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Abstract

We study the synchronization of time-delayed nonidentical maps subject to unidirectional
(master–slave) coupling. The individual dynamics of the maps have a delay n1, and the coupling
acts with a delay n2. We show analytically that, suitably tuning the slave map parameters, two
distinct synchronization regimes can occur. In one regime, the lag time between the slave and
the master maps is given by the delay of the coupling, n2, while in the other regime is given
by the di�erence between the delays, n1 − n2. We analyze the e�ect of the coupling strength on
the di�erent synchronization regimes in logistic and H)enon maps.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Delay di�erential equations have received much attention over the years because of
the signi<cant role of delayed feedback in the dynamics of many physical and biological
systems [1]. On the one hand, delay-di�erential systems often exhibit multistability—
i.e., the coexistence of several attractors—and multistability enables such systems to
act as memory devices [2,3], an idea <rst suggested by Ikeda and Matsumoto [4]. On
the other, the study of delay systems is motivated by the fact that these systems exhibit

∗ Corresponding author. Tel.: +54-2944-445173; fax: +54-2944-445299.
E-mail addresses: cris@<sica.edu.uy (C. Masoller), zanette@cab.cnea.gov.ar (D.H. Zanette).

0378-4371/03/$ - see front matter c© 2003 Elsevier Science B.V. All rights reserved.
doi:10.1016/S0378-4371(03)00142-0

mailto:cris@fisica.edu.uy
mailto:zanette@cab.cnea.gov.ar


362 C. Masoller, D.H. Zanette / Physica A 325 (2003) 361–370

high-dimensional chaos and, therefore, can be used in communication systems based
on chaotic synchronization, to securely encrypt information into their chaotic outputs
[5,6].
Recently, Voss [7] discovered an interesting regime of synchronization of time-

delayed systems, the so-called ‘anticipating synchronization’ regime. In this regime, the
slave system becomes synchronized to the chaotic future state of the master system.
The equations considered in Ref. [7] for the master, x, and slave, y, systems are

ẋ =−�x + f(x�) ;

ẏ =−�y + f(x) (1)

with x� ≡ x(t− �) and f a nonlinear function. The synchronization manifold is y(t)=
x(t + �) and it was shown that due to the interplay of memory e�ects and relaxation
mechanisms it can be globally stable. This regime of synchronization has attracted a lot
of attention, numerically and experimentally, in the context of unidirectionally coupled
semiconductor lasers with optical feed-back from an external mirror [8–14]. Also in
Ref. [15], Voss studied the regime of anticipating synchronization for non-time-delayed
systems. The equations for the master, x, and for the slave, y, systems were

ẋ =f(x) ;

ẏ =f(y) + 	(x − y�) ; (2)

where y� ≡ y(t−�) and 	 measures the strength of the coupling. While in the coupling
scheme, Eq. (1) the lag-time between the two systems is equal to the delay-time of the
master system (and therefore can be arbitrarily large), in the coupling scheme (2) the
lag-time between the two systems cannot be too large for the synchronization manifold
y(t) = x(t + �) to be globally stable [15].
In a previous work, we studied the regime of anticipating synchronization in two

chaotic identical maps with unidirectional (master–slave) coupling [16]. The equations
for the master, x, and for the slave, y, maps were

xn+1 = bxn + f(xn−n1 ) ;

yn+1 = byn + (1− 	)f(yn−n1 ) + 	f(xn−n2 ) ; (3)

where b is a parameter that represents a relaxation mechanism (|b|¡ 1), f is a nonlin-
ear function that has the form of a time-delayed feedback with delay n1 (notice that the
master and slave maps have the same intrinsic delay n1), and the parameter 	∈ [0; 1]
measures the strength of the coupling that acts with a delay n2. If 	= 0 the maps are
uncoupled, while if 	=1 the equation for the slave map becomes yn+1=byn+f(xn−n2 )
and there is a complete replacement of the slave variable in the nonlinear function, as
in Eq. (1). The synchronization manifold is yn = xn−n2+n1 and depending on the sign
of the di�erence n1 − n2, the slave map can synchronize to a future or a past state
of the master map. In Ref. [16], we studied analytically the stability properties of the
synchronized state, and found that they are independent of the coupling delay n2. These
results were compared with numerical simulations of a delayed map that arises from
discretization of the Ikeda delay-di�erential equation [f(x)=a sin(x)]. We showed that
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in that case the critical value of the coupling strength above which synchronization is
stable becomes independent of the delay n1 for large delays.

