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We explore the dynamics of a Hodgkin-Huxley-type model for thermally sensitive neurons that exhibit
intrinsic oscillatory activity. The model is modified to include a feedback loop that is represented by two
parameters: the synaptic strength and the transmission delay time. We analyze the dynamics of the neuron
depending on the temperature, the synaptic strength, and the delay time. We find parameter regions where the
effect of the recurrent connexion is excitatory, inducing spikes or trains of spikes, and regions where it is
inhibitory, reducing or eliminating completely the spiking behavior. We characterize the complex interplay of
the intrinsic dynamics of the neuron with the recurrent feedback input and a noisy input.
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I. INTRODUCTION

Many biological systems operate under the influence of
time-delayed feedback mechanisms[1]. In particular, a
single neuron might influence a recurrent loop though an
auto-synapse, and/or though synaptic connections involving
other neurons. Synaptic communication between neurons de-
pends on propagation of action potentials along the axons.
The finite conduction velocity and the information process-
ing time in synapses lead to transmission delay times. The
influence of such recurrent delayed loops on neuron response
has been analyzed by several authors[2–11]. Two different
approaches for modeling feedback loops have been consid-
ered. In models based on ordinary differential equations
(ODE’s), a term proportional to the membrane potential at an
earlier timeeVst−td was added to the rate equation for the
membrane potential, leading to a set of delay differential
equations(DDE’s). Heree is the synaptic strength andt is
the delay time due to the sum of the conduction times along
the axon and dendrites and processing times in other neu-
rons. Assuming the Fitzhugh-Nagumo model, Plant[2] dem-
onstrated that oscillations appeared for both, positive and
negative feedback. In models based on finite difference equa-
tions, a recurrent excitatory(inhibitory) feedback loop has
been implemented by increasing(decreasing) the membrane
potential a certain amounte, at a timet after each firing.

Diez-Martinez and Segundo[3] studied experimentally
the pacemaker neuron in the crayfish stretch receptor organ
and showed that as the transmission delay time was in-
creased the discharge patterns went from periodic spikes to
trains of spikes separated by silent intervals. They suggested
that neuronal adaptation along the rapid successive firings
played an important role in the observed behavior. The hy-
pothesis was tested by Pakdamanet al. [4] using integrate-
and-fire and Hodgkin-Huxley models. They found that mod-
els with neuronal adaptation combined with recurrent
excitation reproduced the experimental observations of Ref.
[3]. Further analysis was done in Ref.[5], where the re-
sponse to slow periodic modulation was investigated; in Ref.

[6], where the effects of noise and delay were investigated
for both, a single neuron with a recurrent connection, and a
fully interconnected neural network; and in Ref.[7], where
the transfer function of a single neuron with recurrent con-
nection, defined as the relationship between the constant in-
put and the mean firing rate, was investigated.

The effect of delayed stimulation was also studied by Go-
mez et al. [8]. Through simulations of a compartmental
Hodgkin-Huxley model they showed that for a pacemaker
neuron that fires periodic spikes, recurrent excitation can in-
duce to both an acceleration of the firings, leading to bursting
patterns, or a slow down of the firings, leading to discharge
patters where the interspike interval is several times longer
than the interspike interval of the unperturbed neuron.

The effect of delayed stimulation has also been studied in
the context of cardiology, where reentrant tachycardia has
been experimentally studied using spontaneously bursting
heart cells, stimulated with depolarizing current pulses deliv-
ered at a fixed delay time after each action potential[9]. Here
the delay represents the reentrant path, the length of which
could be varied by modifying the delay time. The complex
patterns that arouse due to delayed stimulation were under-
stood in terms of delicate interactions between phase reset-
ting (which refers to the shifting of the timing of an oscilla-
tion as a consequence of its perturbation by an external
stimulus) and overdrive suppression(which refers to the
slowing of the frequency of an oscillation after rapid stimu-
lation).

