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We study the dynamics of multimode semiconductor lasers with optical feedback. Our model takes into
account explicitly spatial effects, which are included by considering spatial profiles forN longitudinal modes
coupled to the space-dependent gain. We also consider the effect of carrier diffusion. We find that in the weak
feedback regime the longitudinal modes display antiphase oscillations that lead to a nearly constant output
intensity. This result is largely independent of the value of the diffusion coefficient. For larger feedback we
observe in-phase fast oscillations at a frequency close to the relaxation oscillation frequency of the solitary
laser. In these two regimes, the total output of the laser has the properties of a single-mode laser for nondis-
persive applications. We assess the validity of an existing approximation scheme that has dealt with spatial
inhomogeneities by expanding the carrier density into a truncated hierarchy of moments. We demonstrate that
this approximation is very good when the underlying carrier diffusion is fast, thus leading to a weakly
developed carrier grating.
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I. INTRODUCTION

Multi-longitudinal-mode laser dynamics is a difficult
problem that has received increasing attention over the last
ten years. In this paper, we focus on that topic for edge-
emitting semiconductor lasers with optical feedback. These
lasers are difficult to analyze because their size makes it
extremely difficult to probein situ the physics that takes
place. It is only very recently that systematic experimental
results on multi-longitudinal-mode edge-emitting semicon-
ductor lasers have begun to be reported for more than two
modes in the much simpler configuration without optical
feedbackf1g.

Optical feedback adds an infinite number of dimensions to
the phase space of the dynamical system and is expected to
lead to an even more complex dynamics. Therefore the ten-
dency has been to resort to phenomenological models to an-
swer the inverse problem question: what physical mecha-
nisms account for the observed laser output properties? For
that purpose, two approaches have been mainly used. The
first one does not presuppose the number of lasing modes
and deals therefore with an electromagnetic field described
by a partial differential equation. That field is coupled to the
free-carrier density by means of either a diffusion equation
f2,3g or the space average of the free-carrier densityf4–6g.
This approach does include some drastic approximations in
the description of the semiconductor physics but retains most
aspects of Maxwell’s equations for the field. Its drawback is
the heavy computational work that is required. The second
approach is based on a modal expansion of the cavity field
and on a moment expansion of the free-carrier density to
generalize the Lang-Kobayashi single-mode modelf7g. Two
different ways to approximate the material diffusion equation
have been used. One way is to approximate the free-carrier
density by its space average, reducing the diffusion equation
to an ordinary differential equation and leading to a set of
N+1 equations if there areN lasing modesf8–12g. The other

way is to expand the free-carrier density in terms of the
nonlinear gain functionf13g as in solid-state laser rate equa-
tions f14g. This leads to a set of 2N equations forN lasing
modesf15–17g.

A significant difference between the two types of modal
expansions is the underlying assumption about the free-
carrier dynamicssalso referred to as spatial hole burning or
spatial gratingd. In the N+1 approach, it is assumed that
diffusion washes out very fast any spatial inhomogeneity and
that the free-carrier density may, to a very good approxima-
tion, be assumed to be a constant along the gain medium. On
the contrary, the 2N approach assumes that the inhomoge-
neous mode structure of the Fabry-Pérot laser, which is pro-
portional to sin2smpz/Ld where m is an integer andL the
cavity length, imprints a similar inhomogeneity on the free-
carrier density even in the long-time limit.

Recently, a comparison between these two sets of modal
rate equations has been carried out to assess their differences
and relevancef18g. In particular, it was shown that antiphase
dynamics is not compatible with theN+1 modal equations
but appears naturally in the 2N modal equations. This is im-
portant because the existence of in-phase and antiphase dy-
namics was recently demonstrated indirectlyf19g by compar-
ing the power spectral density for total intensity with the
incoherent sum of power spectral densities for individual
modes and directly by ultrafast recording of the modal output
power f1g.

In the absence of a reliable experimental estimation of the
lifetime of the spatial inhomogeneity of the free-carrier den-
sity, we propose in this paper to compare the two modal
approaches described in this introduction with the model
from which they both derive, namely, the set ofN modal
equations for the electromagnetic field coupled to the full
diffusion equation for the free-carrier density. The optical
feedback is taken into account as in the Lang-Kobayashi
model, through a single delay term in the equations for the
mode amplitudes. We find with the diffusion equation that
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for weak feedback the modal intensities display antiphase
oscillations that lead to a nearly constant output intensity, in
good agreement with the predictions of the 2N model. Sur-
prisingly, the antiphase oscillations occur in a wide range of
values of the carrier diffusion coefficient. This indicates that
weak diffusion is not a singular limit. More important, it
suggests that even in the long-time limit and despite the as-
sumption of a fast free-carrier dynamics, there remain traces
of the spatial inhomogeneity induced by the mode gratings.