In this paper, we study the synchronization of two chaotic nonidentical maps with
unidirectional (master–slave) coupling. We consider a master, x, and slave, y, maps of
the form

xn+1 = �f(xn) + 
f(xn−n1 ) + g(xn) ;

yn+1 = �sf(yn) + 
sf(yn−n1 ) + g(yn) + 	f(xn−n2 ) ; (4)

where �, 
, �s and 
s are parameters, and 	∈ (−∞;+∞) is the coupling strength.
We show analytically that, by suitably tuning the slave map parameters, (�s; 
s), two
distinct synchronization regimes are, in principle, possible. In one regime, the lag-time
between the slave and the master maps is given by the delay of the coupling, n2,
while in the other regime is given by the di�erence between the delays, n1 − n2. We
exemplify the results with numerical simulations of Logistic and H)enon maps.
The possibility of two di�erent regimes of synchronization is a problem that has been

studied by several authors in the context of unidirectionally coupled semiconductor
lasers with optical feedback from an external mirror [17–23]. The results we <nd here
for coupled maps (i.e., the existence of two di�erent synchronization regimes with
lag-times n2 and n1 − n2) agree with those found previously for semiconductor lasers
with optical feedback (where the lag-times are either the Might time from master laser
to the slave laser, �c, or the di�erence � − �c where � is the round-trip time in the
external cavity).
However, we want to point out that there is a fundamental di�erence between the

synchronization regimes in unidirectionally coupled maps and those in unidirectionally
coupled lasers with optical feedback. While we show here that for coupled maps the
two synchronization regimes are particular cases of synchronization when the slave
map has two time-delayed terms, for semiconductor lasers this is not the case. For
semiconductor lasers, due to the phase dynamics, the two synchronization regimes
cannot be uni<ed in a single framework, and they exhibit very di�erent characteristics
(di�erent sensibility to noise, detuning and other parameter mismatches).
This paper is organized as follows. In Section 2, we de<ne the two synchroniza-

tion regimes. As an illustration, in Section 3 we present numerical simulations of
Logistic and H)enon delayed maps. We show the parameter regions where the two
synchronization regimes occur, and analyze the e�ect of the coupling strength on the
synchronization regions. Finally, in Section 4 we present our conclusions.

2. Master–slave coupled delayed maps

We consider a generic master map of the form

xn+1 = �f(xn) + 
f(xn−n1 ) + g(xn) ; (5)

where � and 
 are parameters. The slave map is given by

yn+1 = �sf(yn) + 
sf(yn−n1 ) + g(yn) + 	f(xn−n2 ) : (6)
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If the parameters of the slave map are tuned in such a way that �s=� and 
s=
−	
(case I), the slave map reduces to

yn+1 = �f(yn) + 
f(yn−n1 ) + g(yn) + 	[f(xn−n2 )− f(yn−n1 )] : (7)

Full synchronization can be expected for suOciently large 	 on the synchronization
manifold yn = xn+n1−n2 . On the other hand, if the parameters of the slave map are
tuned in such a way that �s = � − 	 and 
s = 
 (case II), the slave map reads

yn+1 = �f(yn) + 
f(yn−n1 ) + g(yn) + 	[f(xn−n2 )− f(yn)] (8)

and full synchronization may occur on the synchronization manifold yn=xn−n2 . There-
fore, depending on the parameters of the slave map, �s and 
s, full synchronization can
take place with two di�erent lag-times, �I =n2−n1 in the case of Eq. (7) and �II =n2
in the case of Eq. (8). Note that, in case I, one can have anticipated synchronization
for n1 ¿n2 [7,9,15].
The actual possibility of observing full synchronization in either case is determined

by the stability of the synchronized state. Linear stability analysis of Eqs. (7) and (8)
can be carried out by noticing <rst that the two equations can be written in a uni<ed
form as

yn+1 = h(yn) + 
f(yn−n1 ) + 	[f(xn−n2 )− f(yn−n3 )] ; (9)

with h(y) = �f(y) + g(y). In Eq. (7), we have n3 = n1, whereas in Eq. (8) we
have n3 = 0. The synchronization manifold is yn = xn+n3−n2 . Applying a perturbation
yn = xn+n3−n2 + �n, replacing in Eq. (9), and taking into account Eq. (5) we get, to
the <rst order in the perturbation,

