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This paper presents a spatiotemporal characterization of the dynamics of a single-mode
semiconductor laser with optical feedback. I use the two-dimensional representation of a
time-delayed system~where the delay time plays the role of a space variable! to represent the time
evolution of the output intensity and the phase delay in the external cavity. For low feedback levels
the laser output is generally periodic or quasiperiodic and with the 2D representation I obtain
quasiperiodic patterns. For higher feedback levels the coherence collapsed regime arises, and in the
2D patterns the quasiperiodic structures break and ‘‘defects’’ appear. In this regime the patterns
present features that resemble those of an extended spatiotemporally chaotic system. The 2D
representation allows the recognition of two distinct types of transition to coherence collapse. As the
feedback intensity grows the number of defects increases and the patterns become increasingly
chaotic. As the delay time increases the number of defects in the patterns do not increase and there
is a signature of the previous quasiperiodic structure that remains. The nature of the two transitions
is understood by examining the behavior of various chaotic indicators~the field autocorrelation
function, the Lyapunov spectrum, the fractal dimension, and the metric entropy! when the feedback
intensity and the delay time vary. ©1997 American Institute of Physics.
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Single-mode semiconductor lasers are often used in opti
cal communication systems because they are compac
relatively inexpensive, and can be modulated at high
speeds. However, unwanted reflections„even of the order
of 1% of the emitted power… from an optical disk or op-
tical fiber frequently destabilize the laser and induce a
transition to a chaotic state, which has been called coher
ence collapsed state, and is characterized by a broadban
spectrum „the linewidth increases from a few megahertz
to several gigahertz…. The phenomenon is important both
for its theoretical interest and practical applications. In
this paper I study the dynamics in the chaotic regime,
and effects of varying the intensity of the light fed back
into the laser cavity, and the distance of the external re-
flector. I use the two-dimensional representation of time-
delayed systems to represent the time evolution of the
laser variables as 2D patterns. When the delay time is
much longer than the intrinsic oscillation period, there
are two very different time scales in the dynamics. In
addition, there are time-localized events, which corre-
spond to jumps among coexisting chaotic attractor ruins.
This leads to chaotic patterns that resemble those arising
from extended spatiotemporally chaotic systems. I show
that 2D representation provides a powerful tool for the
visualization of some features of the dynamics, hidden in
the time evolution of the variables. When the feedback
intensity increases, the dynamics become more chaotic
and the patterns appear increasingly irregular. On the
Chaos 7 (3), 1997 1054-1500/97/7(3)/455/8/$10.00
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contrary, when the distance of the external reflector in-
creases, although the dimension of the attractor grows,
the patterns do not appear increasingly disorganized. I
explain these results by examining the behavior of vari-
ous chaotic indicators.

I. INTRODUCTION

In recent years semiconductor lasers have been ex
sively used in optical communication systems because t
are compact and efficient and can be modulated directl
relatively high speeds. Unfortunately, they are particula
sensitive to reflections from a surface of another device s
as an optical disk or optical fiber.1

It is well known that a dynamical system can be eith
stabilized or destabilized by a feedback loop. Laser dio
are good examples of this rule. Optical feedback can be u
for mode stabilization and spectral linewidth narrowing,2 but
one must carefully choose the external cavity paramet
because optical feedback can also induce the transition to
coherence collapsed regime.3 In this regime the laser line
width broadens from a few megahertz to several gigah
and the dynamics is chaotic.4

The governing equations of a single-mode semicond
tor laser with weak and moderate optical feedback are
Lang and Kobayashi5 rate equations. They are the standa
laser equations plus a time-delayed term that accounts fo
field reflected from the external mirror~for low feedback
levels multiple reflections can be neglected!. The external
455© 1997 American Institute of Physics
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456 Cristina Masoller: Dynamics in the regime of lasers
cavity is described by two parameters: the feedback par
eter,g, which is proportional to the strength of the feedba
and the delay time,t, which is proportional to the externa
cavity length. The model gives a good understanding of
observed laser behavior, such as the linewidth reduction
low feedback levels and the transition to the coherence
lapsed regime for higher feedback.6,7

A single-mode laser coupled to an external cavity is
multimode laser because the external cavity adds a serie
new modes, which are the so-called external cavity mo
~ECMs!. The ECMs are the fixed point solutions of the La
and Kobayashi equations. They are created in pairs a
saddle-node bifurcations and their number grows with
value of C5gtA11a2 ~Ref. 4! ~wherea is the linewidth
enhancement factor8,9!. For increasing feedback~or increas-
ing delay time! the initially stable external cavity modes b
come unstable due to Hopf bifurcations, and quasiperio
routes to chaos occur as the feedback parameter~or the delay
time! is increased further.4 If C is large enough, several co
existing chaotic attractors can be found.10 Stronger feedback
destabilizes all the coexisting attractors and induces the
herence collapsed regime. In this regime a global attra
forms from the ruins of the single ECM attractors, and t
laser switches among all the merged attractor ruins.

