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Distribution of Residence Times of Time-Delayed Bistable Systems Driven by Noise
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I study bistable time-delayed feedback systems driven by noise. Based on a two-state model with
transition rates depending on the earlier state of the system I calculate analytically the residence-time
distribution function. I show that the distribution function has a detailed structure, reflective of the
effect of the feedback. By using an adequate indicator I give evidence of resonant behavior in
dependence on the noise level. I also predict that this feedback-induced effect might be observed in
two well-known optical bistable systems.
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is a Gaussian white noise, and D is the noise strength. time-delayed feedback is introduced by considering two
The behavior of a bistable system under the influence of
noise is a problem relevant in domains as different as
quantum optics and neurophysiology. The phenomenon
termed ‘‘stochastic resonance’’ (SR), which is the optimal
enhancement of a periodic signal by a bistable system
driven by a certain level of noise, has received consid-
erable attention in the past decade (for review, see [1]).
Different quantities have been introduced to quantify SR,
among them, the response amplitude, the signal-to-noise
ratio, and the residence-time distribution function. An-
other related phenomenon that has received considerable
attention is termed ‘‘coherence resonance’’ (CR), which is
the appearance of regular pulses in an excitable system
driven by a certain level of noise [2]. Recently, it has been
shown that SR and CR are closely related: SR was found
in an excitable optical system [3], and CR was found in a
chaotic bistable system [4].

A great deal of research has been devoted to the prob-
lem of calculating the statistical distribution of the times
at which a bistable system switches between two states
(also called residence-time distribution or first-passage-
time distribution). The study of this problem in bistable
systems that have a time-delayed feedback mechanism
has not been treated so far, to the best of my knowledge,
probably due to the difficulties that arise from the non-
Markovian character of the dynamics induced by the time
delay. However, systems described by delay-differential
equations arise in many fields of research. Examples can
be found in the context of neurophysiology, where neu-
rons interact through synaptic connections, and there is a
delay in the connection due to the finite transmission time
along the axon, and to the finite response time at the
synapse [5]. In cavity nonlinear optics, many effects
depend on the finite velocity of light and require a de-
scription incorporating the delay due to the round-trip
time of the light in the cavity [6,7].

Recently Tsimring and Pikovsky [8] studied the time-
delayed bistable system

_xx � x�t� � x3�t� � �x�t� �� �
�������
2D

p
��t�; (1)

where � is the feedback strength, � is the delay time, ��t�
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Based on a two-state model with transition rates depend-
ing on the earlier state of the system, they calculated the
correlation function, the power spectrum, and gave evi-
dence of CR and SR behavior.

In this Letter I show that the interplay of noise and
time-delayed feedback might lead to new intriguing ef-
fects, which are unveiled studying the statistical distri-
bution of residence times. First, I use the framework of
the model of Ref. [8] to calculate analytically (under
certain approximations) the residence-time distribution
function, ��T�. I show that ��T� exhibits a feedback-
induced structure which is resonant with the noise level.
Second, I show that the feedback-induced structure can
be observed in two well-known optical systems, namely,
in a model for vertical-cavity surface-emitting lasers and
in the vector complex Ginzburg-Landau equation.

First I focus on Eq. (1), which for small � has two stable
fixed points, x� � �

������������
1� �

p
, separated by a saddle point,

xs � 0. Noise drives the system from the basin of attrac-
tion of one fixed point to the other (termed ‘‘wells’’ from
now on). The residence time, T, for a particle in one well
is the time between two consecutive crossings of the well
barrier. In the absence of delayed feedback the residence
times are statistically distributed according to

��T� � rK exp��rKT�; (2)

where rK � �1=
���������
2�2

p
� exp���1=4D�	 is the Kramers’s es-

cape rate [9,10]. Figure 1 shows the distribution of resi-
dence times, calculated numerically by simulation of
Eq. (1) with �� 15, �� 0:05 [Fig. 1(a)], and ���0:05
[Fig. 1(b)]. We see that ��T� decays exponentially, exhib-
iting a sharp discontinuity for residence times T
 �. This
behavior has to be contrasted with the monotonous ex-
ponential decay for �� 0 given by Eq. (2).