A fundamental feature of a time-delayed feedback loop is
that it often leads to multistability. Based on integrate-and-
fire and Hodgkin-Huxley models, Fosset al. [10] found mul-
tistability in the form of qualitatively different neuron firing
patterns, when the neuron is in a inhibitory feedback loop
with appropriate choices oft ande. Two kinds of multista-
bility with respect to the initial function for the membrane
potential were demonstrated, depending on whether the neu-
ron was excitable or firing periodic spikes in the absence of
feedback. Multistable systems can be used as memory stor-
age devices, since information about different initial condi-
tions is perpetuated in the form of different spike patterns.

PHYSICAL REVIEW E 70, 031904(2004)

1539-3755/2004/70(3)/031904(11)/$22.50 ©2004 The American Physical Society70 031904-1



However, their potential use for memory storage is limited
by the noise. The role of noise was later analyzed by Fosset
al. [11], who showed that noise induced transitions between
coexisting attractors. This indicated that noisy multistable
systems are suited only for short-term memory storage be-
cause, in spite of the fact that the average time that a trajec-
tory remains in a given attractor can be quite long, even for
low noise there is a nonzero probability that a switch occurs
to a different attractor. The experimental demonstration of
multistability was later presented by Foss and Milton in Ref.
[12]. A periodically spiking motoneuron ofAplysia Califor-
nica was reciprocally connected to a computer and the dy-
namics induced by the inhibitory loop was studied as a func-
tion of the time delay. It was observed that for certain
choices of the delay several qualitatively different spike
trains coexist. The observations were understood in terms of
a mathematical model that incorporates the delay and the
phase resetting properties of the neuron.

In the following we examine feedback effects and multi-
stability in a model neuron that has been developed on the
basis of experimental data from shark electroreceptors[13]
and mammalian cold receptors[14]. The temporal sequence
of spikes indicates that impulse generation of these neurons
depends on subthreshold membrane potential oscillations.
External stimuli alter the frequency and/or amplitude of the
oscillations which can lead to pronounced changes of the
impulse patterns. There are grouped discharges, so-called,
bursts as well as single-spike discharges of different tempo-
ral structures. In electroreceptors and in the upper tempera-
ture range of cold receptors there is an irregular sequence of
spikes which, however, show multimodal interval distribu-
tions indicating subthreshold oscillations which operates be-
low but near the spike-triggering threshold. In this situation
it essentially depends on noise whether a spike is triggered or
not but the oscillation period is still reflected in the basic
rhythm of the discharge. In contrast, irregular single-spike
discharges which, in cold receptors, can be recorded at low
temperatures do not have such distinct structure but seems to
reflect pacemakerlike impulse generation with strong random
fluctuations, eventually embedded in deterministic chaos.

A model was recently proposed by Braunet al. [15],
which accounts for most observed features in these thermally
sensitive neurons. This is a paradigmatic model of a most
flexible neuronal pattern generator which can produce differ-
ent types of impulse patterns that seem to be of relevance
also in cortical neurons[16]. Therefore, it is most interesting
to analyze what kind of effects can be obtained when such
neurons are operating in specific dynamical states and are
embedded in feedback loops. Here we propose the analysis
of this model, extended to take into account a simple time-
delayed autorecurrent connection. The model is a modifica-
tion of the Hodgkin-Huxley model[17]. Two sets of depo-
larizing and repolarizing ionic conductances are responsible
for spike generation and slow-wave potentials, respectively.
As a function of the temperature different impulse patterns
were identified[18], including coexistence of spikes and sub-
threshold oscillations(spikes with skippings), periodic(pace-
maker) spikes, and bursting(spike-trains) patterns. This rich
dynamic behavior is due to the interplay of the slow currents
(which are absent in the original Hodgkin-Huxley model)

and the spike-generating currents[19]. With addition of
noise the model gives excellent agreement with experimental
data of real biological neurons[20,21].

