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Delay-induced synchronization phenomena in an array of globally coupled logistic maps
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We study the synchronization of a linear array of globally coupled identical logistic maps. We consider a
time-delayed coupling that takes into account the finite velocity of propagation of the interactions. We find
globally synchronized states in which the elements of the array evolve along a periodic orbit of the uncoupled
map, while the spatial correlation along the array is such that an individual map sees all other maps in his
present, current, state. For values of the nonlinear parameter such that the uncoupled maps are chaotic,
time-delayed mutual coupling suppresses the chaotic behavior by stabilizing a periodic orbit that is unstable for
the uncoupled maps. The stability analysis of the synchronized state allows us to calculate the range of the
coupling strength in which global synchronization can be obtained.

DOI: 10.1103/PhysReVvE.67.056219 PACS nuner05.45.Xt, 05.65+b, 05.45.Ra

I. INTRODUCTION € N

xi(t+D=(1-afxO]+y > =kl @
Coupled oscillator models are widely used to model com- =1
plex dynamics in nonequilibrium extended systems, and thei
synchronization has attracted a lot of attention in recent year
[1]. In studies of coupled ensembles of nonlinear oscillators,
different situations have been considef@ientical or non-
identical units, periodic or chaotic single-unit behavior, local

he dynamics of the array was found to be strongly sensitive
to the value of the delay time, which can increase the prob-
ability of the cluster state for small coupling strengths, and
can also break up the cluster state for large coupling. Sup-

or global coupling, and a rich variety of synchronization pression of spatiotemporal chaos in a linear array with local

h h f ; Ref. (nearest neighbrcoupling, via local and. global time- _
Fz]iznomena as been fouridr a recent review, see Re delayed feedback was demonstrated numerically and analyti-

cally in Refs.[10,11].

In the case of globally coupled units, the introduction of
distance-dependent time delays makes the spatial coordinates
of an element relevant in spite of the infinite range of the
N mean-field interaction. This situation was considered in Ref.

€ [12] for one-dimensional arrays of coupled phase oscillators.
xi(t+1)=(1-e)f[x(t N Z fIx; (], @ |t was shown that in the limit of short delays, the ensemble
approaches a state of frequency synchronization, and that
this state might develop a spatial nontrivial distribution of
phases. In two-dimensional arrays, distance-dependent time
delays induce a variety of patters including traveling rolls,
steady patterns, spirals, and targeit3].

Here we study the effects of distance-dependent retarded
coupling in a linear array of logistic maps:

In the field of coupled map lattices, the paradigmatic
model, originally introduced by Kanek{3,4], is the en-
semble ofN logistic maps with mean field global coupling:

ie[1N], f(x)=ax(1—x), ande is the coupling strength.
For relatively large coupling, globafull) synchronization
occurs: the array synchronizes on the manifalg= - -
=Xy, Where the dynamics of an element is generated by the
uncoupled map. For weaker coupling, cluster partia)
synchronization occurs: the array splits irtoclusters of
Ny, ... Nk elements mutually synchroniz¢8,6].
A characteristic of many biological and physical systems Xi(t+1)=(1—e)f[x (t)]+ 2 fix(t—7)], (3
is time-delayed coupling in the interaction among many
units. Two different situations can be distinguished: when the
retardation time in the coupling is the same for all the unitswhere 7;;=k|i—j| is proportional to the distance between
and when the retardation time is different for the differenttheith andjth maps and is the inverse of the velocity of
units. An example of the first case was studied in Rgfsg],  the signal that travels through the array. In a previous work
which considered an array of diode lasers with delayed cou-14], we considered the case in which the uncoupled maps
pling via an external reflector. The retardation time in theevolve in a periodic orbit of period Zwhen 3<a<1
coupling is the same for all lasers since it given by the ex-+ J6). We found that for weak coupling the array divides
ternal cavity round-trip time. The delay time was found tointo clusters, and the behavior of the individual elements
induce in-phase synchronization of the array; a behavior thawithin each cluster depend on the delay times. For strong
was interpreted in terms of generalized Kuramoto phasenough coupling global synchronization occurs, where the
equations. dynamics of an element is periodic of period 2, generated by
Globally coupled logistic maps with time-delay interac- the uncoupled logistic map. The spatial correlation of the
tions were studied in Ref9]; the maps were coupled with elements along the array is such thdt i§ even, at time all
the same delak elements are in the same state, whil&kiis odd, at timet
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neighboring elements are in different states. In both cases ahe antiphase solution has to be even. The in-phase and an-
individual map sees all other maps in its present, currentiiphase solutions verify Eq6) only for certain delay times.

