221#Ã1,2

1
~12r 2!

r
ĵeiutÃ2,1. ~30!

By Fourier transforming Eq.~30! to time domain,2 iu
→dt , we arrive at the dynamical system,

dtA1,2~ t !57 iDA1,2~ t !1
1

2
~12 ia!g@G1,221#A1,2~ t !

1k̂cA2,1~ t2t!, ~31a!

dtD1,2~ t !5ge@m1,22D1,22G1,2uA1,2u2#, ~31b!

G1,25
aD1,2

11«uA1,2u2
, ~31c!

with k̂c[(12r 2)/(r t in) ĵ. In this procedure we have as
sumed nearly stationary carrier densities, which is a justifi
approximation in semiconductor lasers since they evolve
slower time scales than the optical fields.

Analyzing Eq. ~31a!, we find that the termsk̂cA2,1(t
2t) describe the mutual delayed injection from one laser
its counterpart. We remark that neither feedback reflecti
involving terms likeA(t22t) nor higher-order corrections
of the propagation constants due to the mutual injection
accounted for at this level of approximation. Equation~31a!
for the SVA of the complex electric fields together with E
~31b! for the normalized carrier numbers within each las
constitute the ‘‘phenomenological’’ rate-equation model p
viously studied @17,18#. The main result from numerica
simulations of two device-identical lasers is the evidence
coupling-induced subnanosecond synchronized chaotic
5-5
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MULET, MASOLLER, AND MIRASSO PHYSICAL REVIEW A65 063815
namics in conjunction with an asymmetric physical role
the subsystems: the leading laser synchronizes its lag
counterpart, whereas the synchronized lagging laser dr
the coupling-induced instabilities@18#. This phenomenon
manifests itself simultaneously in a well-defined time l
between the dynamics of the two lasers~which coincides
with the delay timet).

A final point deserves some discussion. In Eq.~31b!, the
correction prefactorsG j /Gsol acting on the stimulated re
combination terms have been neglected, since, in the ca
very weak coupling, the modification in propagation co
stants is small enough to allow the substitution of the lon
tudinal standing wave by the solitary one. We will return
the discussion of these terms in Sec. V.

In the following section we describe the spectrum
monochromatic solutions obtained from the ‘‘complet
model and we compare it with the phenomenological mo
that takes into account only lower-order terms in the c
pling.

IV. MONOCHROMATIC STEADY-STATE SOLUTIONS

A basic step in any dynamical system consists in the
culation of its steady-state solutions. A rapid way to und
stand that two distant mutually coupled lasers are a situa
significantly different from the one of a C3 laser is by plot-
ting the transmittivity function for the compound system. W
consider that an electric fieldEv

in is injected at thez52( l
1L) facet, and we compute the output fieldEv

out at the ex-
ternalz5 l 1L facet ~Fig. 1!. The total field transmittivityT
5Ev

out/Ev
in gives insight into the resonances. In the case o

single cold Fabry-Perot cavity~filled by a linear medium
with refractive indexne), the transmitivity is an Airy func-
tion @21# with peaks at the position of the solitary longitud
nal modes@Fig. 2~a!#. In a C3 laser, there is a noticeabl
rearrangement of the longitudinal modes, which depends
only on the ratioLe /L, but also on the laser gains@Fig. 2~b!#,
which provides the tunability properties. Finally for two di
tant mutually coupled lasers, the solitary resonances
modulated by the extremely small free-spectral range of
external cavity@Fig. 2~c!#. This simple analysis provide
some intuition into the resonances of mutually coupled
sers, although it is unrealistic because it considers e
single laser as passive and linear. Then, under lasing co
tions, it is necessary to include the dispersion relations of
active media as well as the nonlinear interaction with
carrier variables.

In our case, a monochromatic steady-state solution
characterized by a common operating frequencyv of the
electric field in the whole system, fixed carrier inversio
D1,2 and intensitiesP1,2[uA1,2u2 in each laser, and a relativ
phase among the oscillations of the two electric fields.
expressingA1,2(t)5Q1,2e

if1,2(t), we look for solutions with a
pinned relative phasef[f22f1 and proportional field in-
tensitiesr[Q2 /Q1. In Sec. II B, we derived equations tha
govern the evolution of the optical variables. In the case
continuous-wave~cw! operation, we are interested in findin
solutions where the field does not vanish in both lasers
multaneously. Thus, the system of equations~12a! and~12b!
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should verify the condition of vanishing determinant, provi
ing the following round-trip condition for the compound sy
tem:

@12r 8S11e
i2k1L#@12r 8S22e

i2k2L#5r 82S12S21e
i2k1Lei2k2L.