�n+1 = h′(xn+n3−n2 )�n + 
f′(xn+n3−n2−n1 )�n−n1 − 	f′(xn−n2 )�n−n3 ; (10)

where primes indicate derivatives. Eq. (10) can be formally integrated by introducing a
linear (N+1)-dimensional map, with N=max{n1; n3}, for a variable rn=(r0n ; r

1
n ; : : : ; r

N
n ),

with rkn = �n−k . This equivalent map is given by

rn+1 =Mnrn ; (11)

where the elements of the matrix Mn are given by the (time-dependent) coeOcients in
Eq. (10) [16]. The solution to Eq. (11) reads

rn = Unr0 =Mn−1Mn−2 · · ·M1M0r0 ; (12)

so that the state of full synchronization is linearly stable if all the eigenvalues of the
evolution matrix Un vanish for n → ∞. Whether this condition holds or not for a
given value of the coupling constant 	 can be readily veri<ed by numerical means.
Note that all the elements of matrix Mn, given by the coeOcients in Eq. (10), involve
a delay n2 which thus acts as a uniform time shift. This fact implies that, in the limit
n → ∞, the eigenvalues of Un become independent of n2. Consequently, the value of
n2 is irrelevant to the stability of full synchronization (cf. Ref. [16]). Note carefully
that, generally, full synchronization for the two cases considered above will be stable
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Fig. 1. Schematic representation in the parameter space (�s; 
s) of the regions where synchronization with
lag-time �I and �II occur.

on two di�erent ranges of the coupling constant 	. If the master map is chaotic, we
expect that for suOciently small and large 	 full synchronization is unstable and stable
in both cases, respectively, while for intermediate values only one of the cases admits
full synchronization.
We have seen above that full synchronization is possible at two points in the (�s; 
s)

parameter space, with di�erent lag-times in each case. To encounter such synchronized
states, the slave-map parameters must be exactly tuned on one of those synchronization
points. Their location is schematically shown in Fig. 1. Though when the slave system
is slightly detuned with respect to the synchronization points full synchronization will
not occur, it is expected that the slave-map orbit follows approximately the master-map
orbit with the same lag-time, �I or �II. To quantitatively characterize the degree of
synchronization between the two orbits and the respective lag-time, we may use the
so-called similarity function S�, de<ned as

S2
� =

〈[xn+� − yn]2〉
[〈x2n〉〈y2

n〉]1=2
; (13)

where the brackets 〈·〉 stand for time averages over asymptotically large times. If
xn and yn are independent time series with similar mean value and dispersion we
have S� ≈

√
2≈ 1:4. If, on the other hand, there is full synchronization with lag-time

�, S� = 0. The similarity function S� can be determined, at each point (�s; 
s) in
parameter space and for each lag-time �. At (�; 
− 	), we should have S�I = 0, while
at (�− 	; 
) we should have S�II = 0. It is expected, moreover, that in a region around
each synchronization point the similarity function attains a minimum, as a function
of the lag-time, for � = �I and � = �II, respectively. These regions are qualitatively
illustrated in Fig. 1. In the remaining of the parameter space, as far as the slave-map
orbits do not diverge, the similarity function can attain a minimum for any other value
of �—without reaching, however, S� = 0. Note that the boundaries of such regions
will in general depend on the coupling constant 	. In the following sections, we study
these aspects of synchronization in Eqs. (5) and (6) for logistic and H)enon delay maps
in their chaotic regime.
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3. Synchronization of delayed logistic and H enon maps