state. For the in-phase solution,
In this paper we extend the previous study and consider o
that the uncoupled maps can be either periodic or chaotic mod ¢ — ¢; ,P)=modk|i —j[,P)=0 (8)

(i.e., 3=a=<4). We find that for adequate coupling strength
and time delay, global synchronization occurs. In the glo-¥ i andj only if k=nP, with n an integer number; for the
bally synchronized state all elements evolve along a periodi@ntiphase solution,

orbit of the uncoupled logistic map. Remarkably, this orbit

might be unstable for the uncoupled maps. In particular, mod ¢; 1~ ¢i,P)=modk,P)=P/2 ©)
when the uncoupled maps are chaotic, time-delayed couplin
might suppress chaos, stabilizing an unstable periodic orbit.
For small arrays we study the stability of the globally syn-
chronized solution and calculate the minimum coupling
strength above which the unstable orbit of the uncouple
maps becomes stable for the time-delayed coupled map

The numerical simulations are in excellent agreement with . o
utions, we turn the delayed equati¢®) into a nondelayed

the stability analysis. ; . 4 N ; )
This paper is organized as follows. In Sec. Il we analyzeequat'on by the introduction of auxiliary variables:
Yim(t) =Xi(t—m), (10)

the existence and the stability of the globally synchronized
state. In Sec. Il we present results of the numerical simula-
tions and the stability analysis. Finally, in Sec. IV we present, hare 1<i
a summary and the conclusions.

nly if k=P/2+nP, with n an integer number.

The existence of these globally synchronized states is in-
dependent of the coupling strength; the only requirement is
hat the periodic orbit is a solutiofstable or unstabjeof the
gistic map.

" To analyze the stability of the globally synchronized so-

<N and Osm=M with M =max(7). In terms
of these new variables, E3) becomes

Il. GLOBALLY SYNCHRONIZED SOLUTIONS Yim(t+1)

A special class of solutions of E¢B) is characterized by Yim-1(t), if m#0,
the fact that, for all pairs, j, the signal received by mapat
each time corresponds to delayedstate of mapj, which
coincides with thepresentstate of map:

N
A= lyio®1+ G F, Myl I m=0.

Xj(t=7ij) = xi(1). (4) (D
Thus, each element “perceives” the array as being fully syn-NeXt we define the vector
chronized, in spite of the fact that the simultaneous states of
different elements might not coincide. In these globally syn-

chronized solutions, each element evolves along a limit cycle
of period P of the uncoupled logistic map with a given
phase, such that we can write

Z=(Y10,Y20) - - - YN0 Y11, Y21, - - - YNLG - -
(12
XYM YoM s - - - YNM)

which hasN(M + 1) components. The antiphase solutions of
period 2 can be written as

Xi(t) =Xo(t+ ), 5
1_ .

with xo(t) a particular realization of the limit cycle, used as Za=(XaXp, - - Xp X o)y
a reference orbit. The condition for this solution to satisfy the ) _ (13

evolution equation is Zih=Xp Xas - XaXpy + - -),

bi— ¢+ m;P=1;=K|i— || ()  and the in-phase solutions of period 2 as

for all i andj, wherem;; are arbitrary integer numbers. The Zi=(Xa Xays - XpXp,s -2,
symmetry of the delayss;; = 7;;, implies that ) (14

Z| :(XlebY CRE ;Xalxal C ');

di— pjtmP=g;— ¢+ m;P. (7)
wherex, andx, are the points of the period 2 orbit of the

Thus, the phase differences— ¢; cannot be arbitrary, but logistic map. We rewrite Eq(11) as
have to be eithep; — ¢;=n;;P or ¢;— ¢;=P/2+n;; P, with
n;; an integer number. Z(t+1)=Fi[zy(1), ... Zym+ (D] (15

