
Physica A 295 (2001) 301–304
www.elsevier.com/locate/physa

Anticipation in the synchronization of
chaotic time-delay systems

C. Masoller∗
Instituto de F��sica, Facultad de Ciencias, Igua, Montevideo, 4225, Uruguay

Abstract

We study numerically the synchronization of two time-delay chaotic systems, in a unidirec-
tional coupling con)guration. The coupling is delayed in time to represent the )nite speed at
which the information is transmitted from one system (master system) to the other (slave sys-
tem). We simulate coupled Mackey–Glass and Ikeda systems. We show that, when the delay
time of the systems, �, is greater than the delay time of the coupling, �2, for adequate parame-
ters a regime of anticipated synchronization occurs. In this regime, the slave system at time t,
synchronizes to the future state of the master system, at time t + �− �2, anticipating its chaotic
evolution. Anticipation in the synchronization is not destroyed by small parameter di1erences be-
tween the systems, but in this case the systems are not perfectly synchronized. c© 2001 Elsevier
Science B.V. All rights reserved.
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In recent years, the synchronization of two unidirectionally coupled chaotic systems
has become an area of active research, in part due to its potential application to secure
communication [1–5]. The chaotic output of a transmitter (master system) is used as a
carrier in which a message is encoded. The signal is transmitted to an identical chaotic
system (slave system), which synchronizes with the master system, and the message
can be recovered from the output of the slave system.

Of special interest is the synchronization of chaotic time-delay systems. Time-delay
systems are described by delay di1erential equations of the form dx=dt =f(x(t); x(t −
�)), where � is a delay time. To calculate x(t) for times greater than t, one must
know the value of x(t) over the interval (t; t − �). Therefore, time-delay systems have
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Fig. 1. Synchronization of identical Mackey–Glass equations. The parameters are a = 0:2, b = 0:1, 
1 = 1,

2 = 0:2 and � = 0:8. (a) Anticipated synchronization for � = 100, �2 = 60. x(t) (solid line), y(t) (dotted
line), and x(t + �− �2)− y(t) (dashed line) are plotted as a function of time. (b) Retarded synchronization
for �= 100, �2 = 140. x(t) (solid line), y(t) (dotted line), and x(t)− y(t + �2 − �) (dashed line) are plotted
as a function of time.

an in)nite-dimensional phase space. It has been shown that the number of positive
Lyapunov exponents, and the dimension of the attractor, increases linearly with the
delay time [6]. Time-delay systems are good candidates for secure communication,
since to improve security high-dimensional systems with a large number of positive
Lyapunov exponents are preferable.

In this paper, we study the synchronization of two unidirectionally coupled time-delay
systems, which have the same parameters and the same delay time, �. The information
is transmitted from one system to the other at )nite speed, and this introduces an
additional delay time, �2, in the coupling. We consider a coupling con)guration of the
form

dx=dt = f(x) + 
1g(x�) ; (1)

dy=dt = f(y) + 
2g(y�) + �g(x�2) : (2)

In (1) and (2), x� = x(t − �), y� = y(t − �), x�2 = x(t − �2), 
1, 
2 and � are the
feedback and coupling coeEcients respectively. Synchronized solutions will exist only
if the functions f and g in (1) and (2) are identical (with identical parameters) and
the coeEcients 
1, 
2 and � are related by 
1 = 
2 + �. In this case, for solutions that
satisfy x�2 = y�, Eqs. (1) and (2) become identical. Notice that x�2 = y� implies that
x(t) =y(t− �+ �2). Depending on the di1erence �− �2 there is anticipated or retarded
synchronization.

Fig. 1 shows numerical solutions of coupled Mackey–Glass equations [7] [f(x) =
−bx, g(x�)= ax�=(1+ x10

� )]. The values of the parameters a and b are the same for the
master and the slave system, and the coeEcients 
1, 
2, and � verify 
1=
2+�. Fig. 1(a)
exhibits anticipated synchronization (for �¿�2), and Fig. 1(b) retarded synchronization
(for �¡�2). In Fig. 1(a), it is clearly observed that the trajectory of the slave system,
y(t) (dotted line), foresees the chaotic trajectory of the master system, x(t) (solid
line). The dashed line indicates the value of x(t + � − �2) − y(t), and demonstrates
that after a transient time, y(t)= x(t+ �− �2). Fig. 2 shows similar results for coupled
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Fig. 2. Synchronization of identical Ikeda equations. The parameters are a= 20, b= 1, 
1 = 1, 
2 = 0:2 and
�= 0:8. (a) Anticipated synchronization for �= 2, �2 = 0:5. (b) Retarded synchronization for �= 2, �2 = 3:5.
The solid, dotted and dashed lines have the same meaning as in Fig. 1.

Fig. 3. Synchronization of nonidentical systems. (a) Coupled Mackey–Glass equations. The parameters of
the master system are as in Fig. 1(a), and the parameters of the slave system are a = 0:2 and b = 0:09.
(b) Coupled Ikeda equations. The time delay of the master system is as in Fig. 2(a), and the time delay of
the slave system is � = 1:95.

Ikeda equations [8] [f(x) = −bx, g(x�) = a sin (x�)] with the same parameter values
for the master and the slave systems. Fig. 3 exhibits anticipated synchronization when
the parameters of the master and the slave system slightly di1er. Fig. 3(a) shows
solutions of coupled Mackey–Glass equations, with di1erent values of the parameter a,
and Fig. 3(b) shows solutions of coupled Ikeda equations with the master delay time
�= 2, and the slave delay time �= 1:95. Comparing with Figs. 1(a) and 2(a) (where
the master and the slave systems are identical), we can notice that the di1erence of
x(t + �− �2) − y(t) does not decay to zero, but shows small oscillations that indicate
that the synchronization is not complete. The synchronization improves when the value
of � is increased (and simultaneously the value of 
2 is decreased such that 
2=
1−�).

In summary, we have studied the synchronization of two unidirectionally coupled
time-delay systems, when the coupling involves an additional delay time, �2 and have
found a regime of synchronization where the states of the two systems are related by
y(t) = x(t + � − �2). This regime of synchronization occurs when the coupling � is
large enough, and the feedback and coupling coeEcients are related by 
1 = 
2 + �.
When �2¡�, anticipated synchronization occurs, and the slave system foresees the
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chaotic evolution of the master system. When �¡�2, retarded synchronization occurs,
and the state of the slave system is retarded in time with respect to the state of the
master system. Synchronization is a result of the memory of the systems, which is
stored in the delay terms of (1) and (2). Synchronization is robust with respect to
small parameter di1erences between the systems, but if the systems are not identical
the synchronization is not complete.

Anticipated synchronization in unidirectionally coupled time-delay systems was re-
cently discovered by Voss [9]. In the coupling schemes considered in [9], the delay
time of the coupling was equal to the delay time of the system. It was found that
the slave system anticipates in time the master system by a time interval of length �.
In our case, the coupling delay time, �2, is generally di1erent from the system delay
time, �. It could be expected that an additional time delay in the coupling would defy
synchronization because it changes the structures of the coupled systems, and it is hard
to synchronize non-identical systems. However, we )nd synchronization such that one
system lags in time to the other, with the lag time determined only by the di1erence
between � and �2.
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