This paper is organized as follows. The model is de-
scribed in Sec. II. Results of numerical simulations are pre-
sented in Secs. III and IV, and Sec. IV contains a summary
and the conclusions.

II. THE MODEL

We begin by writing the optical field in the laser cavity as

Esz,td = o
m

ffmszdEsm,td + c.c.g, s1d

where thefmszd are in principle any set of functions that
form an orthonormal basis. In practice, the usual choice is
the modes of the empty lossless cavity, which for a Fabry-
Pérot cavity of lengthL are given byfm=Î2sinsqmzd where
qm= ±mp /L, m being an integer andL the cavity length. The
fm are normalized to unity:s1/Lde0

Lufmszdu2dz=1. Next we
define the slowly varying complex amplitudes as

Esm,td = Emstdexpsivmtd, s2d

wherevm=qmc.
The rate equations for a multimode laser which couple the

modal complex amplitudesEmstd to the population inversion
Fsz,td are f16g

dEmstd
dt

=
1 + ia

2
fGmstd − kmgEmstd + hmEmst − tdexps− ivmtd,

s3d

]Fsz,td
]t

= Jszd −
Fsz,td

ts
− Fsz,tdo

m

ufmszdEmstdu2

+ Dz
]2Fsz,td

]z2 . s4d

The Gm are the modal nonlinear gains,

Gmstd =
1

L
E

0

L

ufmszdu2Fsz,tddz, s5d

a is the linewidth enhancement factor, andkm is the field
damping ratesor inverse photon lifetimed. A delay term was
included phenomenologically to account for weak external
optical feedbackf7g. hm is the feedback strength into themth
mode andt=2Lext/c is the delay time induced by the exter-
nal cavity. In Eq.s4d Jszd is the carrier injection current,ts is
the carrier lifetime, andDz is the longitudinal carrier diffu-
sion coefficient.

We now derive the two approximate models described in
the Introduction. Defining the spatial average of the carrier
density as

Nstd =
1

L
E

0

L

Fsz,tddz, s6d

integrating Eq.s4d over z, and neglecting carrier diffusion
gives

dN
dt

= J −
N
ts

− o
m

uEmu2Gm, s7d

where J=s1/Lde0
LJszddz. Equations s3d and s7d, supple-

mented with a phenomenological expression for the modal
gain Gm fwhich replaces Eq.s5dg, constitute the set ofN+1
rate equations that has been studied. In Refs.f8,11g, the non-
linear gain isGm=bmN and bm has a parabolic frequency
dependence. In Ref.f9g, the nonlinear gain isGm
=NokbmkuEku2 where thebmk have a Lorentzian dependence
on the modal frequencies.

On the other hand, multiplying Eq.s4d by ufmszdu2, inte-
grating inz, and neglecting carrier diffusion gives

dGm

dt
= Jm −

Gm

ts
− o

n
FE

0

L

Fufmszdu2ufnszdu2dzGuEnu2,

s8d

where Jm=s1/Lde0
LJszdufmszdu2dz. Approximating the last

term in Eq.s8d

E
0

L

Fsz,tdufmszdu2ufnszdu2dz, bmnGmstd, s9d

we obtain

dGm

dt
= Jm −

Gm

ts
− Gmo

n

bmnuEnu2. s10d

Equationss3d and s10d constitute a set of 2N rate equations
that are those studied in Ref.f15g and therefore formally
equivalent to those studied in Refs.f16,17g.

III. RESULTS

We present results of numerical simulations of Eqs.s3d
and s4d with three longitudinal modes. We have also per-
formed simulations with six or more longitudinal modes,
finding similar results. The mode withm=1 has wave num-
ber q1=275p /L, the mode withm=2 hasq2=276p /L, and
the mode withm=3 hasq3=277p /L. We choseL=200mm
as the laser cavity length, which gives a wavelength for the
central model2=1450 nm. To focus on the effects induced
only by the different spatial modal profiles, we assign to all
modes the same cavity losseskm=1 ps−1, feedback level,
hm=h, and feedback phasevmt=0 rad. Other parameters are
a=5, ts=1 ns,t=6 ns,Jszd=2000s,2Jthd, which means that
J is uniform inside the active region. This choice forJszd is
consistent with experimental values publishedf19,20g, and to
be publishedf21g. With these parameters, the relaxation os-
cillation frequency is about 5 GHzsthe precise value de-
pends on the diffusion coefficientd. The spatial integration
step wasdz=0.02mm and the time integration step wasdt
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=0.01 ps. For the initial conditions, the modal amplitudes are
at the noise level and the excess carrier density is zero. The
feedback levelh and the diffusion coefficientDz are the free
parameters of our study.