We shall refer to solutions with moe — ¢;,P)=0 V i
andj as in-phasesolutions, and solutions with mog(,,  The in-phase and antiphase solutions are fixed poinE’of
—¢;,P)=P/2 V i as antiphase solutions. Since me¢l(
— ¢ ,P) is an integer number, the peridlof the orbit for FF(ZI))=F(Ztn=Z"4. (16)
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To analyze the stability of these solutions, we need toThe matrixM can be cast as a set bF? blocks of dimension

calculate the eigenvalues of thg(M +1)XN(M+1) ma- NXN. Denoting these blocks a%;;, withi,j=0,... M,

trix A of components we have
aF, dF
“ C Az, Fio Fuu o Fam
M=| . - (19
We observe that the matri& is the product of twoN(M ; :
+1)XN(M+1) matricesA=M(Z?,) XM(Z{ »), where Fuo Fur - Fum
Mij(Z|1';2\)= __I|Z:Zl’2' (18) In the case of antiphase solution, using Ek) is easy to
9z LA see that
|
[1-(N—=21)e/N]f'(x) 0 0
0 [1-(N—=21)e/N]Jf'(xy) - 0
]:00: . . . (20)
0 0 <o+ [1=(N—21)e/N]f'(xp)
The blocksFy; are nondiagonal matrices; for example,
0 e/NT'(Xg) 0 o 0
e/NT" (Xp) 0 e/NT"(Xp) 0
0 e/Nf’(Xy) 0 .. 0
.7'-01: . . . (21)
0 0 c 0 e/NTf'(Xy)
0 0 o e/NT' (Xp) 0

The blocksF;; with i>0 have all components equal to 0, period 2 is stable. Figure 1 shows the absolute value of the
except the blocks; . 1; which areNX N identity matrices.  maximum eigenvalug) ,.,, as a function o, for an array

In spite of the fact that the Jacobian matAxappears to  of N=12 maps and three different values of the parameeter
have a great deal of structure, it does not present a cledor a=3.5 (dot-dashed ling the maps without coupling
symmetry. We did not find any similarity transformation that evolve in a limit cycle of period 4; foa= 3.83(dashed ling
faCi”tated the diagona”zation Of the ma.trix. ThUS, the eigen"[he maps W|thout Coup”ng evo've in a ||m|t Cyc'e Of period
values had to be calculated numerically. 3; and fora=4 (solid line), the maps without coupling are
chaotic. For clarity, the dotted line indicates the stability
boundary|\had=1. In the three cases, for large enough
coupling the antiphase solution of period 2 is stable

In this section we present numerical simulations and re{|\,,J<1). Notice that the coupling strength above which
sults of the stability analysis, which demonstrate global synthe solution is stable increases with increasing
chronization in the in-phase and antiphase solutions dis- We verified numerically that for larger arrays, the an-
cussed in the previous section. The stability analysis can onlfiphase solution is stable. Figurga displays, as an ex-
be done for small arrays and small delay times, since the sizample, a bifurcation diagram fdd=50 (a=4 andk=1).
of the matrixA [Eq. (17)] increases akN?. For large arrays The bifurcation diagram is done in the following way: we
and/or large delays, we simulate E@). To solve delay chose the same initial condition for all values gfand we
equation(3), we need to specify the evolution of(t) at plot the 100 time-consecutive values(t) (with t large
times 1Ist<max(r;). We evaluated this by taking fog(1) a  enough for a given element of the array. Figure @) dis-
random number ranging from 0 to 1 and by letting the arrayplays the same but for a neighboring element. Above a cer-
evolve initially without coupling. tain coupling strength, the array synchronizes in the period-2

First, we show results for the antiphase solution, whichorbit of the uncoupled map, and the bifurcation diagram for
exists fork even. Fork=1, we find that for all values o the two elements coincide. The synchronization in the
there is a value ot above which the antiphase solution of period-2 orbit is surprising since far=4, the period-2 orbit