To understand the structure of ��T�, which is reflective
of the effect of the time-delayed feedback, I calculate
��T� using the framework of the two-state model of
Ref. [8], in which intrawell fluctuations are neglected
and the dynamical variable s�t� takes two values s �
�1 corresponding to x > 0 and x < 0, respectively. The
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FIG. 1. (a),(b) Distribution of residence times calculated nu-
merically integrating Eq. (1) forD � 0:1, � � 15, (a) � � 0:05,
(b) � � �0:05. (c),(d) Distribution of residence times calcu-
lated analytically using Eq. (10) (dashed line) and Eq. (12)
(solid line). The parameters are the same as in (a),(b).
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different switching rates, depending on the state s�t� ��:
p1 if the past state at time t� � is the same as at
time t, and p2 otherwise. For small � and D, p1
and p2 can be calculated by virtue of the Kramers for-
mula rK � �2���1

������������������������������
U00�x��U00�xs�

p
exp���U=D� with

U�x; x�� � x4=4� x2=2� �x�, where the notation x� sig-
nifies that x is evaluated at time t� �. The switching rates
are given by [8]

p1;2 �

���������������
2� 3�

p

2�
exp

�
�
1� 4�
4D

�
: (3)

I follow earlier theories for calculating the residence-
time distribution function in the case of stochastic
resonance [11–14]: first I calculate the escape-time dis-
tribution function, ���Tjt0�, which is the distribution of
times the particle spends in one well, T, conditioned by
the time it enters the well, t0. In the following I consider,
without loss of generality, the escape out of the right well,
assuming that particles are absorbed after they escape;
i.e., recrossing events are neglected. Assuming that a
particle is in the left well for t < t0 with t0  � and enters
the right well at time t0, the rate equation for the popu-
lation of the right well, p��t�, is

_pp��t� � �p2p��t� if t0 � t < t0 � �;

_pp��t� � �p1p��t� if t  t0 � �:
(4)

Here I have used the fact that in the interval �t0 � �; t0�
no jumps occurred since the particle was in the left well.
The above equations can be integrated with the initial
condition p��t0� � 1 to give

p��t� � exp��p2�t� t0�	 if t0 � t < t0 � �;

p��t� � exp��p2�� exp��p1�t� �� t0�	 if t  t0 � �:

(5)
Starting to measure the time when the particles enter

the right well, the escape-time distribution function of
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the right well can be calculated as [12]

���Tjt0� � �
1

Z
dp��t�
dt

; (6)

where Z is a normalization constant such thatR
1
0 �

��Tjt0�dT � 1. From Eqs. (5) and (6)

���Tjt0� � p2 exp��p2T� if T < �;

���Tjt0� � p1 exp���p2 � p1��	 exp��p1T� if T  �:

(7)

The residence-time distribution function can be ob-
tained by averaging the escape-time distribution by the
probability that the system spends a time t0 in the left
well before entering the right well:

���T� �
1

Z

Z 1

0
���Tjt0����t0�dt0; (8)

where Z is a normalization constant such thatR
1
0 �

��T�dT � 1. Since the two wells are symmetric,
we can drop the ‘‘�’’ and ‘‘�’’ supraindices and write

��T� �
1

Z

Z 1

0
��Tjt0���t0�dt0: (9)

As a first approximation, let us assume that the particle
spends long times in a single well and only occasionally
jumps from one well to the other. In this case I neglect the
fact that ��Tjt0� was calculated with t0  � and assume it
is valid for all t0. Since ��Tjt0� is actually independent of
t0, Eq. (9) gives

��T� � ��Tjt0�: (10)

The dashed lines in Figs. 1(c) and 1(d) show ��T� calcu-
lated according to Eq. (10), for the same parameters as in
Figs. 1(a) and 1(b). In spite of the strong simplifying
assumptions made, there is a remarkable agreement
with the main features exhibited by the residence-time
distribution function calculated numerically: ��T� decays
exponentially with T and presents a sharp discontinuity
at T � �.