The model of Braunet al. has been employed by several
authors to model sensory neurons that exhibit spontaneous
intrinsic oscillatory activity. Neimanet al. [22] demonstrated
experimentally that electroreceptor cells in the paddlefish
contain an intrinsic oscillator that can be synchronized with
an external signal, and numerical simulations based on Braun
et al. model with a periodic external stimulus yield good
agreement with the experimental observations. Feudelet al.
[20] showed that there is a region of temperature values
where an abrupt increase of the interspike intervals occurs.
The origin of this unusual behavior was found to be in a
homoclinic bifurcation of a saddle-focus fixed point embed-
ded in a chaotic attractor. They also demonstrated that quali-
tatively the same phenomenon was observed in electrophysi-
ological experiments with the caudal photoreceptor of the
crayfish. Zhou and Kurths[23] studied the effect of common
noise on the synchronization of neurons which are not
coupled, based on the model of Braunet al. For identical
neurons, complete synchronization was observed for large
enough noise while for nonidentical neurons, phase synchro-
nization was observed. It was also found that noise enhances
synchronization of weakly coupled neurons. A saddle point
embedded in the chaotic attractor was found to be respon-
sible for these nontrivial noise-induced effects. Ciszaket al.
[24] studied the synchronization of two neurons coupled uni-
directionally (in a master-slave configuration) and under the
influence of common noise, based on the model of Braunet
al. It was shown that under appropriate coupling conditions,
the spikes fired by the slave neuron anticipate(i.e., predict)
the spikes fired by the master neuron.

The aim of this paper is to analyze the effect of a time-
delayed feedback loop on the firing patterns of the model of
Braunet al. Our motivation is twofold. On one hand, recur-
rent feedback loops with fixed delay time are relevant to the
study of hybrid systems that integrate real neurons with elec-
tronic devices through chemical or electrical synapses
[25–29]. On the other hand, our motivation is to study a
complex phenomenon that is relevant to nonlinear science:
the interaction between excitatory dynamics and memory. In
particular, our goal is to investigate the effect of a recurrent
loop in the dynamics of subthreshold oscillations that operate
close to but below that the spiking threshold. We have cho-
sen to use the neuron model of Braunet al. because it is a
most flexible pattern generator that, with the inclusion of
noise, gives very good agreement with experimental data re-
corded from real neurons.

We show that for particular values of the delay time the
recurrent loop modifies the amplitude of the subthreshold
oscillations in a way that they operate slightly above thresh-
old, therefore leading to feedback-induced spikes. To the best
of our knowledge, this is a novel mechanism for the emer-
gence of deterministic spike activity.

This paper is organized as follows. Section II presents a
brief description of the model(full details can be found in
Ref. [15]). Section III presents results of the numerical simu-
lations. The temperature is varied to consider three different
impulse patterns of the neuron without feedback: subthresh-
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old oscillations(in the presence of noise: spikes with skip-
pings), periodic spikes, and spike trains. In each of these
regimes we study the influence of the feedback loop and the
effect of noise. Section IV presents a summary and our con-
clusions.

II. MODEL

The model is a modification of Braunet al. model for
thermally sensitive neurons[15]:

V̇ =
1

CM
s− iNa − iK − isd− isr − i ld + f fVst − tdg + ÎDjstd,

s1d

whereV is the potential voltage across the membrane,CM is
the capacitance,iNasTd and iKsTd are the fast sodium and
potassium currents,isdsTd and isrsTd are additional slow cur-
rents. These four currents depend on the temperatureT as
described in Ref.[15]. i l is a passive leak current. For details
and definitions of the other quantities of the model of Braun
et al. see Ref.[15].

The function f fVst−tdg in the second term of the right-
hand side(RHS) of Eq. (1) describes the effects of the recur-
rent feedback connection.Vst−td is the membrane potential
at the earlier timet−t. As in Refs. [2,10] we consider a
linear recurrent input which is proportional to delayed ver-
sion of the neuron firing pattern:fsVd=esV−V0d. Here e is
the synaptic strength andV0 is a reference value. The last
term in the RHS of Eq.(1) is a Gaussian white noise that
represents a random external stimulus, andD is the noise
strength.

