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We analyze theoretically and experimentally the residence time distribution of bistable systems in the
presence of noise and time-delayed feedback. We explain various nonexponential features of the residence time
distribution using a two-state model and obtain a quantitative agreement with an experiment based on a
Schmitt trigger. The limitations of the two-state model are also analyzed theoretically and experimentally using
a semiconductor laser with optoelectronic feedback.

DOI: 10.1103/PhysRevE.70.031103 PACS number(s): 05.40.Ca, 42.65.Pc

I. INTRODUCTION

Ever since Kramers’ breakthrough results on thermally
activated barrier crossings[1] the behavior of bistable dy-
namical systems in the presence of noise has attracted atten-
tion and found applications in many branches of science
ranging from medicine to quantum optics[2]. Major achieve-
ments in the field include the discovery of stochastic[3,4]
and coherence resonance[5], excitability, and noise induced
synchronization[6,7]. However, most of these results apply
to Markovian systems only and neglect possible effects of
memory. Delay constitutes one of the simplest ways to incor-
porate memory into stochastic dynamical systems and it typi-
cally arises in feedback loops due to the finite velocity of
propagation of information.

The case of stochastic bistable systems under the influ-
ence of time-delayed feedback was recently studied using a
two-state model with transition rates dependent on the past
state of the system[8]. This was an approximation of the
time-delayed ordinary differential equation

ẋ = −
]Vsxd

]x
+ exst − td + Î2Djstd, s1d

where jstd is a Gaussian white noise withkjl=0 and a
d-function correlation of strengthD. This approximation was
later used[9,10] to describe the distribution of residence
times and analyze experimental measurements of the same.
The aim of this paper is to analyze the effects of memory in
further detail. Section II reviews the results of Refs.[8–10]
and presents an experiment based on a Schmitt trigger(ST)
with time-delayed feedback. As the ST is a good approxima-
tion to the two-state model, we demonstrate an excellent
quantitative agreement with the predictions of the nonlinear
model with feedback[8]. Section III highlights differences
between the two-state model and continuous models de-
scribed by a Langevin equation(1). In particular, we predict
and show that effects at multiples of the delay time can be
observed in the residence time distribution(RTD). We show
that such behavior can be observed in an experiment[10]
which consists of a vertical cavity surface emitting laser
(VCSEL) with optoelectronic feedback.

II. THE TWO-STATE MODEL

A. Theory

In the remainder of this paper, we will consider Eq.(1)
where the potentialVsxd is an even function with two
minima at ±a separated by a local maximum at zero. A
simple example of such a potential is the quartic potential
Vsxd=x4/4−x2/2 with minima at ±1. In this case, the Lange-
vin equation(1) reads

ẋ = x − x3 + exst − td + Î2Djstd. s2d

Without delayse=0d this equation describes the behavior of
an overdamped particle in the potentialVsxd and in the ab-
sence of noise the particle’s dynamics becomes trivial once it
has reached a stationary state. The presence of noise, how-
ever, will generate not only small fluctuations near these
fixed points but also abrupt transitions between the two
metastable states. The RTD for each well then follows Kram-
ers’ law rsTd=rK expf−rKTg, where the transition raterK is
the so-called Kramers rate

rK =
ÎV9sxmduV9sx0du

2p
expF−

Vsx0d − Vsxmd
D

G ,

wherexm andx0 are the positions of the potential maximum
and minimum, respectively. In the presence of memory, the
exact analysis of Eq.(2) is complicated; however, it simpli-
fies greatly if one assumes thatxstd andxst−td are indepen-
dent variables and include the memory term in the potential,
which then becomes a function of bothx andxt=xst−td:

Usx,xtd = Vsxd + extx. s3d

From this, one can see immediately that the potential bar-
rier height depends on the sign ofxxt and the escape rate
therefore will depend on the value ofxt. As a simple ap-
proximation that still captures the interesting dynamics for
small values ofe, a two-state model describing a variable
sstd which switches randomly between two valuessstd= ±1
was introduced in[8]. The feedback is incorporated by a
time dependent switching rate
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pstd =
p1 + p2

2
+

p1 − p2

2
sstdsst − td, s4d

which gives pstd=p1 if sstd=sst−td and pstd=p2 if sstd=
−sst−td. Using this model, it is possible to analytically cal-
culate the power spectrum[8] and find piecewise analytical
expressions for the escape rates’ dependence on the residence
time [9,10].