~32!

Using Eqs.~10a!, ~10b!, and~26!, the above equation can b
expressed as

Fe2 iu1

r 8S11

21GFe2 iu2

r 8S11

21G5S S12

S11
D 2

. ~33!

We focus on a typical situation where both semiconduc
lasers are pumped at or above threshold, then acting as a
elements. In this case, the complex Eq.~33! can be regarded
as two real equations involving three unknowns, i.e.,
common operation frequency and the gain in both las
However, the rates of stimulated emission in each laser
not independent, but they impose a ratio for their respec
intensitiesr. From Eq.~24! and when the gain-suppression
neglected, we arrive at

r2'
~am22G2!

~am12G1!

G1

G2
. ~34!

The ratio between intensities is in turn determined by E
~12a! or ~12b!, which also provides the relative phase b
tween the fields

reif[
A2

A1
5

S11

S12
ei (u12u2)Fe2 iu1

r 8S11

21G . ~35!

FIG. 2. Frequency dependence of the transmitivity: a sin
Fabry-Perot cavity~a!, a C3 laser with Le50.42L ~b!, and two
distant coupled lasers withLe555L ~c!. In the three cases, th
Fabry-Perot cavities are filled by a passive medium with index
refractionne53.5, mirror reflectivityr 50.56, and lossless externa
cavity j251.
5-6
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In principle, Eqs.~33!–~35! represent a set of five real non
linear equations that should provide the five unknowns
fining a monochromatic solution, i.e.,v, G1 , G2 , r, andf.
Thereafter, the steady-state intensity in each laser can
simply determined from

Pj5
~am j2Gj !

Gj S «1a
G j

GsolD . ~36!

A. Symmetric operation

As a starting point, we consider the case of symme
operation, whereu15u2[usym. The common propagation
constantusym can be obtained from Eq.~33!,

u6
sym52pM2 i ln

1

r 82
2 i lnF 16r 8ei2k0l

16
ei2k0l

r 8
G . ~37!

The two first terms on the right-hand side of Eq.~37! are the
contribution of the solitary laser, while the last term th
behaves aso(j) is the modification in propagation consta
due to the mutual coupling. We obtain two families of sym
metric solutions, which depend on an integer numberM la-
beling the longitudinal modes, and on a sign (6). Upon
replacing the expression ofusym in Eq. ~35! we find that
these solutions are restricted tor51, G15G25G sym, and
f50,p. Thus, a solution with sign1(2) corresponds to a
relative phasef50 (f5p), describing in-phase~antiphase!
dynamics between the two fields. The only solutions comp
ible with these peculiar characteristics are restricted toD
50 andm15m2[m. Therefore, in the rest of the paper w
restrict ourselves to the analysis of equally injected laser
which the solitary free-running frequencies coincide.

The operating frequency and associated gain of the s
metric solutions can be easily calculated when taking
SVA around a single longitudinal mode. Introducing Eq.~28!
in Eq. ~37!, we arrive at

hsym5
t

t in
@a lnuz6u1argz6#, ~38a!

G sym511
2

gt in
lnuz6u, ~38b!

with hsym[(vsym2V)t and

z65
16r 8ĵeihsym

16
ĵ

r 8
eihsym

. ~39!

Once the eigenfrequencyh is obtained by solving the non
linear equation~38a!, the associated gain can be calculat
from Eq. ~38b!. It can be shown that by expanding the log
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rithmic and complex argument functions to first order in t
parameterj, we obtain simpler equations for the eigenfr
quency, which read

hsym57C sin~hsym1arctana1w0!, ~40a!

G sym517
2kc

g
cos~hsym1w0!, ~40b!

with w05Vt(mod2p) and C5kctA11a2. It is worth re-
calling that the solutions of Eq.~40a! are nothing but the
symmetric steady-state solutions of the phenomenolog
model @17# introduced in Sec. III. These symmetric stea
states resemble a laser with conventional optical feedb
with round-trip timet whenf50 @3#.