III. RESULTS

The dynamics of the model in the absence of external
stimulus and in the absence of a recurrent input depends on

the temperature parameter, exhibiting qualitatively different
firing patterns, such as subthreshold oscillationssT=35 °Cd,
regular spikessT=7.2 °Cd, and trains of spikessT=20 °Cd
[18]. Here we study the effect of a recurrent connection in
these different dynamic regimes. The parameters used are as
in Ref. [18]. V0=−47 mV, e and t are free parameters. To
integrate the equations we have to specify the value of the
membrane potentialVstd in the initial time intervalf−t ,0g. It
has been shown that different choices ofVstd in the interval
f−t ,0g give rise to different firing patterns[10,11]. Here, the
initial condition is taken all though the paper with the mem-
brane potential equal to a constant negative value in the in-
terval f−t ,0g.

The feedback loop introduces a rich and complex behav-
iour. In this paper we limit ourselves to study positive feed-
back se.0d with a delay time in the range 0,t,500 ms.
Since the conduction velocity along axons connecting neu-
rons varies from 20 to 60 m/s, the transmission delay time is
from milliseconds to hundreds of milliseconds, and taking
into account that a neuron can receive back its own output
after several synapses, the interval 0,t,500 ms is a range
of biologically plausible delay times[6,10].

As a first step we study the deterministic modelsD=0d,
and then assess the impact of Gaussian noise. Figure 1 dis-
plays the effect of increasing the synaptic strengthe when
the temperatureT is such that without recurrent connexion
the neuron exhibits subthreshold oscillationssT=35 °Cd.
The delay time of the recurrent connexion ist=100 ms, of
the same order as the period of the subthreshold oscillations
TSO (without recurrent connectionTSO,133 ms).

For comparison, Fig. 1(a) displays the subthreshold oscil-
lations in the absence of recurrent connectionse=0d. For
small e there are no spikes, the membrane potential exhibits
only subthreshold oscillations. Ase increases above a certain
thresholdeth the recurrent connection has an excitatory effect
since the neuron starts firing pulses periodically[Fig. 1(b)].

FIG. 1. Effect of increasing the
connection strength.t=100 ms,
T=35 °C, e=sad 0,
sbd 0.01 ms−1, scd 0.06 ms−1,
sdd 0.07 ms−1, sed 0.08 ms−1.
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The value ofeth depends on the delay time, as will be dis-
cussed later(eth,0.002 ms−1 for t=100 ms). As e continues
to increase, there is a gradual distortion of the spikes[Fig.
1(c)] and for largere the neuron fires one or two spikes per
oscillating period[Fig. 1(d)]. We will refer to the firing of
two spikes per oscillating period as two-spike trains. In Fig.
1(d) we observe a periodic sequence of two-spike trains al-
ternating with one spike. For largere the neuron fires a pe-
riodic sequence of two-spike trains[Fig. 1(e)], such that the
time interval between the last spike of a train and the first
spike of the next train is,t. If the connection strength is
increased further, the spiking behavior disappears and the
membrane potential reaches a constant negative value(for
e,0.09 ms−1). For even further increase ofe the membrane
potential diverges(for e,0.1 ms−1).

The effect of the synaptic strength depends on the value
of the transmission delay time. For largert st.TSOd the
spiking dynamics is such that, for large enoughe the neuron
fires trains of three or more spikes. On the contrary, for short
t st!TSOd we have not observed spike trains. As an ex-
ample, Fig. 2 displays results fort=20 ms. Fore above a
certain thresholdeth the neuron fires spikes, which occur in
between one or more subthreshold oscillations[firings with
skippings, see Figs. 2(a) and 2(b). A similar behavior has
been observed in the context of the Belousov-Zhabotinsky
reaction and has been studied in terms of asymmetric bimo-
dal maps[30,31]. Following Ref.[30] we refer to the skip-
ping behavior where there aren oscillations between two
consecutive spikes asn-peak spikes. Ase increases we ob-
serve the sequence: three-peak spikes[Fig. 2(a)], two-peak
spikes[Fig. 2(b)], one-peak(single) spikes[Fig. 2(c)], two-
peak spikes[Fig. 2(d)], and four-peak spikes[Fig. 2(e)].