Ill. RESULTS
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FIG. 1. Stability analysis of the antiphase solution of period 2  FIG. 3. Critical coupling strength above which synchronization
for k=1 andN=12. We plot the largest eigenvalue of the ma#ix occurs vs the nonlinear parameterk=1 andN=100. €; was
[Eqg. (17)] vs the coupling strength fax= 3.5 (dot-dashed ling a calculated averaging over 100 different initial conditions.
=3.83(dashed ling anda=4 (solid line).

vs € for a=3.5 andk=1,3,5, and 7. Note that in a wide

is unstable for the uncoupled maps. While the antiphase sqange of coupling strength ., is slightly larger than 1. In
lution is stable fore=0.6 (see Fig. ], Fig. 2 shows that the this parameter region, starting from random initial conditions
array synchronizes in this solution for a slightly larger cou-there is a transient time in which the array approaches the
pling strength €~0.7). The critical coupling strength.;;,  antiphase solution; after this transient the array exhibits a
above which global synchronization occurs, depends slightlgomplex spatiotemporal behavior. The transient time in-
on the initial condition, and increases with increasingnd  creases withN; as an example, Fig. 6 displays the mean
N. Figure 3 displays the critical value ef(calculated aver- value <X>=zi’\‘: 1X; Vs time, for four different system sizes.
aging over 100 different initial conditions/s a. et iN-  The study of this unexpected effect of the system size is the
creases linearly in the parameter region where the uncoupleshject of future work.
maps are periodic, and abruptly in the parameter region Next, we show results for the in-phase solution, which
where the uncoupled maps are chaotic. Figufeaid line)  exists fork=nP. Figure 7 displays the bifurcation diagram
shows that,,;; also increases with increasing system $ize for two elements of the array, anal=3.5, k=4, andN

Notice that below the critical coupling strengéhy;;, the =50 (for a=3.5, the uncoupled maps evolve in an orbit of
bifurcation diagrams shown in Figs(& and 2b) differ. This  period 4. We observe that above a critical coupling strength

is due to the fact that foe<e, the array splits into a (¢_;,~0.23), the array synchronizes in the period-4 orbit of
complex clustered structure. The clustering behavior in the

simpler case where the uncoupled maps evolve in a period-? g2

orbit was studied in Ref.14].
For larger time delays anklodd, the interval of coupling 18
strength in which the antiphase solution of period 2 is stable ¢.16}
becomes more narrow. As an example, Fig. 5 displays, o4l
) 0.12r
it il [ — | g
o 201}
w
- 0.08[
" * 0.5§
>
e 0‘06-
0.04F |
0 0.5 1 000k
0L . ' v ' : : L
FIG. 2. Bifurcation diagram obtained numerically, integrating 0 10 20 30 ‘1‘\? 50 60 70 80
Eq. (3) with a=4, k=1, andN=50. We plot the values of two
consecutive elementg; (a) andx;, 4 (b). Notice that after a com- FIG. 4. Critical coupling strength above which global synchro-
plex bifurcation scenario, the two elements of the array synchronizaization occurs as a function of for a=3.5 andk=1 (solid line);
in a period-2 orbit. a=3.5 andk=4 (dashed ling
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FIG. 7. Bifurcation diagram obtained numerically, integrating
Eq. (3) with a=3.5, k=4, andN=50. We plot the values of two
different elements of the array, (a) andx; (b). Notice that after a
period-halving bifurcation, the elements of the array synchronize in
a period-4 orbit.

0.5

FIG. 5. Modulus of the largest eigenvalue of the matias a
function of e for the antiphase solution aral=3.5, k=1 (0), k

0.2

=3 (x), k=5 (*), andk=7 (+).

the uncoupled map. As in the case of the antiphase solution
for coupling strengths below,,;; , the bifurcation diagrams
shown in Figs. @ and qb) differ. This is due to the fact that
the two elements belong to different clusters. The dashed lin
in Fig. 4 shows thak.,;; increases with increasing system

sizeN.

For arbitrary values ok, a, ande, we found a rich variety
of complex spatiotemporal behaviors. The characterizatio
of the different dynamic regimes is the object of future work.