Next, we proceed comparing the symmetric monoch
matic solutions obtained from the complete model@Eq.
~38a!# and those from the phenomenological model@Eq.
~40a!#, as function of the coupling parameterj. For the case
of very weak coupling,j50.05, the frequency dependenc
of the gain function@Eq. ~38b!# is sinusoidal as shown in Fig
3~a!. We note that this dependence agrees with that predi
by Eq. ~40b!. For larger couplings, however,j50.45, the
gain function, Eq.~38b!, displays rapid variations within a
free-spectral range of the external cavity, as can be cle
seen in Fig. 3~b!.

The stationary solutions for several coupling conditio
are shown in Fig. 4:j50.05,kc57.6 ns21 in panels~a!,~b!;
j50.3, kc545.9 ns21 in panels ~c!,~d!; and j50.5, kc
576.6 ns21 in panels~e!,~f!. Panels~a!,~c!,~e! correspond to
the solutions of Eq.~38a!, while panels~b!,~d!,~f! correspond
to the solutions to first order inj, Eq. ~40a!. The symmetric
steady-state solutions withf50(p) are represented by dia
monds ~stars! in a (G21) vs h diagram. For the case o
weak coupling, the monochromatic solutions are arrange

FIG. 3. Frequency@h5(v2V)t# dependence of the gain@Eq.
~38b!# of symmetric solutions (1 sign, f50) in solid lines.
Dashed lines represent Eq.~38a! and the diamonds its zeros. Param
eters: r 50.56, ng54, L5300 mm, a53.5, t50.5 ns, w050,
j50.05 in panel~a!; andj50.45 in panel~b!.
5-7
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an ellipse, centered aroundh50, which corresponds to the
free-running frequency. The solutions with large negativeh
have larger loss reduction and consequently larger associa
optical power. For weak coupling we observe a very goo
agreement between both predictions. Typically, there is go
agreement when the coupling coefficient is in the range
j;0 –0.1 ~i.e., when less than 1% of the optical power is
transmitted by the external cavity!. When the coupling in-
creases, we start to observe some differences at abouj
50.3 ~9% power transmission! @Figs. 4~c,d!#. The solutions
are still arranged in an ellipse but many points prefer positiv
h and the loss reduction of the largest negativeh is lower.
This last effect is a result of a nonsinusoidal dependence
the gain as a function ofh.

B. General case

The general analysis of the monochromatic solutions
two mutually coupled semiconductor lasers is quite involve
and, in this paper, we restrict ourselves to giving some guid
lines for their calculation. As already commented, we have
solve a system of five real nonlinear equations, Eqs.~33!–
~35!. To overcome this problem, we take advantage of th
symmetric solutions calculated in the preceding section. W
look for solutions around each of the symmetric steady stat
by definingu j5usym1du j . The only assumption aboutdu j
is that it admits a SVA form as in Eq.~28!,

FIG. 4. Symmetric steady-state monochromatic solution
~a!,~c!,~e! are solutions of Eq.~38a! and ~b!,~d!,~f! are solutions of
theo(j), Eq.~40a!, h5(v2V)t. The meanings of the symbols are
(L) for f50 and (*) for f5p. The same parameters as Fig. 3
exceptj50.05 in ~a!,~b!, j50.3 in ~c!,~d!, andj50.5 in ~e!,~f!.
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t F idh1
1

2
~12 ia!gtdGj G , ~41!

with dh5h2hsym and dGj5Gj2G sym. With these new
variables Eq.~33! reduces to

@~16T!e2 idu121#@~16T!e2 idu221#5T2, ~42!

with T5S12/S11 and the sign6 standing forf50,p sym-
metric solutions.

In a general case, the gain in both lasers may differ,
Eq. ~42! can be regarded as a parametric equation fordG2
anddh, once a value ofdG1 is provided@22#. From Eq.~42!,
the gain variation in laser 2 reads

dG25
22

gt~12 ia! F idh1
t

t in

3 lnH 1

~16T! S 11
T2

~16T!e2 idu121
D J G . ~43!

