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Delay-induced synchronization phenomena in an array of globally coupled logistic maps

A. C. Martı́ and C. Masoller
Instituto de Fı´sica, Facultad de Ciencias, Universidad de la Repub´lica, Iguá4225, 11400 Montevideo, Uruguay

~Received 6 December 2002; published 27 May 2003!

We study the synchronization of a linear array of globally coupled identical logistic maps. We consider a
time-delayed coupling that takes into account the finite velocity of propagation of the interactions. We find
globally synchronized states in which the elements of the array evolve along a periodic orbit of the uncoupled
map, while the spatial correlation along the array is such that an individual map sees all other maps in his
present, current, state. For values of the nonlinear parameter such that the uncoupled maps are chaotic,
time-delayed mutual coupling suppresses the chaotic behavior by stabilizing a periodic orbit that is unstable for
the uncoupled maps. The stability analysis of the synchronized state allows us to calculate the range of the
coupling strength in which global synchronization can be obtained.

DOI: 10.1103/PhysRevE.67.056219 PACS number~s!: 05.45.Xt, 05.65.1b, 05.45.Ra
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I. INTRODUCTION

Coupled oscillator models are widely used to model co
plex dynamics in nonequilibrium extended systems, and t
synchronization has attracted a lot of attention in recent ye
@1#. In studies of coupled ensembles of nonlinear oscillato
different situations have been considered~identical or non-
identical units, periodic or chaotic single-unit behavior, loc
or global coupling!, and a rich variety of synchronizatio
phenomena has been found~for a recent review, see Re
@2#!.

In the field of coupled map lattices, the paradigma
model, originally introduced by Kaneko@3,4#, is the en-
semble ofN logistic maps with mean field global coupling

xi~ t11!5~12e! f @xi~ t !#1
e

N (
j 51

N

f @xj~ t !#, ~1!

i P@1,N#, f (x)5ax(12x), and e is the coupling strength
For relatively large coupling, global~full ! synchronization
occurs: the array synchronizes on the manifoldx15•••

5xN , where the dynamics of an element is generated by
uncoupled map. For weaker coupling, cluster~or partial!
synchronization occurs: the array splits intoK clusters of
N1 , . . . ,NK elements mutually synchronized@5,6#.

A characteristic of many biological and physical syste
is time-delayed coupling in the interaction among ma
units. Two different situations can be distinguished: when
retardation time in the coupling is the same for all the un
and when the retardation time is different for the differe
units. An example of the first case was studied in Refs.@7,8#,
which considered an array of diode lasers with delayed c
pling via an external reflector. The retardation time in t
coupling is the same for all lasers since it given by the
ternal cavity round-trip time. The delay time was found
induce in-phase synchronization of the array; a behavior
was interpreted in terms of generalized Kuramoto ph
equations.

Globally coupled logistic maps with time-delay intera
tions were studied in Ref.@9#; the maps were coupled wit
the same delayk:
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xi~ t11!5~12e! f @xi~ t !#1
e

N (
j 51

N

f @xj~ t2k!#. ~2!

The dynamics of the array was found to be strongly sensi
to the value of the delay time, which can increase the pr
ability of the cluster state for small coupling strengths, a
can also break up the cluster state for large coupling. S
pression of spatiotemporal chaos in a linear array with lo
~nearest neighbor! coupling, via local and global time
delayed feedback was demonstrated numerically and ana
cally in Refs.@10,11#.

In the case of globally coupled units, the introduction
distance-dependent time delays makes the spatial coordin
of an element relevant in spite of the infinite range of t
mean-field interaction. This situation was considered in R
@12# for one-dimensional arrays of coupled phase oscillato
It was shown that in the limit of short delays, the ensem
approaches a state of frequency synchronization, and
this state might develop a spatial nontrivial distribution
phases. In two-dimensional arrays, distance-dependent
delays induce a variety of patters including traveling rol
steady patterns, spirals, and targets@13#.