The above results are summarized in Fig. 3 with the help
of a bifurcation diagram, which is done by plotting the time
interval between consecutive spikes(interspike interval) as a
function of the connexion strengthe. The regions of the dia-
gram where no dots appear represent parameter regions
where no spikes occur(for low e the membrane potential

exhibits only subthreshold oscillations, while for largee ei-
ther it reaches a constant negative value, or it diverges). For
comparison, Fig. 3(a) displays the bifurcation diagram when
there is no delay in the recurrent connectionst =0d, while
Figs. 3(b) and 3(c) display the bifurcation diagrams corre-
sponding tot =20 ms (Fig. 2) and t =100 ms(Fig. 1), re-
spectively.

Without delay[Fig. 3(a)], it is observed that ase increases
the neuron starts firing spikes such that the time interval
between consecutive spikes is two oscillation periods(i.e.,
two-peak spikes), then there is a large region ofe where the
interspike interval is one oscillation period. Above a certain
valuese,0.05 ms−1d the neuron fires two-spike trains: there
are two different values of the interspike interval, one small
corresponding to the time interval between the two spikes in
the train, and one large corresponding to the time interval
between the last spike of a train and the first spike of the next
train. The time interval between two consecutive trains in-
creases withe. For e large enoughse.0.08 ms−1d there are
no spikes(either the membrane voltage reaches a constant
value or diverges).

For a delay time oft =20 ms[Fig. 3(b)] we observe the
sequence of spikes ase increases shown previously in Fig. 2:
spikes separated by three oscillation periods(three-peak
spikes), spikes separated by two oscillation periods(two-
peak spikes), and so on. For a delay time oft =100 ms[Fig.
3(c)] we observe a bifurcation diagram corresponding to the
different spike patterns shown in Fig. 1:(i) for
0.002 ms−1,e,0.066 ms−1 the neuron fires single spikes,
(ii ) for 0.066 ms−1,e,0.07 ms−1 the neuron fires both,
two-spike trains and single spikes(note that in this parameter
region there are three points in the bifurcation diagram), (iii )
for 0.07 ms−1,e,0.09 ms−1 the neuron fires two-spike
trains separated by a time interval,t.

In our simulations we observe multistability, i.e., the co-
existence of different solutions for the same set of parameter
values and different initial conditions. For example, for the
parameters of Fig. 2(e) we observe depending on the initial

FIG. 2. Effect of increasing the connection.
t=20 ms, T=35 °C, e=sad 0.006 ms−1,
sbd 0.01 ms−1, scd 0.04 ms−1, sdd 0.062 ms−1,
sed 0.064 ms−1.
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conditions either three-peak spikes, or the alternation of two-
peak and three-peak spikes, or four-peak spikes. This agrees
with the observation of multistability in Refs.[10–12]. In
particular, the similarity with the results of Ref.[12] suggest
that the neuron dynamics can be represented by the phase
resetting curve(which relates the phase at which a perturba-
tion arrives with the subsequent phase shift in the neuron
spike train). This study is in progress and will be reported
elsewhere.

We point out that the existence of a delay time in the
recurrent connection modifies the neuron spiking behavior
drastically, in two ways. As will be discussed below, there
are intervals of delay time in which the recurrent connection
does not induce any spiking behavior. For values oft such
that spikes occur, there is a type of locking behavior in the
sense that ase increases the interspike interval and the time
interval between trains of spikes remain nearly constant or
varies abruptly withe, while for t=0 it is observed that both
the interspike interval and the time interval between trains
increase smoothly withe [Fig. 3(a)].