To assess the validity of the approximations done, I cal-
culate ��Tjt0� with t0 < � in the following way: I assume
that in the interval 0 � t � � only one jump occurs. The
particle is in the right well for 0 � t < �� t0, jumps to
the left well at time t � �� t0, and jumps back to the
right well at time t � �. In this case, the rate equation for
the population of the right well is

_pp��t� � �p1p��t� if � � t < 2�� t0;

_pp��t� � �p2p��t� if 2�� t0 � t < 2�;

_pp��t� � �p1p��t� if t  2�:

(11)

Using Eq. (6) I can calculate ��Tjt0� with t0 < �, and
��T� can be obtained from
020601-2
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��T� �
Z �

0
��Tjt0<����t0�dt0

�
Z 1

�
��Tjt0  ����t0�dt0 (12)

using the ansatz ��T� �C1 exp��p1T� if T <�, ��T� �
C2 exp��p1T� if T  � and the normalization conditionR
1
0 ��T�dT � 1. The solid lines in Figs. 1(c) and 1(d) show

the results: for the above parameters there is only a small
modification for T <�. Notice that in the framework of
the two-state model and the approximations done, the ef-
fect of the feedback is twofold: it increases (or decreases)
the probability of short residence times, and it modifies
the rate of exponential decay, ��T�
 exp��p1T�, for
large T.

Figure 2 displays the effect of noise. As D increases
noise washes out the effect of the feedback. The effect of
the time-delayed feedback can be quantified in terms of
the quantity �, which is the value of the discontinuity
of ��T� for T � �, normalized to the value of ���� in the
absence of feedback, rK exp��rK��=Z. Figure 3 shows
that � goes through a maximum when the noise strength
D varies. There is no resonance with the feedback, since
when j�j increases � monotonously increases.

Next I show that the feedback-induced structure of
��T� can be observed in a model for vertical-cavity
surface-emitting lasers (VCSELs). Unlike edge-emitting
lasers, VCSELs present a complex polarization behavior
due to their cylindrical symmetrical structure. The output
of a VCSEL is usually linearly polarized along one of two
orthogonal directions associated with crystalline or stress
orientations. When the VCSEL begins to lase one linear
polarization dominates, and when the injection current is
increased, in many devices the emission switches to the
other polarization state (current-driven polarization
switching). A different phenomenon is the polarization
switching triggered by spontaneous emission noise (sto-
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FIG. 2. Distribution of residence times for different feedback
and noise. Solid line: ��T� calculated numerically; dashed line:
��T� calculated analytically using Eq. (12). The parameters are
� � 10 (a) � � 0:05, D � 0:1; (b) � � 0:05, D � 0:15; (c) � �
0:05, D � 0:2; (d) � � �0:05, D � 0:1; (e) � � �0:05, D �
0:15; (f) � � �0:05, D � 0:2.
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chastic polarization switching). In spite of the fact that
the polarization of the light of a VCSEL is linked, not
only to cavity anisotropies, but also to the field-material
physics (to the angular momentum of the quantum states
involved in the transitions for emission and absorption), it
has been shown that stochastic polarization switching
agrees well with the Kramers hopping problem [15,16].
Moreover, SR was observed in the polarized emission of a
VCSEL, when a sinusoidal signal and noise were super-
imposed onto the injection current [17].