Here we study the effects of distance-dependent retar
coupling in a linear array of logistic maps:

xi~ t11!5~12e! f @xi~ t !#1
e

N (
j 51

N

f @xj~ t2t i j !#, ~3!

where t i j 5ku i 2 j u is proportional to the distance betwee
the i th and j th maps andk is the inverse of the velocity o
the signal that travels through the array. In a previous w
@14#, we considered the case in which the uncoupled m
evolve in a periodic orbit of period 2~when 3<a<1
1A6). We found that for weak coupling the array divide
into clusters, and the behavior of the individual eleme
within each cluster depend on the delay times. For stro
enough coupling global synchronization occurs, where
dynamics of an element is periodic of period 2, generated
the uncoupled logistic map. The spatial correlation of t
elements along the array is such that ifk is even, at timet all
elements are in the same state, while ifk is odd, at timet
©2003 The American Physical Society19-1
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neighboring elements are in different states. In both case
individual map sees all other maps in its present, curr
state.

In this paper we extend the previous study and cons
that the uncoupled maps can be either periodic or cha
~i.e., 3<a<4). We find that for adequate coupling streng
and time delay, global synchronization occurs. In the g
bally synchronized state all elements evolve along a perio
orbit of the uncoupled logistic map. Remarkably, this or
might be unstable for the uncoupled maps. In particu
when the uncoupled maps are chaotic, time-delayed coup
might suppress chaos, stabilizing an unstable periodic o
For small arrays we study the stability of the globally sy
chronized solution and calculate the minimum coupli
strength above which the unstable orbit of the uncoup
maps becomes stable for the time-delayed coupled m
The numerical simulations are in excellent agreement w
the stability analysis.

This paper is organized as follows. In Sec. II we analy
the existence and the stability of the globally synchroniz
state. In Sec. III we present results of the numerical simu
tions and the stability analysis. Finally, in Sec. IV we pres
a summary and the conclusions.

II. GLOBALLY SYNCHRONIZED SOLUTIONS

A special class of solutions of Eq.~3! is characterized by
the fact that, for all pairsi, j, the signal received by mapi at
each time corresponds to adelayedstate of mapj, which
coincides with thepresentstate of mapi:

xj~ t2t i j !5xi~ t !. ~4!

Thus, each element ‘‘perceives’’ the array as being fully s
chronized, in spite of the fact that the simultaneous state
different elements might not coincide. In these globally sy
chronized solutions, each element evolves along a limit cy
of period P of the uncoupled logistic map with a give
phase, such that we can write

xi~ t !5x0~ t1f i !, ~5!

with x0(t) a particular realization of the limit cycle, used a
a reference orbit. The condition for this solution to satisfy t
evolution equation is

f i2f j1mi j P5t i j 5ku i 2 j u ~6!

for all i and j, wheremi j are arbitrary integer numbers. Th
symmetry of the delays,t i j 5t j i , implies that

f i2f j1mi j P5f j2f i1mji P. ~7!

Thus, the phase differencesf i2f j cannot be arbitrary, bu
have to be eitherf i2f j5ni j P or f i2f j5P/21ni j P, with
ni j an integer number.

We shall refer to solutions with mod(f i2f j ,P)50 ; i
and j as in-phasesolutions, and solutions with mod(f i 11
2f i ,P)5P/2 ; i as antiphase solutions. Since mod(f i 11
2f i ,P) is an integer number, the periodP of the orbit for
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the antiphase solution has to be even. The in-phase and
tiphase solutions verify Eq.~6! only for certain delay times.
For the in-phase solution,

mod~f i2f j ,P!5mod~ku i 2 j u,P!50 ~8!

; i and j only if k5nP, with n an integer number; for the
antiphase solution,

mod~f i 112f i ,P!5mod~k,P!5P/2 ~9!

only if k5P/21nP, with n an integer number.
The existence of these globally synchronized states is

dependent of the coupling strength; the only requiremen
that the periodic orbit is a solution~stable or unstable! of the
logistic map.