There are values of the delay time where the recurrent
connection is inhibitory and values where it is excitatory.
This can be observed in Fig. 4, where we show the interspike
intervals versust for various values ofe. For smalle [Fig.
4(a)] the regions where the recurrent connection is excitatory
are centred at values of the delay time which are multiples of
the subthreshold oscillations period:t,nTSO (the feedback
loop modifies slightly the value ofTSO with respect to the
period of the oscillations in the absence of feedback: fore
=0.002 ms−1 TSO=125 ms). In the regions where the feed-
back loop is excitatory the interspike interval is a multiple of
TSO. The fact that spikes occur fort,nTSO and that the
interspike interval is also a multiple ofTSO indicate that for
weak synaptic strength the firing pattern is strongly influ-
enced by the intrinsic subthreshold oscillatory behavior of
the neuron without feedback.

The bifurcation diagram of Fig. 4(a) can be understood
after a close inspection of the effect of the delay time on the

subthreshold oscillations. We show in Fig. 5 the maximum,
minimum and average values of the oscillations as a function
of t, for various values ofe. To distinguish simple periodic
oscillations from more complex behaviors, we plot local
maxima and minima for each oscillation cycle. For very
smalle [Fig. 5(a)] no spikes occur for anyt, and the effect of
t is to modify the amplitude of the subthreshold oscillations
(which are close to but below the spike triggering threshold).
For t,nTSO the oscillations are enhanced, approaching the
threshold, while fort,sn+1/2dTSO they are diminished. For
largere [Figs. 5(b)–5(d)] the effect of nonlinearities becomes
more pronounced, leading to a larger distortion of the oscil-
lations, and spikes occur in the regions oft where the oscil-
lations are enhanced. For even largere [Fig. 5(e)], the size of
the regions oft where spikes occur increases, and for values
of t where there are no spikes, the subthreshold oscillations

FIG. 3. Interspike intervals vs
the strength of the recurrent con-
nection, for different delay
times. T=35 °C, t=sad 0 ms,
sbd 20 ms,scd 100 ms.

FIG. 4. Interspike intervals vs the time delay of the recurrent
connection.T=35 °C, (a) e=0.002 ms−1, (b) e=0.01 ms−1, (c) e
=0.03 ms−1, (d) e=0.07 ms−1.
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become strongly distorted: they are either strongly dumped
or they are quasiperiodic(with several local maxima and
minima per oscillation cycle).

As the synaptic strength increases the regions of values of
t where spikes occur merge[Figs. 4(b) and 4(c)], and for
large e we show in Fig. 4(d) that the plot of the interspike
intervals versus t looks quite different. For small
t st,20 msd and larget st.100 msd spike trains occur; for
20 ms,t,100 ms the recurrent connection is inhibitory
and there are no spikes. Fore and t large enough the time
interval between trains is such that aboutn trains occur for

each delay time, withn=1,2,3,… . In other words, for large
e and t the time interval between trains goes as,t ,
,t /2 ,,t /3 ,… . Typical spike trains fore=0.08 ms−1 are
shown in Fig. 6. The variation of the time interval between
trains with the delay time indicates that for large synaptic
strength the neuron firing pattern is strongly influenced by
the recurrent connection with little influence of the intrinsic
subthreshold oscillatory dynamics.

Let us now fix the temperature parameter such that the
neuron fires periodic spikes. Figure 7(a) displays the spiking
behavior forT=7.2 °C without feedback. Two different in-
terspike intervals can be observed(about 520 ms and 860
ms). We first show results when the feedback loop has a
small delay timest =20 msd. As e increases the difference
between the interspike intervals gradually diminishes and for
e large enough the neuron fires spikes with a single inter-
spike interval[Fig. 7(b)]. For e above a threshold value the
neuron fires spike trains[Fig. 7(c)]. The time interval be-
tween the train of spikes increases withe [Fig. 7(d)], and for
e large enough the spikes disappear.

These results are summarized in the bifurcation diagram
shown in Fig. 8(a), which resembles that of the neuron in the
subthreshold oscillations regime[compare with Fig. 4(a);
however, notice the difference in the vertical scale]. As be-
fore, the effect of the synaptic strength depends on the delay
time of the recurrent connection. As an example, Figs. 8(b)
and 8(c) display results for larger delay timesst
=100 and 300 msd. A complex sequence of bifurcations for
low e, and a locking regime for largee, where the neuron
fires periodic spikes can be observed. For even largere the
firings disappear and the membrane potential reaches a con-
stant negative value.