To investigate the effect of optical feedback I did
simulations based on the San Miguel, Feng, and
Moloney (SFM) model [18]:

_EE� � ��1� i���N � n� 1�E� � ��a � i�p�E�

� �E��t� �� exp��i!0�� �
�������
!sp

q
��; (13)

_NN � ��N�N �"� N�jE�j
2 � jE�j

2�

� n�jE�j
2 � jE�j

2�	; (14)

_nn � ��sn� �N�N�jE�j
2 � jE�j

2� � n�jE�j
2 � jE�j

2�	;

(15)

where E� are the slowly varying complex amplitudes of
the circularly polarized modes, N is the total carrier
difference between conduction and valence bands, and n
is the difference between the population inversions of the
spin-up and spin-down channels. � is the field decay rate,
�N is the decay rate ofN, and �s is the spin-flip relaxation
rate. �a and �p are the linear anisotropies (dichroism and
birefringence, respectively). � is the linewidth enhance-
ment factor and " is the normalized injection current
(" � 1 at threshold). � is the external cavity round-trip
time, � is the feedback strength, and !0� is the feedback
phase. !sp is the spontaneous emission rate and �� are
two uncorrelated complex Gaussian white noises.

I chose parameters such that the linearly polarized
states, x and y, are both stable. When a fluctuation large
enough occurs, the laser switches from one state to the
other (the intensities of the two modes are strongly anti-
correlated, leaving the total intensity nearly constant
during the switching). Because of the complex nature of
the optical fields the effect of the feedback depends on the
feedback phase, and due to the effect of anisotropies, the
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FIG. 3. � vs noise for � � 10, � � 0:05 (dashed line), � �
�0:05 (solid line).
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FIG. 4. (a),(b) Residence time distribution function for a
VCSEL with weak optical feedback. The parameters are � �
300 ns�1, �N � 1 ns�1, �s � 50 ns�1, �a � 0, �p � 3 ns�1,
" � 1:1, � � 3, � � 40 ns, !0� � 0 rad, and D �
3� 10�3 ns�1. (a) � � 0; (b) � � 0:1 ns�1. (c),(d) Residence
time distribution function for the vector complex Ginzburg-
Landau equation with weak optical feedback. The parameters
are ! � 0:2, � � 2, " � 0:3, � � 100, and D � 3� 10�3. (c)
� � 0; (d) � � 0:015.
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polarization modes have different mean residence times.
Nevertheless, Figs. 4(a) and 4(b) show that the residence-
time distribution function exhibits features similar to that
of Eq. (1). With and without feedback ��T� decays ex-
ponentially for large enough T, and with feedback short
residence times are more probable.

Finally, to demonstrate that the above results are not
restricted to the SFM model, I consider the vector com-
plex Ginzburg-Landau equation, which gives a generic
description of various types of lasers close to threshold
[19]. Neglecting spatial terms and considering a weak
feedback term the equation is

_AA� � "A� � �1� i!��jA�j
2 � �jA�j

2�A�

� �A��t� �� �
�������
!sp

q
��; (16)

where the parameter " measures the distance to thresh-
old, ! measures the detuning, and � measures the cou-
pling between the right and left circularly polarized
fields. �, �, !sp, and �� have the same meaning as before.
Solutions corresponding to circularly polarized light
(i.e., A� � Q� exp�i�!�t� i&��	 with either Q� � 0
or Q� � 0) are stable for � > 1. I focus on the region
� > 1, where noise strong enough induces switching from
one circularly polarized state to the other. Figures 4(c)
and 4(d) display the distribution of residence times in one
state, in the absence of feedback [Fig. 4(c)] and with weak
feedback [Fig. 4(d)]. Again, the effect of optical feedback
is to favor the short residence times.
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To summarize, I have studied the distribution of
residence times of bistable, noise-driven systems with
time-delayed feedback. I demonstrated that with simple
approximations the distribution of residence times can
be analytically calculated. The theory predicts the key
features found numerically: ��T� decays exponentially
with T and presents a discontinuity for T � �. By using
as an indicator the normalized value of the discontinu-
ity, �, I gave evidence of a resonance as � passes through
a maximum at an optimal value of the noise. I have also
shown that this feedback-induced effect can be observed
in lasers with weak optical feedback.

In the presence of a time-delayed feedback mechanism
noise might lead to unexpected novel effects, and I hope
that the results reported in this Letter will stimulate the
experimental investigation of the interplay of noise and
feedback in nonlinear systems.
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