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Abstract

We characterize numerically the regime of anticipated synchronization in the coupled
FitzHugh–Nagumo model for neurons. We consider two neurons, coupled unidirectionally (in
a master–slave con1guration), subject to the same random external forcing and with a recurrent
inhibitory delayed connection in the slave neuron. We show that the scheme leads to antici-
pated synchronization, a regime in which the slave neuron 1res the same train of pulses as the
master neuron, but earlier in time. We characterize the synchronization in the parameter space
(coupling strength, anticipation time) and introduce several quantities to measure the degree of
synchronization.
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Synchronization in physical and biological systems is a fascinating subject that
has attracted a lot of renewed attention in the last years [1]. Recently, Voss [2–5]
has shown that it is possible to synchronize autonomous dynamical systems in a

∗ Corresponding author. Fax: +34-971-17-3426.
E-mail address: raul@imedea.uib.es (R. Toral).

0378-4371/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0378-4371(03)00198-5

mailto:raul@imedea.uib.es


R. Toral et al. / Physica A 325 (2003) 192–198 193

Delayed Feedback
External
Stimulus

Master
Neuron (x)

Slave
Neuron (y)

τ

κ

κI (t)

Fig. 1. Schematic diagram of two model neurons coupled in a unidirectional con1guration, subjected to the
same external stimulus and with a feedback loop (with a delay time �) in the slave neuron.

master–slave con1guration in such a way that the slave system can actually antici-
pate (i.e., predict) the trajectory of the master system. This result is surprising at 1rst
sight for two facts: the dynamics of the master is not modi1ed by the presence of the
slave, and the slave integrates its equations of motion at the same speed that the mas-
ter does. This remarkable phenomenon is achieved by the introduction of appropriate
delay lines in the dynamics of the slave system. More precisely, one of the schemes
devised by Voss considers master x(t) and slave y(t) (vector) dynamical systems,
whose dynamics follow the general form

ẋ(t) = f(x(t)) ;

ẏ(t) = f(y(t)) + K[x(t)− y(t − �)] : (1)

The function f(x) de1nes the dynamical system under consideration, K is the coupling
strength matrix and � is the delay time in the feedback loop of the slave system.
As stated before, these equations admit the “anticipated” manifold y(t) = x(t+ �) as a
(structurally) stable solution [2]. This has been shown to be possible even in systems in
which the dynamics, being chaotic, is highly unpredictable due to the sensitivity to the
initial condition. Implementations of this result have been demonstrated theoretically [6]
and experimentally [7] in unidirectionally coupled laser systems as well as in electronic
circuits [5]. Some understanding of the anticipation mechanism can be achieved by the
study of simple maps [8,9].
We have recently extended this result [10] by considering non-autonomous systems

in which the dynamics is subjected to the eJect of an external perturbation. Namely,
we consider dynamical equations as

ẋ(t) = f(x(t)) + I(t) ;

ẏ(t) = f(y(t)) + I(t) + K[x(t)− y(t − �)] ; (2)

where I(t) is an external input acting on both the master and slave systems (see scheme
in Fig. 1). Remarkably, although the manifold y(t) = x(t + �) is no longer an exact
solution of the Eqs. (2) (except in the case of a periodic input I(t) = I(t + �)), it will
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be shown that the slave can actually predict some interesting part of the dynamics of
the master. Note that the addition of a term I(t− �) instead of I(t) in the dynamics of
the master would make the anticipated manifold y(t)=x(t+ �) again an exact solution
of the dynamical equations. However, this possibility seems to us less interesting than
the one considered here because it implies that the slave system knows the input before
the master system and, therefore, the anticipated synchronization mechanism appears
rather trivially.
We have considered as our dynamical system x a simple model for neuronal re-

sponse. Neurons are classical prototypes of excitable systems: their response to an
external perturbation is highly non-linear and depends on its magnitude and timing. If
the perturbation is small the system evolves back to the steady state; but if the pertur-
bation exceeds a certain threshold, the system 1res a pulse-like spike (action potential).
Following the onset of the excitation, there is an interval during which another pertur-
bation does not induce a new pulse (refractory period). Real neurons are complicated
non-linear systems involving a large number of variables. Nevertheless, the essential
features of their excitable behavior can be captured with a much-reduced description.
The FitzHugh–Nagumo model provides the simplest representation of excitable 1ring
dynamics and it has been widely used as a prototypic model [11,12].
In this paper we study numerically the anticipated synchronization of two identical