For e just below the onset of locking, intermittency occurs
in the form of quiet periods interrupted by intense bursts of
firing activity. Above the onset of locking, ase increases the
neuron gradually adapts its firing rate to fire an integer num-
ber of spikes in eacht time interval. Fore large enough Fig.

FIG. 5. Maximum, minimum, and average values of the oscil-
lations of the membrane potential vs the transmission delay time.
T=35 °C. (a) e=0.001 ms−1, (b) e=0.0015 ms−1, (c) e
=0.005 ms−1, (d) e=0.01 ms−1, (e) e=0.03 ms−1.

FIG. 6. Spike patterns for vari-
ous delay times and large synaptic
strength se=0.08 ms−1d. T
=35 °C. (a) t=200 ms: the time
interval between spike trains is
,t, (b) t=300 ms: two spike
trains occur for each 300 ms,(c)
t=500 ms: three spike trains oc-
cur for each 500 ms.
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9 shows that the interspike intervals are slightly larger than
,t /n with n=1,2,3… .

Next we study the effect of the feedback loop in a tem-
perature region such that without recurrent connection the
neuron fires trains of spikes. When there is no delay in the
feedback loop, we observe in the plot of the interspike inter-
vals vse [Fig. 10(a)] that several bifurcations occur and that
the time interval between consecutive trains increases withe.
While Fig. 10(a) clearly indicates the values ofe where bi-
furcations occur, it gives no information about the type of
bifurcation that takes place, in the sense that an additional
branch of interspike intervals fore above a certain value
might be due to the fact that the is an additional spike in the

train, or might be due to the fact that the interspike intervals
change while the number of spikes in the train remains con-
stant. A close inspection of the firing patterns shows that
after each bifurcation the number of spikes in each train in-
creases by 1.

When the delay time is short(with respect to the time
interval between consecutive trains) we observe that increas-
ing e has a similar effect[Fig. 10(b)]. On the contrary, for
longer delay times the time interval between consecutive
trains does not increase withe but remains nearly constant
[Fig. 10(c)] and a careful inspection of the firing patterns
shows that the number of spikes in the trains also remains
approximately constant withe (there is, however, a disper-

FIG. 7. Effect of increasing the
connection strength in the regular
spikes regime. T=7.2 °C, t
=20 ms, e=sad 0.0 ms−1,
sbd 0.03 ms−1, scd 0.06 ms−1,
sdd 0.074 ms−1.

FIG. 8. Interspike intervals vs
the strength of the recurrent con-
nection, for different delay
times. T=7.2 °C, t=sad 20 ms,
sbd 100 ms,scd 300 ms.
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sion of the interspike intervals fore.0.04 ms−1). Increasing
t while keepinge constant also leads to complex bifurcation
diagrams where the number of spikes in the trains increases
or decreases by one after each bifurcation. A detailed inves-
tigation of the influence of a feedback loop in the regime
where the neuron fires spike trains is in progress and will be
reported elsewhere.

Let us now assess the impact of noise, by including noise
in the simulations. First we consider a temperature parameter
such that without recurrent connection the membrane poten-
tial exhibits subthreshold oscillationssT=35 °Cd. Figures 11
and 12 display bifurcation diagrams for the same parameters
as Figs. 3 and 4 but with a noise levelD=0.001 ms−1. In Fig.
11 we observe that for smalle the neuron is very sensitive to

noise. Noise induces spikes such that the interspike interval
is a random multiple of the subthreshold oscillation period
(spikes with skippings). For largee noise does not have a
significant effect: the neuron fires spikes or trains of spikes
whose time interval is about the same as in the deterministic
case.

Comparing Figs. 4(a) and 12(a) we observe that for small
e noise also leads to an increase of the size of the windows of
delay times in which spikes occur. The large dispersion of
the values of the interspike intervals(which are multiples of
TSO) can also be observed. On the contrary, for largee the
neuron is much less sensitive to noise. Comparing Figs. 4(d)
and 12(d) we observe that the effect of noise is only a small
dispersion of the values of the interspike intervals.