Figure 1 displays results forDz=0.3 mm2/ns and h
=0.25 ns−1. The modal intensitiesIm= uEmu2 sthin linesd and
IT/3=s1/3domIm sthick lined are plotted as a function of
time. A regime of antiphase dynamics develops after the
transients. In this regime the three longitudinal modes oscil-
late with a periodP,3.3 ns and each mode is phase shifted
by nearlyP/3. As a result, the total intensity is nearly con-
stant. Varying the initial conditions changes the phase rela-
tions among the three modes. In Fig. 1sad we observe the
sequence 1-2-3 where them=2 mode has a maximum after
the m=1 mode and before them=3 mode. Figure 1sbd dis-
plays a regime obtained with the same parameters as in Fig.
1sad but a different initial condition. Here the sequence 1-3-2
is observed, as them=3 mode has a maximum after them
=1 mode and before them=2 mode. Both sequences corre-
spond to the same carrier grating, which is displayed in Fig.
1scd.

DecreasingDz to 0.03mm2/ns sFig. 2d still produces a
self-structured dynamics. It can be observed that due to the
slower carrier diffusion there is a more pronounced hole-
burning effect, which leads to a more developed carrier grat-
ing.

IncreasingDz to 3 mm2/ns sFig. 3d leads to a regime in
which the total output is still constant but there is a large
amplification of the modulation amplitude ofI1, I2, and I3,
which also displays antiphase dynamics. With three modes
there are only two topologically different modal sequences of
antiphase dynamics: 1-2-3 and 1-3-2. While the modal enve-
lopes follow the sequence 1-2-3fFig. 3sadg, the fast pulses
display antiphase 1-3-2fFig. 3sbdg. Figure 3scd shows that,
due to fast carrier diffusion, there is only a weakly developed
carrier grating.

Figure 4 displays results for a larger number of modes
sN=7d. A complex antiphase regime resulting in a complete
compensation of the modal intensity oscillations in the total
output power is observedfFig. 4sadg. The carrier gratingfFig.
4sbdg exhibits fast oscillationssdue to mode-mode beatingd
which are modulated by a slow envelope, which is related to
the number of operating modesswith seven longitudinal
modes there are six “nodes”d.

FIG. 2. sad Modal intensities and total intensity divided by 3.sbd
Carrier grating att=180 ns.Dz=0.03mm2/ns. Graphic conventions
and all other parameters as in Fig. 1.

FIG. 1. sad Modal intensitiessthin linesd and total intensity di-
vided by 3 sthick lined for Dz=0.3 mm2/ns andh=0.25 ns−1. sbd
Parameters as insad but different initial conditions. For the initial
conditions, the modal amplitudes are at the noise level. Thus, to
vary the initial conditions we choose a different realization of the
noise. scd Carrier grating att=180 ns. The carrier grating is the
same for the oscillations displayed insad andsbd. The inset displays
details of the spatial grating betweenx=50 and 150mm.

FIG. 3. sad Modal intensities and total intensity divided by 3 for
Dz=3.0 mm2/ns; all other parameters as in Fig. 1.sbd Magnification
of a short time interval ofsad. It can be observed that the oscilla-
tions of the modal intensities follow the pattern 1-3-2 while the
modal envelopes follow the pattern 1-2-3.scd Carrier grating att
=180 ns.

FIG. 4. As in Fig. 1 but with seven longitudinal modes.J
=4000; all other parameters as in Fig. 1.sad Modal intensities and
total intensity divided by 7;sbd carrier grating att=180 ns.
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The observed dynamics is in agreement with the antiphase
dynamics predicted from a normal form analysisf14g and for
a semiconductor laser with external feedbackf15g in the
framework of the model of Eqs.s3d ands10d. We have made
simulations of that model, shown in Fig. 5, to demonstrate
the good qualitative agreement between the two models. We
do not present simulations based on theN+1 equations as it
was recently shownf18g that this model exhibits, in the ab-
sence of noise, only steady-state or in-phase dynamics, while
in the presence of noise, it exhibits only out-of-phase oscil-
lations but no antiphase states such as the 1-2-3 and the 1-3-2
oscillations displayed Figs. 1–3.