3.1. Logistic maps

As a <rst illustration of the synchronization properties of Eqs. (5) and (6) in cases
I and II, we consider the choice f(x) = x(1 − x) and g(x) = 0. The master system
becomes a delayed logistic map

xn+1 = �xn(1− xn) + 
xn−n1 (1− xn−n1 ) ; (14)

whose orbits are bounded to the interval (0; 1) for 0¡�; 
 and �+ 
6 4. In di�erent
regions of the parameter space (�; 
) and depending on the delay n1, this system
displays periodic, quasiperiodic and chaotic evolution. The corresponding slave map is
given by

yn+1 = �syn(1− yn) + 
syn−n1 (1− yn−n1 ) + 	xn−n2 (1− xn−n2 ) : (15)

Its orbits are nondivergent for 0¡�s; 
s; 	 and �s + 
s + 	¡ 4.
Fig. 2 displays the synchronization regions in the parameter space (�s; 
s) and how

they vary as the coupling coeOcient 	 increases. The master map parameters are �=1:8,

=2:1 and the delay times are n1=2, n2=3. For each pair (�s; 
s) we have determined
S� as a function of the lag-time �, and detected the value of � for which the similarity
function attains its minimum min(S�). The left column of Fig. 2 displays this minimum
for three values of 	. Light tones represent low values of min(S�), i.e., high master–
slave correlation, while darker tones correspond to poor correlation [min(S�) ∼ 1]. In
the black upper-right region the slave-map orbits diverge.
The right column of Fig. 2 displays the lag-time � at which the similarity function

attains its minimum. The region where S� is minimal with lag-time �I = n2 − n1 = 1
is represented by the darker gray tone, while the region with lag-time �II = n2 = 3 is
represented by the lighter gray tone. White represents the parameter region where the
minimum value of the similarity function occurs for a lag-time which is di�erent from
�I or �II. Black represents the parameter region where the trajectory of the slave map
diverges.
For low coupling intensity, 	 = 0:2, both synchronization regimes are unstable

(Figs. 2(a) and (b)). The synchronization regions are not well de<ned and have fuzzy
boundaries. While the minimum of the similarity function at point I occurs at the
expected lag-time �I, the minimum of the similarity function at point II occurs at a
di�erent lag-time. Notice, in fact, that in Fig. 2(b) point II is in the white region that
represents a lag-time di�erent from �I or �II. The region corresponding to each regime
is disconnected and quite complex in shape, with parts in distant zones of the param-
eter space. Note, for instance, the light-gray zones near 
s = 0 where master–slave
correlation is however rather poor.
As the coupling intensity grows, zones I and II become more uniform and increase

in total extension. For 	 = 0:8, only regime I is stable (Figs. 2(c) and (d)). In this
case, min(S�) at points I and II is equal to 0 and 0.2, respectively. For large enough 	,
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Fig. 2. Synchronization regions in the (�s; 
s) parameter space in the case of the logistic map, for increasing
coupling: ((a), (b)) 	 = 0:2; ((c), (d)) 	 = 0:8; ((e), (f)) 	 = 1:2. The master map parameters are � = 1:8,

= 2:1, and the delay times are n1 = 2 and n2 = 3. The left column displays the minimum of the similarity
function. Light tones represent low values of min(S�) (good master–slave correlation) and vice versa. Black
represents the region where the slave-map trajectories diverge. The right column displays the lag-time where
the minimum value of S� occurs. In the light-gray region, the lag-time is �II =n2 =3, while in the dark-gray
region it is �I = n2 − n1 = 1. In the white region, the lag-time is di�erent from �I or �II. The small circles
stand at the synchronization points I and II, (�s = �; 
s = 
 − 	) and (�s = � − 	; 
s = 
), respectively.

both regimes are stable (Figs. 2(e) and (f); 	= 1:2) and, as expected, min(S�) equals
zero at points I and II.
Fig. 3 illustrates the master–slave correlation at di�erent points of parameter space

for 	= 1:0 (all other parameters are as in Fig. 2). In this case, type I synchronization
is stable (Fig. 3(a)) but type II is not (Fig. 3(b)), and it is worth mentioning that
the minimum value of the similarity function, S� = 0:057, does not occur at point II
(�s = 0:8; 
s = 2:1) but at a point close to it (�s = 0:75; 
s = 2:1). Fig. 3(c) displays
the correlation plot at a point where the lag-time at which S� attains its minimum is
�=−15.
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Fig. 3. Correlation plots for 	 = 1:0, n1 = 2, n2 = 3 and (a) �s = 1:8, 
s = 1:1, min(S�) = 0; (b) �s = 0:75,

s = 2:1, min(S�) = 0:057; (c) �s = 1:25, 
s = 1:525, min(S�) = 0:25. The master-map parameters are as in
Fig. 2.