FitzHugh–Nagumo neurons, unidirectionally coupled, in the presence of a common
external random forcing (see the schematic diagram shown in Fig. 1). The model
equations are

ẋ1 =−x1(x1 − a)(x1 − 1)− x2 + I(t) ;
ẋ2 = �(x1 − bx2) ;

(3)

ẏ 1 =−y1(y1 − a)(y1 − 1)− y2 + I(t) + �[x1(t)− y1(t − �)] ;
ẏ 2 = �(y1 − by2) ;

(4)

where x = (x1; x2) are the variables associated to the master neuron, y = (y1; y2) are
the variables associated to the slave neuron, and a, b, and � are constant parameters.
� controls the strength of the coupling and � is the delay time associated to the feedback
loop in the slave neuron. Note that only the fast variables x1, y1 are coupled. This
simple type of coupling has been chosen in accordance with the aforementioned work in
autonomous systems. The external common forcing I(t) is a Gaussian random process
of mean I0 and delta-correlated in time (white noise): 〈[I(t)−I0][I(t′)−I0]〉=D(t−t′),
D being the noise intensity.
By choosing the mean value of the noise I0 just below the threshold of the excitable

system, a highly complex dynamics is observed. Spikes develop at random times in a
completely unpredictable manner, see Fig. 2. The same 1gure shows that although the
exact details of the master dynamics are not reproduced by the slave, still it manages
to anticipate the response of the master by 1ring its pulses just before the master does.
In the right panel of Fig. 2, it can be observed that the anticipation time is rather

small (less than the duration of a spike). Larger anticipation times lead to synchro-
nization with a large number of errors, as will be discussed later. However, we have
done simulations based on a Hodgkin–Huxley-type model and achieved synchronization
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Fig. 2. Trains of spikes obtained from numerical simulations of Eqs. (3) and (4). The parameters are
a= 0:139, b= 2:54, �= 0:008, I0 = 0:03, �= 0:1, �= 4, D= 2:45× 10−5. Left panel: Spikes of the master
x1(t) and slave y1(t) neurons. Note that the slave neuron makes an error around t ∼ 1000 (fourth pulse) in
1ring when the master does not. Right panel: detail of an anticipated spike. The solid line is the pulse of
the master and the dotted line is the pulse of the slave.

Fig. 3. Relative number of errors R in the parameter space (�; �). This has been computed using time series
which contain, at least, 1000 peaks in the master dynamics. The white region represents a region where the
relative number of errors is larger than R = 0:1.

times larger than the spike duration [10]. We speculate that this is due to the fact that
the Hodgkin–Huxley model has larger inertia (due to the de- and re-polarizing ionic
currents) than the FitzHugh–Nagumo model and, therefore, its behavior can be more
easily predicted.
We now proceed to quantify the degree of synchronization. To this end we have

measured the relative number of errors, R, made by the slave when anticipating the
dynamics of the master. Note in Fig. 2 that the slave neuron occasionally 1res an extra
spike, which does not correspond to a spike 1red by the master, but every spike 1red
by the master has a corresponding anticipated spike 1red by the slave. Thus, an error
is de1ned as a pulse in the slave that has no corresponding pulse in the master.
Fig. 3 displays R in a gray scale in the parameter space (�; �). The dark (white)

region represents a region where good (bad) synchronization occurs. In order not to
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Fig. 4. (a) Mean anticipation time as a function of the delay time � for the following values of the coupling
strength: � = 0:15 (+), � = 0:25 (*) and � = 0:45 (�). (b) Mean anticipation time as a function of � for
�=1 (+), �=2 (*) and �=3 (�). The results come from numerical integration of Eqs. (3) and (4) using
the parameters indicated in Fig. 2.