The above results show that for weak optical feedback
there is a compensation of the modal oscillations in the total
output intensity that is independent of the value of the diffu-
sion coefficient in the range studied. This result implies, in
that range of diffusion coefficients, that the output of the
laser can be considered as constant in time, providing it is
not used in a dispersive setup. For larger optical feedback
this compensation is destroyed, and the feedback strength for
which this transition occurs depends on the diffusion coeffi-
cient.

For weak carrier diffusionsDz=0.3 mm2/nsd and h
=1.0 ns−1, the modal intensities oscillate in phase. Figure
6sad shows the total output intensity and Fig. 6sbd the modal
intensitiessfor clarity the intensities of them=1 and 3 modes
are shifted vertically by +0.1 and −0.1, respectivelyd. It can
be observed that the modal intensities exhibit fast pulses at a
frequency close to the relaxation oscillation frequency, and a
modulation of the envelope at a frequency close to the exter-
nal cavity frequency. As a result, the total output becomes
deeply modulated at the external cavity frequency. The time
trace shown in Fig. 6sad looks remarkably similar to solu-
tions of the single-mode Lang-Kobayashi equationsf22g in
similar conditions.

For larger feedback strengthfh=2.0 ns−1, Figs. 6scd and
6sddg the dynamics becomes increasingly chaotic. The modal
intensities are still in phasesextrema of the same kind occur
at the same time for all modesd but with different amplitudes.

For larger carrier diffusionsDz=3.0 mm2/nsd and h
=1.0 ns−1, it can be observed in Figs. 7sad and 7sbd that the
modal intensities still oscillate in antiphase, resulting in a

constant total output power. For larger optical feedbackfh
=2.0 ns−1, Figs. 7scd and 7sddg the modal intensities are again
in phasesextrema of the same kind occur at the same time
for all modesd but with different amplitudes.

To further characterize this chaotic dynamics we employ
the technique proposed inf19g and used inf18g. Let PsIT, fd
andPsI i , fd be the power spectral densities of the total output
power and of theith mode, respectively, at frequencyf. If the
modes are in perfect antiphase at frequencyf, then PsIT, fd
=0; if they are in perfect inphase at frequencyf, then
PsIT, fd=foÎPsI i , fdg2; and if they are in partial antiphase,
thenoPsI i , fd. PsIT, fd.0 at frequencyf. Figures 8sad and
8sbd displayPsIT, fd andoPsI i , fd for the parameters of Figs.
6scd, 6sdd, 7scd, and 7sdd, respectively. It can be observed that
the modes exhibit partial antiphase dynamics at low frequen-
cies, and in-phase dynamics at high frequencies. This behav-
ior agrees well with experimental observationsf19g and the
theoretical analysis of Eqs.s3d and s10d in Ref. f18g.

FIG. 5. sad Modal intensities and total intensity divided by 3,
obtained simulating Eqs.s3d and s10d sformally equivalent to that
proposed in Ref.f15gd with parametersJm=5000,bmn=0.996; other
parameters as Fig. 1.sbd Magnification of a short time interval of
sad. FIG. 6. Dynamics for larger optical feedback and slow diffu-

sion.sad,sbd h=1.0 ns−1; scd,sdd h=2.0 ns−1; all other parameters as
in Fig. 1. sad andscd display the total intensity divided by 3;sbd and
sdd display the modal intensitiessfor clarity the modal intensities of
modes 1 and 3 have been shifted vertically +0.1 and −0.1,
respectivelyd.

FIG. 7. Dynamics for larger optical feedback and fast diffusion.
sad,sbd h=1.0 ns−1; scd,sdd h=2.0 ns−1; all other parameters as in
Fig. 3. sad and scd display the total intensity divided by 3;sbd and
sdd display the modal intensities.
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IV. CONCLUSIONS

We studied the dynamics of a multi-longitudinal-mode
semiconductor laser with weak optical feedback based on an
extension of the single-mode Lang-Kobayashi model. We fo-
cus on effects induced by spatial inhomogeneities. Our
model includes spatial profiles for the longitudinal modes

and for the carrier density in the laser cavity. The carrier
density verifies a diffusion equation. We have shown that for
low enough feedback there is antiphase dynamics, resulting
in a compensation of the modal oscillations in the total out-
put intensity, which is independent of the carrier diffusion.
As the feedback increases the relaxation oscillation fre-
quency becomes undamped, and we observe inphased modal
oscillations. For larger feedback the dynamics becomes cha-
otic, and modal intensities remain in phase but with different
chaotic amplitudes.