To understand the main features of the RTD, we can first
consider that a switch from −1 to +1 occurs att=0. Then
sst−td=−1 for t→t− andpstd=p2 in this limit. Similarly, if
the particle remains in the states= +1 for t.t, then sst
−td= +1 andpstd=p1 for this time interval. The value of the
switching rate fort,t is not as obvious as the value ofsstd
is in general unknown fort,0. However, in the limit of
large t it can be shown that the switching rate ispstd
=Îp1p2 for small residence time and deviates from this ex-
pression ast approachest−Tk [10], whereTk=1/rk is the
Kramers switching time.

B. Experimental implementation using a Schmitt trigger

An electronic circuit that closely follows the two-state
model was implemented using a Schmitt trigger driven by
noise and electrical feedback as described in Fig. 1; based on
the input voltage and the input history, the output voltage can
switch between its positive and negative saturated voltages
Vsat

+s−d. The ST has been successfully employed in investiga-
tions of the related phenomenon of stochastic resonance
[11,12]. The threshold voltages are given by

Vth
+s−d =

R2

R1 + R2
Vsat

+s−d. s5d

The output vs input graph for the ST is given on the right
hand side of Fig. 1. Noise was applied to the ST input to
induce random switching as in[11]. In addition we used
delayed feedback to reinject the ST output and generate a
non-Markovian stochastic system.

The operational amplifier used in this experiment was an
LM301, a general purpose operational amplifier. The noise
driving the inputV− of the trigger was generated from fluc-
tuations in the breakdown voltage of a reverse biased Zener
diode. This noise was amplified before it was low pass fil-
tered to 50 kHz, chosen as it was much slower than the tran-
sition time of the trigger[13]. A power spectrum of the noise
source was flat with a coherence time of 20ms. The prob-
ability distribution function of the source showed it to be
approximately Gaussian, with a root-mean-square voltage of
,150 mV. The delay line was implemented using a digital
acquisition board(National Instruments PCI-6040E) and a
PC memory buffer. Delays of 10 ms and greater were used in
this experiment.

The ST was first analyzed without any delayed electrical
feedback. In this case, point A of Fig. 1(a) is held to ground
and Eq.(5) holds, random switching was observed and the
RTD was measured. The RTD follows an exponential decay,
characteristic of Markovian stochastic systems. With con-
stant noise voltage, the switching rate increased(decreased)
as the threshold voltage was reduced(increased).

To implement the delayed electrical feedbackVout and
point A of Fig. 1 were connected through the memory loop,
the voltage at the point A waseVoutst−td. With this circuit
the two threshold voltages depended not only onVsat

+s−d but
also onVoutst−td as

Vth
+s−dstd =

R2Vsat
+s−d + eR1Voutst − td

R1 + R2
. s6d

As in the model developed in Sec. II A, this system had
two Kramers rates, depending on the value ofVoutst−td
which could be measured experimentally. This was easily
done for this circuit by applying to point A of Fig. 1 a dc
voltage corresponding to ±ueVsat

− u instead of the time-delayed
output of the trigger.

The RTD of the system incorporating the memory loop is
shown in Fig. 2 with the same feedback levels as used to
measurep1 andp2. Data for both positive and negative val-
ues ofe are shown. From these we also calculated the en-
semble average instantaneous switching ratepstd in order to
compare with the theoretical predictions. As with the data
obtained from numerical simulations of the two-state model,
the RTD shows a discontinuity at the delay timet. The prob-
ability distribution for short residence time is the same for
both signs ofe as both have the same switching rate. From
the measured values ofp1 and p2, Îp1p2 is calculated and
found to match very well the measured switching rate for
short residence times. For longer residence times approach-
ing the delay timet, the switching rate diverged fromÎp1p2
and approachedp2. At t there was an abrupt change inpstd
from p2 to p1. The switching rate remained constant for
residence times bigger than the delay time.

FIG. 1. Left: Circuit diagram of a Schmitt trigger. For a standard
trigger, point A is grounded. For the modified circuit, the potential
at A is proportional to the trigger output at a timet previously.
Right: Transfer function of a Schmitt trigger. The time taken by the
trigger to transition from one saturation voltage to the opposite
voltage takes several hundreds of nanoseconds. The typical resi-
dence time is of order 10 ms.
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The ST therefore closely replicates the predictions of the
two-state model. In the next section we will provide experi-
mental results on a system that follows the continuous dy-
namics of(1) and demonstrate effects not captured by the
two-state model.