The frequency shiftdh can be obtained imposing ImdG2
50 in the above equation. The final result is that, under
operation, the laser gains must follow a curve in the (dG1
2dG2) plane, as the one shown in Fig. 5. The point (0,0)
this diagram represents the symmetric steady-state solu
studied in the preceding section. The existence of asymm
ric solutions still depends on a condition associated with
roots of an additional equation. Upon combining Eqs.~34!
and ~35!, we arrive at

~am22G sym2dG2!

~am12G sym2dG1!

G1

G2

2e22Im (du12du2)U~16T!e2 idu121U2

50. ~44!

;

FIG. 5. dG12dG2 diagram around an in-phase symmetric so
tion (L). The curves are solutions of Eq.~42!. The asymmetric
solutions are represented with the symbol (n). Parameters:r
50.56, a53.5, ng54, t50.5 ns, L5300 mm, w050, j
50.01, p51.50, Nt51.53108, andGN5331026ns21.
T
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For each point of the parametric curvesdG12dG2 in Fig. 5,
the above equation is solved fordh. In Fig. 6, we represen
these solutions in adh vs dG1 plot. The black lines represen
the solutions obtained from Eq.~43!, while gray lines are
those from Eq.~44!. A generic monochromatic solution ap
pears when both lines cross. Around the in-phase symm
solution (L) there are seven crossings marked with the sy
bol (n) and therefore seven asymmetric solutions appea
contrast to the symmetric solutions, the number of asymm
ric solutions depends on the injection current. Hence,
have demonstrated that, even with the high degree of s
metry in the system, solutions in which both lasers evo
asymmetrically are indeed possible. Finally, the relat
phasef associated with each of these solutions can be
covered from Eq.~35!, and it is plotted in Fig. 7. As a fina
remark, we have to comment that in the case of a perfe
symmetric system, pairs of asymmetric solutions appea

FIG. 6. Frequency shiftdh with respect to an in-phase symme
ric solution (L). The black curves are obtained from Eq.~42!,
while gray ones are from Eq.~44!. Crossings between these tw
curves are steady-state monochromatic solutions. The asymm
solutions are represented with the symbol (n). The same param
eters as in Fig. 5.

FIG. 7. Relative phase among the oscillations of the two elec
fields obtained from Eq.~35!. Only asymmetric solutions (n) with
f.0 are represented. The same parameters as in Fig. 5.
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be restoring the initial symmetry of the system; i.e., bo
(h,G1 ,G2 ,r,f) and (h,G2 ,G1 ,r21,2f) must be solutions.
Due to the symmetryr→r21 andf→2f, each crossing in
Fig. 6 represents two asymmetric solutions and therefor
the figure 14 asymmetric solutions are actually represen

V. DYNAMICAL MODEL INCLUDING HIGHER-
ORDER TERMS

We have found, from the steady-state analysis, that
applicability of the phenomenological model is restricted
weak coupling strength, typically less than 5% of the coup
transmission. In this section, our aim is to explore the d
namical consequences when the coupling exceeds, albe
a small amount, the limit of validity of the phenomenologic
model.

It is worth recalling that our problem consists in Fouri
transforming to the time domain Eq.~29!. Following the
guidelines given in Ref.@23#, we proceed, introducing the
auxiliary variables,

R̃1,2~u![
@12eiDu1,2#

t in
Ã1,2~u!, ~45!

which represent the variation in propagation constants w
respect to the free-running laser. Upon introducing these
pressions into Eq.~29!, we obtain

R̃1,2~u!5k̂ce
iutÃ2,1~u!2k̂ fe

i2utÃ1,2~u!1 ĵ2ei2utR̃1,2~u!

2ŝeiutR̃2,1~u!, ~46!

where we have defined the effective injection ratek̂c5(1
2r 2) ĵ/(r t in) , the effective feedback ratek̂ f5(1
2r 2) ĵ2/t in , and ŝ5(12r 2) ĵ/r . Equation ~46! can be
straightforwardly transformed from Fourier to time doma
obtaining

R1,2~ t !5k̂cA2,1~ t2t!2k̂ fA1,2~ t22t!1 ĵ2R1,2~ t22t!

2ŝR2,1~ t2t!. ~47!

The above equation provides the value of the variab
R1,2(t) as a function of the past history of the system. T
first term on the right-hand side of Eq.~47! describes the
delayed injection from one laser to its counterpart, while
second term accounts for passive reflections at the exte
facet of the other laser. The last two terms, involving elec
fields with arbitrary large delays, describe the modification
propagation constants due to multiple reflections within
external cavity.