To analyze the stability of the globally synchronized s
lutions, we turn the delayed equation~3! into a nondelayed
equation by the introduction of auxiliary variables:

yim~ t !5xi~ t2m!, ~10!

where 1< i<N and 0<m<M with M5max(tij). In terms
of these new variables, Eq.~3! becomes

yim~ t11!

5H yi ,m21~ t !, if mÞ0,

~12e! f @yi0~ t !#1
e

N(
j 51

N

f @yj ,ku j 2 i u#, if m50.

~11!

Next we define the vector

Z5~y10,y20, . . . ,yN0 ;y11,y21, . . . ,yN1 ; . . . ;
~12!

3y1M ,y2M , . . . ,yNM),

which hasN(M11) components. The antiphase solutions
period 2 can be written as

ZA
15~xa ,xb , . . . ;xb ,xa , . . . !,

~13!
ZA

25~xb ,xa , . . . ;xa ,xb , . . . !,

and the in-phase solutions of period 2 as

ZI
15~xa ,xa , . . . ;xb ,xb , . . . !,

~14!
ZI

25~xb ,xb , . . . ;xa ,xa , . . . !,

wherexa and xb are the points of the period 2 orbit of th
logistic map. We rewrite Eq.~11! as

zi~ t11!5Fi@z1~ t !, . . . ,zN(M11)~ t !#. ~15!

The in-phase and antiphase solutions are fixed points ofF2:

F„F~ZI ,A
1,2!…5F~ZI ,A

2,1!5ZI ,A
1,2 . ~16!
9-2
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To analyze the stability of these solutions, we need
calculate the eigenvalues of theN(M11)3N(M11) ma-
trix A of components

Ai j 5
]Fi

]zk
UZ5Z

I ,A
2

]Fk

]zj
U

Z5Z
I ,A
1

. ~17!

We observe that the matrixA is the product of twoN(M
11)3N(M11) matrices,A5M (ZI ,A

2 )3M (ZI ,A
1 ), where

Mi j ~ZI ,A
1,2!5

]Fi

]zj
uZ5Z

I ,A
1,2. ~18!
,
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oThe matrixM can be cast as a set ofM2 blocks of dimension
N3N. Denoting these blocks asFi j , with i , j 50, . . . ,M ,
we have

M5S F00 F01 ••• F0M

F10 F11 ••• F1M

A A

FM0 FM1 ••• FMM

D . ~19!

In the case of antiphase solution, using Eq.~11! is easy to
see that
F005S @12~N21!e/N# f 8~xa! 0 ••• 0

0 @12~N21!e/N# f 8~xb! ••• 0

A A

0 0 ••• @12~N21!e/N# f 8~xb!

D . ~20!

The blocksF0 j are nondiagonal matrices; for example,

F015S 0 e/N f8~xa! 0 . . . 0

e/N f8~xb! 0 e/N f8~xb! . . . 0

0 e/N f8~xa! 0 . . . 0

A A

0 0 . . . 0 e/N f8~xa!

0 0 . . . e/N f8~xb! 0

D . ~21!
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The blocksFi j with i .0 have all components equal to 0
except the blocksFi 11,i which areN3N identity matrices.

In spite of the fact that the Jacobian matrixA appears to
have a great deal of structure, it does not present a c
symmetry. We did not find any similarity transformation th
facilitated the diagonalization of the matrix. Thus, the eige
values had to be calculated numerically.

III. RESULTS

In this section we present numerical simulations and
sults of the stability analysis, which demonstrate global s
chronization in the in-phase and antiphase solutions
cussed in the previous section. The stability analysis can o
be done for small arrays and small delay times, since the
of the matrixA @Eq. ~17!# increases askN2. For large arrays
and/or large delays, we simulate Eq.~3!. To solve delay
equation~3!, we need to specify the evolution ofxi(t) at
times 1<t<max(tij). We evaluated this by taking forxi(1) a
random number ranging from 0 to 1 and by letting the ar
evolve initially without coupling.