III. CONTINUOUS BISTABLE DYNAMICAL SYSTEMS

A. Theory

Higher order features can be observed in the RTD of the
continuous model described by Eq.(1). While the RTD of
the two-state system forT.t can be described by one con-
stant transition rate, for the RTD of the continuous system an
extra feature at 2t can be observed[see Fig. 4(b) below].
This can be best understood by considering that the potential
minima and barrier height shift, depending upon the state of
the system a timet previously. Consider the case where the
particle is in the minimum −a=−Î1+e for t,0, a switch
occurs att=0 and the particle remains in the right-hand well
for severalt. We definexn as the location of the right-hand
well minimum for sn−1dt, t,nt, i.e., xn is defined by the
sequencexn−xn

3+exn−1=0 for nù1 with the initial condition
x0=−a. We therefore have a sequence of potentials separated
in time byt, Unsxd=Usx,xn−1d=x4/4−x2/2+exn−1x, and as a
result, a sequence of escape rates, as shown in Fig. 3. It is
worthwhile to note that this calculation provides an explana-
tion for the nonexponential decay of the RTD forT.t but
does not give the exact escape rate as the values ofxstd prior
to a jump are usually fluctuating.

Several papers have demonstrated that VCSELs undergo-
ing random polarization switches allow experimental inves-
tigation of continuous bistable systems with noise. Experi-
mental results on such systems with memory are presented in

the following, where the features predicted above are clearly
seen.

B. Experiment using the polarization dynamics of a VCSEL

To demonstrate the effects described in the subsection
above, we analyze the behavior of a VCSEL with optoelec-
tronic feedback as detailed in Ref.[10]. The output of these
devices is usually linearly polarized but, as the injection cur-
rent is increased, the emission may switch to the orthogonal
polarization state. Around this switching point, a range of
injection currents can be found where the laser’s output
spontaneously jumps between the two polarization states
[14]. Previous experiments have shown that this switching
rate follows Kramers’ law in the case where spontaneous
emission is sufficient to induce polarization switching[14] or
if noise is added to the injection current[15]. This experi-
mental arrangement has been used to reconstruct a potential
[16].

As shown in the references above, the residence time in a
VCSEL polarization state is a function of the injection cur-

FIG. 4. (a) Experimental RTD of VCSEL system described in
Sec. III B. A large discontinuity atT=t can be seen as well as a
smaller discontinuity atT=2t. (b) Simulations of continuous model
of Eq. (2) showing discontinuities atT=t andT=2t. Inset contains
closeup of the discontinuity atT=2t. HereD=0.07.

FIG. 2. Upper: Residence time distribution of the Schmitt trig-
ger with both negative(solid line) and positive(dashed line) feed-
back. The feedback time is 20 ms. Lower: Transition rates as a
function of time after transition for same data. Ratesp1 andp2 are
shown by dotted lines. The rateÎp1p2 is shown by a dotted line and
is calculated from average values.

FIG. 3. Graphic illustrating the potentials and escape rates for
the continuous system with a switch att=0 and no switch for sev-
eral t subsequently. The major point to note is that the potential
barrier height and the positions of the extrema change between
t, t,2t (dashed) and 2t, t,3t (dots), leading to different
switching rates. Solid line is the potential barrier in the range
0, t,t.
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rent. Using a polarization analyzer, a photodiode, and a delay
line, we made the injection dependent upon the VCSEL po-
larization state at a timet previously, and thus the escape
rate from a polarization state was a function of the delayed
state. Full experimental details can be found in Ref.[10]
where it was shown that this experiment exhibits RTD simi-
lar to those obtained from numerical simulation of Eq.(2).
However, for strong feedback levels the RTD distribution
shows an increased switching rate atT=2t as shown in Fig.
4 and explained in the previous section. Similar effects can
be observed for negative feedback.

IV. CONCLUSIONS

We have presented experimental results on the residence
time distributions of noisy time-delayed two-state dynamical
systems. These experiments were based on a Schmitt trigger
with a computer generated delay line, and the results are seen
to be in quantitative agreement with previous theoretical pre-
dictions. We have also highlighted some limitations of using

two-state models to analyze the behavior of delayed bistable
systems described by a continuous variable. In particular, we
demonstrated an enhancement or suppression of the switch-
ing rate at multiples of the delay time. This was illustrated by
introducing a sequence of potentials to calculate the escape
rate, and experimentally confirmed using a VCSEL with op-
toelectronic feedback where the switching rate enhancement
was visible at twice the delay time. The experiment de-
scribed above can be easily adapted to study more compli-
cated systems such as those with colored noise or multiple
memory loops.
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