On the other hand, we need to specify which is the te
poral evolution of the electric fields in terms of theR1,2
variables. Equation~45! can be transformed to time domain
resulting in

tric

ic
5-9
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R1,2~ t !5
1

t in
@A1,2~ t !2et in[ 7 iD1(1/2)(12 ia)g(G1,221)]

3A1,2~ t2t in!#. ~48!

The above equation, in finite differences, can be appro
mated by a differential equation in the limit oft in→0:

R1,2~ t !'dtA1,2~ t !6 iDA1,2~ t !2
1

2
~12 ia!

3g@G1,2~ t !21#A1,2~ t !. ~49!

As a final step, we need to reconsider the longitudi
confinement integralsG j @Eq. ~17!# in order to fully deter-
mine the evolution of the carrier variables. We express
~18! in terms of the variation in propagation constantsDu j ,

G j5
1

r 2
e2Im Du jF2r 8sinc~ReDu j !

1
r 2~11eIm Du j !2~11e2Im Du j !

ln~r 2!1Im Du j
G . ~50!

We expand Eq.~50! to first order in variations

G j5Gsol@12lIm Du j1•••#'Gsole2l Im Du j , ~51!

with Gsol given in Eq.~20! and

l511
11r 2

2~12r 2!
1

1

ln r 2
. ~52!

Hence, these integral terms, to lower order, depend on
imaginary part of the propagation constants or the ga
Since the gains in both lasers may differ, there is no way
rescale these terms into the definition of the field amplitud
However, it is possible to replace these approximate exp
sions in the stimulated recombination of the carrier eq
tions.

In summary, our model for two bidirectionally couple
lasers taking into account higher-order corrective terms re

dtA1,2~ t !57 iDA1,2~ t !1
1

2
~12 ia!g@Gj~ t !21#A1,2~ t !

1R1,2~ t !, ~53a!

R1,2~ t !5k̂cA2,1~ t2t!2k̂ fA1,2~ t22t!1 ĵ2R1,2~ t22t!

2ŝR2,1~ t2t!, ~53b!

Ḋ j~ t !5ge@m j2D j2Gje
2l(t in/2)g[Gj (t)21]uAj u2#,

~53c!

Gj5
aDj

11«uAj u2
. ~53d!
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We use Eqs.~53a! and~53c! to update the electric fields an
carrier variables, while Eq.~53b! describes the interaction
among the lasers. We finally remark that the phenomenolo
cal model can be recovered by approximatingR1,2(t)
'k̂cA2,1(t2t) in Eq. ~53a!.

Numerical simulations

We perform numerical simulations of the complete mod
Eqs. ~53a!–~53d!, and the phenomenological model, Eq
~31a! and ~31b!, for different values of the coupling param
eter j. We focus on the discussion of the instabilities th
arise under weak to moderate coupling conditions (,6% of
the emitted light is transmitted! and long external cavities
Le5120 cm providing a time delay of order oft54 ns. We
assume that both lasers are equally pumped, and their
rents are slightly above the solitary threshold. We also c
sider that the free-running emission wavelengths are ca
fully tuned to achieve resonant operation, i.e., no detuning
present.

In the absence of coupling (j50) both lasers reach cw
emission, with small fluctuations if spontaneous emiss
processes are included. The latter can be easily incorpor
in the rate equations, but as a first step, we are intereste
investigating the deterministic dynamical properties. In F
8, the coupling is very weak, only 0.25% of the light
transmitted (kc57.6 ns21). We can observe how the lase
intensities undergo irregular fast pulses~partially washed out
due to the filtering process!, in subnanosecond time scale
accompanied by sudden power dropouts followed by
gradual recovering of the optical power when looking to m
crosecond time scales. This typical behavior, also referre
as low-frequency fluctuations~LFF!, has been extensively
studied in the case of a laser with external optical feedb
@3#. We have found that power dropouts appear for a w

FIG. 8. Numerical simulation of the complete dynamical mod
~Sec. V! ~a! and the phenomenological model~b!, P1,2[uA1,2u2. The
parameters are:r 50.56, L5300 mm, t54 ns, w050, ng54,
ge51 ns21, Nt51.53108, GN5331026 ns21, a53.5, a int