First, we show results for the antiphase solution, wh
exists fork even. Fork51, we find that for all values ofa
there is a value ofe above which the antiphase solution
ar
t
-

-
-

s-
ly
ze

y

h

period 2 is stable. Figure 1 shows the absolute value of
maximum eigenvalue,ulmaxu, as a function ofe, for an array
of N512 maps and three different values of the parametea.
For a53.5 ~dot-dashed line!, the maps without coupling
evolve in a limit cycle of period 4; fora53.83~dashed line!,
the maps without coupling evolve in a limit cycle of perio
3; and fora54 ~solid line!, the maps without coupling are
chaotic. For clarity, the dotted line indicates the stabil
boundary ulmaxu51. In the three cases, for large enou
coupling the antiphase solution of period 2 is stab
~ulmaxu,1!. Notice that the coupling strength above whic
the solution is stable increases with increasinga.

We verified numerically that for larger arrays, the a
tiphase solution is stable. Figure 2~a! displays, as an ex-
ample, a bifurcation diagram forN550 (a54 andk51).
The bifurcation diagram is done in the following way: w
chose the same initial condition for all values ofe, and we
plot the 100 time-consecutive valuesxi(t) ~with t large
enough! for a given elementi of the array. Figure 2~b! dis-
plays the same but for a neighboring element. Above a
tain coupling strength, the array synchronizes in the perio
orbit of the uncoupled map, and the bifurcation diagram
the two elements coincide. The synchronization in t
period-2 orbit is surprising since fora54, the period-2 orbit
9-3
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is unstable for the uncoupled maps. While the antiphase
lution is stable fore>0.6 ~see Fig. 1!, Fig. 2 shows that the
array synchronizes in this solution for a slightly larger co
pling strength (e;0.7). The critical coupling strengthecrit ,
above which global synchronization occurs, depends slig
on the initial condition, and increases with increasinga and
N. Figure 3 displays the critical value ofe ~calculated aver-
aging over 100 different initial conditions! vs a. ecrit in-
creases linearly in the parameter region where the uncou
maps are periodic, and abruptly in the parameter reg
where the uncoupled maps are chaotic. Figure 4~solid line!
shows thatecrit also increases with increasing system sizeN.

Notice that below the critical coupling strengthecrit , the
bifurcation diagrams shown in Figs. 2~a! and 2~b! differ. This
is due to the fact that fore,ecrit , the array splits into a
complex clustered structure. The clustering behavior in
simpler case where the uncoupled maps evolve in a perio
orbit was studied in Ref.@14#.

For larger time delays andk odd, the interval of coupling
strength in which the antiphase solution of period 2 is sta
becomes more narrow. As an example, Fig. 5 displaysulmaxu

FIG. 1. Stability analysis of the antiphase solution of period
for k51 andN512. We plot the largest eigenvalue of the matrixA
@Eq. ~17!# vs the coupling strength fora53.5 ~dot-dashed line!, a
53.83 ~dashed line!, anda54 ~solid line!.

FIG. 2. Bifurcation diagram obtained numerically, integrati
Eq. ~3! with a54, k51, andN550. We plot the values of two
consecutive elements,xi ~a! andxi 11 ~b!. Notice that after a com-
plex bifurcation scenario, the two elements of the array synchro
in a period-2 orbit.
05621
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vs e for a53.5 andk51,3,5, and 7. Note that in a wid
range of coupling strength,ulmaxu is slightly larger than 1. In
this parameter region, starting from random initial conditio
there is a transient time in which the array approaches
antiphase solution; after this transient the array exhibit
complex spatiotemporal behavior. The transient time
creases withN; as an example, Fig. 6 displays the me
value ^x&5( i 51

N xi vs time, for four different system sizes
The study of this unexpected effect of the system size is
object of future work.