1 IV. SUMMARY AND CONCLUSIONS

We studied the synchronization of a linear array of iden-
tical logistic maps. We consider time-delayed mutual cou-
pling with delay timesr;; that are proportional to the dis-
tance between the maps;(=kl|i—j|). Depending on the
time delays and on the coupling strength, different synchro-
nization regimes might occur. If the coupling is weak, the
array usually splits into a complex clustered structure. If the

oupling is large enough, global synchronization occurs. In
the globally synchronized state, each element of the array
sees all other elements in its present stptg(t)=x;(t
—m;) Vi,j], and all the elements of the array evolve along a
I;i)eriodic orbit of the uncoupled maps. The spatial correlation
along the array is either periodic or homogeneous depending
on k. If kis odd, the array synchronizes in antiphase, such

that the state at timeof two consecutive elements ig(t)
=Xo(t), Xi41(t)=xo(t+P/2) [where xy(t) is a particular

] realization of the orbit of period, used as a referentdf
k=nP, the array synchronizes in phase, such that the state at

timetis x;(t) =Xq(t) V i. For parameter values such that the

uncoupled maps are chaotic, mutual delayed coupling sup-
7 presses chaos, rendering the evolution of the elements of the
array periodic in time. Thus, an important consequence of

our analysis is that delayed coupling might allow controlling

an assembly of chaotic maps by rending an unstable periodic

: orbit of the uncoupled maps, stable. In addition, the an-
tiphase synchronization regime found here might be of inter-

est in the context of population modgl$§5—-17 where an

increase of the connectivity among isolated populations leads

- to in-phase synchronization of local population oscillations
and thereby increases the danger of global extinction. Our

0.8 T T T
@
0.6
04 . . .
0 5000 10000 15000
08 T T T
© :“
0.6F
04 . - L
0 5000 10000 15000
08 T T T
©
0.6F
0.4 L L L
0 5000 10000 15000
08 T T T
d
A @
0.6F
o
0.4 L L 1
0 5000 10000 15000
t

FIG. 6. Temporal evolution of the mean val(e(t)) for four
different system sizesN=12 (a), N=30 (b), N=50 (c), and N
=80 (d). The parameters a®= 3.5, k=5, ande=0.6

[1] AS.

Pikovsky,

M.G.

results suggest that if a distant-dependent delay is taken into
account, under appropriate conditions an increase of the con-
nectivity might lead to cohererntiphaseoscillations of

the local populations, thus avoiding the danger of global
extinction.

Rosenblum, and

J.
Synchronization—A Universal Concept in Nonlinear Sciences
(Cambridge University Press, Cambridge, 2001

Kurths, [2] S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, and C.S.
Zhou, Phys. Rep366, 1 (2002.

[3] K. Kaneko, Phys. Rev. Let63, 219 (1989.

056219-5



A. C. MARTI AND C. MASOLLER PHYSICAL REVIEW E67, 056219 (2003

[4] K. Kaneko, Physica D41, 137(1990. 56, 239 (1997.

[5] A. Pikovsky, O. Popovych, and Y. Maistrenko, Phys. Rev. Lett.[11] P.M. Gade, Phys. Rev. &7, 7309(1998.
87, 044102(2001). [12] D.H. Zanette, Phys. Rev. &2, 3167(2000.

[6] O. Popovych, A. Pikovsky, and Yu. Maistrenko, Physica D [13] S.0. Jeong, T.W. Ko, and H.T. Moon, Phys. Rev. L&9,
168-169 106 (2002. 154104(2002.

[7] J. Garcia-Ojalvo, J. Casademont, C.R. Mirasso, M.C. Torrent[14] C. Masoller, A.C. Maftiand D. Zanettéunpublished
and J.M. Sancho, Int. J. Bifurcation Chaos Appl. Sci. Bdig. [15] A. Hastings, Ecology’4, 1362(1993.

2225(1999. o [16] B. Blasius, A. Huppert, and L. Stone, Natufieondon 399,
[8] G. Kozyreff, A.G. Vladimirov, and P. Mandel, Phys. Rev. Lett. 354(1999.

" 35,‘]_3809(5300-L . /267, 3422000 [17] D.J.D. Earn, S.A. Levin, and P. Rohani, Scierféashington,
. Jiang, Phys. Lett. , : DC, U.S) 290, 1360(200
[10] P. Parmananda, M. Hildebrand, and M. Eiswirth, Phys. Rev. E - U-S) 290 (2000.

056219-6