3.2. H�enon maps

As a second example, we study now a master–slave con<guration where each
element is a two-dimensional delay map, namely, a H)enon-like map. The evolution
of the master coordinates xn = (un; vn) is given by the functions f(x) = (−u2; 0) and
g(x) = (1 + v; bu), so that the master system is

un+1 = 1− �u2n − 
u2n−n1 + vn ;

vn+1 = bun ; (16)

cf. Eq. (5). In the following, we choose b = 0:3. The slave system, with coordinates
yn = (wn; zn), is governed by the equations

wn+1 = 1− �sw2
n − 
sw2

n−n1 + zn − 	u2n−n2 ;

zn+1 = bwn ; (17)

so that coupling acts on the <rst coordinate only. The synchronization manifold is given
by

wn = un+n3−n2 ;

zn = vn+n3−n2 ; (18)

where, as before, n3 = n1 in case I and n3 = 0 in case II.
Next, we study in which regions of parameters the di�erent synchronization regimes

occur. We take parameters for the master map �, 
, n1 such that its dynamics is chaotic.
Fig. 4 displays the minimum of the similarity function and the lag-time for which

the minimum occurs, in the parameter space (�s; 
s). The results are similar to those
found with the logistic map. For weak coupling the synchronization regions are not
well de<ned, but as the coupling increases their size grows and the boundary between
them becomes well de<ned. For large 	 both synchronization regimes are stable. Thus,
it can be thought that a small variation of the slave-map parameters �s or 
s near the
boundary region might induce a transition from synchronization with lag-time �I to
synchronization with lag-time �II or vice versa. However, near the boundary region we
<nd min(S�) ≈ 0:5, which indicates bad synchronization. Therefore, while the lag-time
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Fig. 4. Synchronization regions for delayed H)enon maps. The parameters of the master map are � = 0:7,

 = 0:7, and delay times are n1 = 6 and n2 = 3. The left column displays the minimum of the similarity
function and the right column displays the lag-time where min(S�) occurs. In the light-gray region, the
lag-time is �II = n2 = 3, while in the dark-gray region it is �I = n2 − n1 =−3. In the white region of (b)
the lag-time is di�erent from �I or �II. The small circles indicate the points (�s = � − 	; 
s = 
), and
(�s = �; 
s = 
 − 	). ((a), (b)) 	 = 0:2; ((c), (d)) 	 = 0:4; ((e), (f)) 	 = 0:6.

at which the minimum value of S� occurs changes abruptly (from �I to �II), there is no
sharp transition between one regime of synchronization to the other. If the slave-map
parameters are gradually modi<ed from points I to II, synchronization with lag-time
�I is gradually lost, and as we enter region II, synchronization with lag-time �II is
gradually established.

4. Conclusion

We have studied two regimes of synchronization of delayed nonidentical maps. We
have shown analytically that, by suitably tuning the slave-map parameters, two distinct
synchronization regimes can occur. In one regime, the lag-time between the slave and
the master maps is given by the delay of the coupling, n2, while in the other regime
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is given by the di�erence between the delays, n1 − n2. We have also shown that these
two regimes are actually two particular cases of synchronization with a slave map that
is identical to the master map but that has two delayed feedback terms.
The two synchronization regimes have been exempli<ed by considering delayed

logistic and H)enon maps. In both cases, the synchronization regimes are simultaneously
stable only for large values of the coupling 	, and therefore, they occur at parameters
of the slave map, (�s; 
s), which are far away from each other. In other words, our
results show that in the case of delayed logistic and H)enon maps, a small variation
of a parameter of the slave map cannot induce a transition from regimes I to regime
II or vice versa, since they occur in distant regions of the parameter space. On the
contrary, in the case of semiconductor lasers with optical feedback, it has been shown
numerically [19,21] that close to the lasing threshold, by carefully tuning a parameter
of the slave laser one can induce a transition from one regime of synchronization to the
other. It will be interesting to study a delayed map that shows this type of transition,
and allows an analytical investigation of the phenomenon.
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