Next, we show results for the in-phase solution, whi
exists fork5nP. Figure 7 displays the bifurcation diagram
for two elements of the array, anda53.5, k54, and N
550 ~for a53.5, the uncoupled maps evolve in an orbit
period 4!. We observe that above a critical coupling streng
(ecrit;0.23), the array synchronizes in the period-4 orbit

e

FIG. 3. Critical coupling strength above which synchronizati
occurs vs the nonlinear parametera. k51 andN5100. ecrit was
calculated averaging over 100 different initial conditions.

FIG. 4. Critical coupling strength above which global synchr
nization occurs as a function ofN for a53.5 andk51 ~solid line!;
a53.5 andk54 ~dashed line!.
9-4
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the uncoupled map. As in the case of the antiphase solu
for coupling strengths belowecrit , the bifurcation diagrams
shown in Figs. 7~a! and 7~b! differ. This is due to the fact tha
the two elements belong to different clusters. The dashed
in Fig. 4 shows thatecrit increases with increasing syste
sizeN.

For arbitrary values ofk, a, ande, we found a rich variety
of complex spatiotemporal behaviors. The characteriza
of the different dynamic regimes is the object of future wo

FIG. 5. Modulus of the largest eigenvalue of the matrixA as a
function of e for the antiphase solution anda53.5, k51 ~o!, k
53 ~x!, k55 (*), andk57 (1).

FIG. 6. Temporal evolution of the mean value^xi(t)& for four
different system sizes,N512 ~a!, N530 ~b!, N550 ~c!, and N
580 ~d!. The parameters area53.5, k55, ande50.6
s,
ce

05621
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IV. SUMMARY AND CONCLUSIONS

We studied the synchronization of a linear array of ide
tical logistic maps. We consider time-delayed mutual co
pling with delay timest i j that are proportional to the dis
tance between the maps (t i j 5ku i 2 j u). Depending on the
time delays and on the coupling strength, different synch
nization regimes might occur. If the coupling is weak, t
array usually splits into a complex clustered structure. If
coupling is large enough, global synchronization occurs.
the globally synchronized state, each element of the a
sees all other elements in its present state@xi(t)5xj (t
2t i j ) ; i , j ], and all the elements of the array evolve along
periodic orbit of the uncoupled maps. The spatial correlat
along the array is either periodic or homogeneous depen
on k. If k is odd, the array synchronizes in antiphase, su
that the state at timet of two consecutive elements isxi(t)
5x0(t), xi 11(t)5x0(t1P/2) @where x0(t) is a particular
realization of the orbit of periodP, used as a reference#. If
k5nP, the array synchronizes in phase, such that the sta
time t is xi(t)5x0(t) ; i. For parameter values such that th
uncoupled maps are chaotic, mutual delayed coupling s
presses chaos, rendering the evolution of the elements o
array periodic in time. Thus, an important consequence
our analysis is that delayed coupling might allow controlli
an assembly of chaotic maps by rending an unstable peri
orbit of the uncoupled maps, stable. In addition, the a
tiphase synchronization regime found here might be of in
est in the context of population models@15–17# where an
increase of the connectivity among isolated populations le
to in-phase synchronization of local population oscillatio
and thereby increases the danger of global extinction.
results suggest that if a distant-dependent delay is taken
account, under appropriate conditions an increase of the
nectivity might lead to coherentantiphaseoscillations of
the local populations, thus avoiding the danger of glo
extinction.

FIG. 7. Bifurcation diagram obtained numerically, integratin
Eq. ~3! with a53.5, k54, andN550. We plot the values of two
different elements of the array,xi ~a! andxj ~b!. Notice that after a
period-halving bifurcation, the elements of the array synchronize
a period-4 orbit.
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