520 cm21, «50.03, j50.05, andp51.01. The time traces of
laser 2 have been vertically shifted for clarity.
5-10
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range of coupling rates and injection currents close to
solitary laser threshold. This low-frequency dynamics, mu
slower than any other time scale of the system, display
good correlation between the two time series. Zooming i
Fig. 8, we can observe that actually power dropouts do
occur simultaneously but with a small lag time. By analyzi
a large number of power dropouts under different coupl
conditions we have found that the lag time corresponds
the flying timet. A surprising phenomenon is that, althoug
all the dropouts appear with this small time lag, the role
the lasers~leader and laggard! may change from drop to
drop. Thus, the asymmetric role between the two lasers,
perimentally observed in Ref.@17#, is also captured by our
model. It is worth noting that for these very weak couplin
conditions, the results obtained with the phenomenolog
model @Fig. 8~b!# are in good agreement with the comple
model. Hence, this fact suggests that the existence of LF
bidirectionally coupled lasers is a direct consequence of
delayed mutual injection, although they could be eventua
modified due to passive feedback reflections. In Fig. 9,
coupling has been enhanced to 6% of light transmiss
(kc538.3 ns21). The larger the coupling, the larger the di
crepancies between the two models due to the existenc
higher-order corrective terms. For instance, power dropo
appear more frequently in the complete model, and we
also appreciate lower mean power levels.

In summary, we have found that for the particular situ
tion of a perfectly symmetric system, the external flyin
time, being much larger than any other typical time scale
the system, plays an important role in the dynamics, ma
festing itself as an asymmetric role of both subsystems.

VI. CONCLUSIONS

In this paper we have theoretically investigated the d
namical and steady-state properties of two mutually coup
semiconductor lasers. The setup under study is conceptu

FIG. 9. Numerical simulation of the complete dynamical mod
~Sec. V! ~a! and the phenomenological model~b!, P1,2[uA1,2u2. The
same parameters as Fig. 8 except forj50.25 andp51.04.
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equivalent to one of coupled-cavity lasers, except for the
gap that is assumed to be very much longer than the l
cavities. In addition, we have restricted ourselves to the c
of device-identical lasers, being equally pumped and tune
achieve equal free-running emission frequencies. Our
scription has focused on the propagation of the electric fi
through the compound system, complemented by adeq
boundary conditions. We have demonstrated that, in the l
of weak coupling and single longitudinal mode operation,
model can be reduced to rate equations describing the
lution of the slowly varying envelope of the electric field an
the carrier number within each semiconductor laser. Tak
the limit of small transmittivity of the coupler, located in th
external cavity, the rate equation model can be reduced to
so-called phenomenological model, which only accounts
mutual injection from one laser into its counterpart and v
versa.

From the steady-state analysis, we have found three
ferent types of monochromatic solutions: in-phase and
tiphase symmetric solutions and asymmetric solutions. In
symmetric solutions, the two lasers oscillate with a relat
phase that is restricted to being either 0~in-phase! or p
~antiphase!. In spite of the high degree of symmetry in th
system, asymmetric solutions, in which the gain in both
sers is different, have also been found. The bifurcation d
gram and stability properties of these solutions are inter
ing issues to be investigated. However, we have seen f
numerical simulations that many of these solutions beco
unstable when coupling is increased. The spectrum of s
metric monochromatic solutions was calculated for differe
values of the mutual coupling strength. From this stea
state analysis, we have inferred the limit of validity of th
phenomenological model, which is restricted to typically le
than 5% of coupler transmission. As a final step, we ha
investigated the dynamical properties of the complete mo
being able to incorporate the effects of higher-order corr
tive terms. For injection currents close to the solitary thre
old and very weak coupling, we have observed synchroni
power dropouts, but with a time lag between the two sign
In this situation the phenomenological model yields corr
results, but for higher couplings there is a decrease in m
optical power, and power dropouts appear more frequen

The study of mutually coupled semiconductor lasers
important from the point of view of fundamental physic
dynamical systems theory, and also for their technolog
aspects. A thorough understanding of the synchroniza
properties is crucial to their potential implementation as k
components in, e.g., encoded communication systems.
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