FIG. 9. Spike patterns for vari-
ous delay times and large synaptic
strength se=0.08 ms−1d. T
=7.2 °C. (a) t=100 ms: the time
interval between spikes is,t, (b)
t=150 ms: about two spikes oc-
cur for each t, (c) t=250 ms:
about three spikes occur for
eacht.

FIG. 10. Interspike intervals vs
the strength of the recurrent con-
nection, for various delay
times. T=20 °C, t=sad 0 ms,
sbd 100 ms,scd 300 ms.
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For temperatures such that without recurrent connection
the neuron fires regular spikes or spike trains the effect of
noise is to wash out the fine structure of the bifurcations
occurring for lowe. As an example, Fig. 13 shows results for
T=7.2 °C. It can be observed that in the locking regime(for
largee andt) noise has a negligible effect.

IV. SUMMARY AND CONCLUSIONS

In summary, we have studied the effect of a time-delayed
recurrent connection on a model for thermally sensitive neu-
rons that exhibit intrinsic oscillatory activity. The model is a
Hodgkin-Huxley-type model that includes two sets of depo-
larizing and repolarizing ionic conductances which are re-
sponsible for spike generation and slow-wave potentials, re-
spectively. The model describes temperature transduction in

peripheral sensory receptors and as a function of the tem-
perature parameter it exhibits different impulse patterns such
as subthreshold oscillations, coexistence of spikes and sub-
threshold oscillations(spikes with skippings), and periodic
(pacemaker) spikes and bursting(spike-trains) patterns.

We extended the model to include a feedback loop that
was represented by two parameters: the synapse strengthe
and the transmission delay timet. We studied the effect of
the feedback loop in different temperature regimes.

In all temperatures regimes if the feedback is too strong
the membrane potential is either constant or diverges. For
large feedback we observed a locking of the neuron firing
pattern with the delay time, such that the neuron fires single
spikes or spike trains which are separated by time intervals
related to the delay time. For weak feedback the effect of the
feedback is more subtle and depends on the intrinsic dynam-
ics of the neuron. Noise is found to have a strong influence
on the dynamics for low feedback, where it leads to a large
dispersion of the interspike intervals, but it does not play an
essential role for large feedback.

While the effect of the feedback loop in the regular firing
regime is similar to that found by other authors[3,4,9,12],
the observation that the feedback loop induces spikes in the
regime of subthreshold oscillations of the isolated neuron has
not, to the best of our knowledge, been reported before. We
have understood this effect in terms of a perturbation of the
amplitude of the subthreshold oscillations, which in the pres-
ence of feedback operate slightly above the firing threshold.
It has been recently shown that the modification of the am-
plitude of an autonomous nonlinear oscillator(amplification
or reduction depending on the feedback strength and the de-
lay time) is a typical, generic, effect of a feedback loop[32].

In this paper we have used a type of linear feedback that
is proportional to the difference between the membrane po-
tential and a reference value. Naturally, this is a first approxi-
mation to the problem. From a physiological point of view
the next step is to examine a feedback loop with different

FIG. 11. Effect of noise in the
subthreshold oscillations regime.
Parameters are as in Fig. 3.D
=0.001 ms−1.

FIG. 12. Effect of noise in the subthreshold oscillations regime.
Parameters are as in Fig. 4.D=0.001 ms−1.
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nonlinearities that can depend on spike activity. As an ex-
ample, it would be physiologically relevant to consider a
global input from an ensemble of connected neurons, or the
more specific effects of individual feedback neurons with a
dynamic threshold for spike generation. The effect of the
latter type of feedback is expected to be the same in the
situation of subthreshold oscillations without spikes, but is
expected that the feedback effects can considerably differ
depending on whether the neuron is bursting, tonically firing,

or is in the subthreshold oscillations regime firing occasional
spikes due to noise. These studies are the object of future
work.
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