The coherence of the time-dependent modal intensities,
originating from the global coupling of the modessall modes
interact with the same gain mediumd, results in a practically
constant output intensity. This explains why a number of
features of multimode lasers could be successfully explained
with single-mode models.

We have compared the predictions of our modelswhich
includes explicitly the carrier density spatial profile and a
carrier diffusion termd with those of the model represented
by Eqs.s3d and s10d, which approximates the carrier inho-
mogeneities by a set of finite nonlinear modal gains. We
found that the agreement is particularly good in the limit of
large diffusion, where the grating is relatively small due to
the carrier diffusion; as expected, the agreement is less good
in the weak diffusion limit, where approximating the grating
by a finite set of moments is less valid.

ACKNOWLEDGMENTS

C.M. was supported in part by Proyecto de Desarrollo de
Ciencias BasicassPEDECIBAd and Comision Sectorial de
Investigacion CientificasUruguayd. M.S.T. was supported in
part by a grant from Secretaría de Ciencia y Técnica
sUNCPBA-Argentinad. P. M. was supported by the Fonds
National de la Recherche Scientifique and the Interuniversity
Attraction Poles Program—Belgian Science Policy.

f1g A. M. Yacomotti et al., Phys. Rev. A69, 053816s2004d.
f2g P. Ru, J. V. Moloney, and R. Indik, Phys. Rev. A50, 831

s1994d.
f3g J. F. Mercier and J. V. Moloney, Phys. Rev. E66, 036221

s2002d.
f4g M. Homar, J. V. Moloney, and M. San Miguel, IEEE J. Quan-

tum Electron.32, 553 s1996d.
f5g G. Huyetet al., Phys. Rev. A60, 1534s1999d.
f6g C. Serrat, S. Prins, and R. Vilaseca, Phys. Rev. A68, 053804

s2003d.
f7g R. Lang and K. Kobayashi, IEEE J. Quantum Electron.16,

347 s1980d.
f8g J. Mørk, B. Tromborg, and P. L. Christiansen, IEEE J. Quan-

tum Electron.24, 123 s1988d.
f9g D. W. Sukowet al., Phys. Rev. A60, 667 s1999d.

f10g D. Yu, L. Wallace, R. G. Harrison, and A. Gavrielides, Opt.
Commun. 195, 249 s2001d.

f11g F. Rogister, P. Mégret, O. Deparis, and M. Blondel, Phys. Rev.
A 62, 061803sRd s2000d.

f12g J. M. Bulduet al., J. Opt. B: Quantum Semiclassical Opt.4,
415 s2002d.

f13g P. Mandel, Eur. Phys. J. D8, 431 s2000d.
f14g A. G. Vladimirov, E. A. Viktorov, and P. Mandel, Phys. Rev. E

60, 1616s1999d.
f15g E. A. Viktorov and P. Mandel, Phys. Rev. Lett.85, 3157

s2000d.
f16g T. W. Carr, D. Pieroux, and P. Mandel, Phys. Rev. A63,

033817s2001d.
f17g P. Mandelet al., Physica A 327, 129 s2003d.
f18g I. Koryukin and P. Mandel, Phys. Rev. A70, 053819s2004d.
f19g A. Uchida, Y. Liu, I. Fischer, P. Davis, and T. Aida, Phys. Rev.

A 64, 023801s2001d.
f20g I. Fischer, Y. Liu, and P. Davis, Phys. Rev. A62, 011801sRd

s2000d.
f21g M. W. Lee, J. Paul, C. Masoller, and K. A. Shoresunpub-

lishedd.
f22g C. Masoller and N. B. Abraham, Phys. Rev. A57, 1313

s1998d.

FIG. 8. sColor onlined Power spectal densities:PsIT, fd fgray
sredd lineg andoPsI i , fd sblack lined. sad Parameters as in Figs. 6scd
and 6sdd. sbd Parameters as in Figs. 7scd and 7sdd. Antiphase dy-
namics is observed at low frequencies.

ANTIPHASE DYNAMICS IN MULTIMODE … PHYSICAL REVIEW A 71, 013818s2005d

013818-5