miss too much detail, errors larger than R=0:1 have been uniformly plotted as white,
while black indicates R = 0, and the gray levels run between these two values. Two
diJerent synchronization mechanisms are present in Fig. 2. The 1rst one appears for
very low coupling intensity (the black region near the ordinate axis �=0). This is not
a regime of anticipated synchronization, but it corresponds to the synchronization of
trajectories by common random forcing [13] which leads simply to x(t) = y(t).
Beyond this regime of synchronization by common random forcing, a 1nite value of

the coupling � is required in order to achieve anticipated synchronization. However,
a very large value of the coupling worsens the quality of the synchronization. This
counter-intuitive result can be explained since the dynamics of the slave system be-
comes chaotic for such large values of the coupling and cannot follow the dynamics of
the master. The existence of minimum and maximum values for the coupling in order
to exhibit good anticipated synchronization agrees with what was previously found in
autonomous chaotic systems [2] and in linear maps [9].
To quantify the anticipation time, we have computed the mean value 〈t〉 and standard

deviation � of the time diJerence tmi −tsi , where tmi are the times when the master neuron
1res a pulse, and tsi are the times when the slave neuron 1res the corresponding pulse
(hence the erroneous pulses 1red by the slave are not taken into account). The data
shown in the next 1gures are the result of averaging over a few thousand spike events.
Fig. 4(a) plots the mean anticipation time 〈t〉 as a function of � for diJerent values

of the coupling �. The results for large � fall mainly on the line 〈t〉= � corresponding
to the anticipated solution y(t) = x(t + �). Note that if � is small (‘+’ in Fig. 4(a))
it appears that 〈t〉 could even be larger than �. However, this result does not take into
account that the quality of the synchronization is poor in this case (it corresponds to
the grey region near the vertical axis in Fig. 3) and that the standard deviation � is
large (see Fig. 5) indicating a bad synchronization quality. Note, 1nally, that for each
value of � there is a maximum anticipation time, in agreement with the rather sharp
transition between synchronized and desynchronized regimes shown in Fig. 3.
Fig. 4(b) plots the mean anticipation time 〈t〉 as a function of � for diJerent values

of �. The main result is that for each value of � there is an interval of values of
�, �min¡�¡�max, such that 〈t〉 ∼ � (the plateaus in Fig. 4(b)). For small values
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Fig. 5. Plot of the standard deviation of the anticipation time, �, as a function of (a) the delay time � and
(b) the coupling � in the same cases as in Fig. 4.

of the coupling, �¡�min it is 〈t〉 ∼ 0, and this rePects that the two neurons are
synchronized (not anticipately) due to the common external forcing (this parameter
region corresponds to the dark region close to the vertical axis of Fig. 3). If �¿�max

the anticipation is lost due to the chaotic behavior of the slave.
More information about the quality of the anticipated synchronization is obtained

by looking at the dispersion in the values of tmi − tsi . In Figs. 5(a) and (b) we plot
the standard deviation, �, in the same cases as in Figs. 4(a) and (b). Of course, the
best synchronization quality can be de1ned as the one with a small number of errors
and a small dispersion in synchronization time. In this sense, one can see in Fig. 5(a)
that � is an increasing function of �, indicating that the dispersion (and the quality of
the synchronization) worsens for large �. Note also in Fig. 5(b) that in the interval
of coupling strength where good synchronization occurs, �min¡�¡�max, � decreases
signi1cantly.
In conclusion, we have studied numerically the regime of anticipated synchronization

in coupled FitzHugh–Nagumo model neurons subjected to the same random external
forcing. A diJerence with previous studies is that the anticipated synchronization man-
ifold is not an exact solution of the dynamical equations. However, we have shown
that the slave can predict the pulse 1ring quite accurately. We have introduced the
normalized number of errors and the mean anticipation time to measure the degree of
synchronization. We have shown that the anticipation phenomenon is robust and exists
on a wide parameter region.
We would like to end by pointing out that it has been proposed that synchronous

neuronal oscillations underlie many cortical processes [14,15] and it has been pos-
tulated that some cortical structures are able to predict the most likely input sev-
eral milliseconds ahead [16,17]. Whether the results of this paper are of any interest
to biological systems is open to speculation, but we hope that our numerical re-
sults will stimulate the search for anticipated synchronization in real biological
neurons.
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