In Ref. 11 I analyzed the dynamics of the Lang a
Kobayashi model when the delay time is short~a few relax-
ation oscillation periods of the solitary laser! and the feed-
back level is below the onset of attractor merging. In t
case the ECM attractors are generally low dimensional~fixed
points, limit cycles, and two-torus!. Regions of improved
stability exist for values oft such thatt/tR'n ~wheretR is
the period of the relaxation oscillations of the solitary las
andn is an integer number!. In these resonances the attrac
reverses the route to chaos: if it was a limit cycle, in t
resonance it becomes a fixed point; or if it was a two-tor
in the resonance it becomes a limit cycle. As the delay ti
increases the width of the resonant regions decreases
they become more difficult to detect.

In this paper I proceed further and study the high dim
sional dynamics that is induced by moderately strong opt
feedback~above the onset of attractor merging! from a large
external cavity (t much larger than the relaxation oscillatio
period!.

Farmer12 was the first to investigate in detail the prope
ties of a delay dynamical system in the long delay lim
Farmer studied the Mackey–Glass model, which descr
the creation of blood cells, and found that as the delay tim
increased the Lyapunov spectrum,l i , decreases as 1/t, the
metric entropy, hm , remains roughly constant, and th
Lyapunov dimension,D, grows linearly. Similar results wer
found by Ikeda and Matsumoto13 in the Ikeda model of a
nonlinear optical resonator and by Le Berreet al.14 in a non-
linear ring cavity. In these models the nonlinear interactio
pertain only to the delayed term. Lepriet al.15 studied a more
general class of iterative delay maps, which includes a lo
nonlinear coupling, and found that the local nonlinear int
action was responsible for the existence, under certain c
ditions, of an anomalous component of the Lyapunov sp
Chaos, Vol. 7,
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trum (l1) which does not scale as 1/t. Nevertheless, it was
found that in the long delay time limit the rest of the spe
trum scales as 1/t, hm remains finite, andD grows linearly.
Therefore, it can be conjectured that the asymptotic beha
of the dimension and entropy witht are generic properties o
time-delayed systems, while the behavior of the Lyapun
spectrum depends on the nonlinearity of the equations.

The scaling properties of the chaotic indicators of a d
lay dynamical system in thet→` limit have analogies with
those of a one-dimensional~1D! spatially extended system i
theL→` limit ~whereL is the system size!.15 ~For example,
for 1D spatiotemporal chaotic systems the fractal dimens
of the attractor typically grows withL, while for a time
delayed systemD grows with t.) This suggests that idea
from extended systems in theL→` limit might be appli-
cable to delayed systems in thet→` limit. Arecchi et al.16

introduced a two-dimensional~2D! representation of a time
delayed system in the following way: decomposing the c
tinuous time variable,t, into a continuous variable,s
(0<s<t), and a discrete variable,n

t5s1nt, ~1!

a generic timet can be represented by two numbers,n and
s, identifying the delay unit~‘‘time’’ variable! and the po-
sition inside the delay unit~‘‘spatial’’ variable!. In this way,
a 1D signal arising from a time-delayed system can be re
ranged as a 2D pattern of lengthL5t.

The 2D representation of a time-delayed system allow
simple visualization of the dynamics, and sheds light
some features of the complex dynamics, hidden in the lo
1D series of the data. Giacomelliet al.17 investigated the
dynamics of a CO2 laser with delayed feedback on th
losses, and for delays long with respect to the oscillat
period found evidence of phase defects and two distinct
ordered phases.

In this paper I use the 2D representation to analyze
dynamics of the Lang and Kobayashi model when the opt
feedback is from a distant reflector (t@tR).

For feedback levels corresponding to the attractor me
ing regime, the global attractor that forms from the ruins
the ECM attractors has a large fractal dimension~typically,
D.30). I am interested in determining whether the dyna
ics in this regime~which consist of evolution in the ruin o
an ECM attractor and jumps among neighboring ruins! has
common features with the dynamics usually observed in
extended spatiotemporal chaotic systems. Also, I am in
ested in comparing in this regime the effects of the exter
cavity parameters. Although bothg andt increase the num-
ber of exited external cavity modes~and induce a quasiperi
odic route to chaos in each mode!, they have distinct effects
when the laser operates in the coherence collapsed regi

This paper is organized as follows. Section II prese
the 2D representation of the dynamics of the laser. The t
series of the output intensity and phase delay in the exte
cavity are arranged as 2D patterns. The dynamics in a si
ECM attractor gives rise to quasiperiodic patterns. At t
beginning of attractor merging~when few attractors have
merged! the quasiperiodic structures break, and ‘‘defect
No. 3, 1997
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457Cristina Masoller: Dynamics in the regime of lasers
appear. I study the effects of varying the feedback inten
and the delay time. Asg increases the number of defec
increases, and the previous quasiperiodic structure~corre-
sponding to the evolution in a single ECM attractor! is com-
pletely destroyed. Ast increases, defects appear but there
a signature of the previous quasiperiodic structure that
mains. These results are explained in Sec. III by examin
the behavior of the autocorrelation function of the comp
electric field, the Lyapunov spectrum, the fractal dimensi
and the metric entropy, wheng andt vary. Section IV pro-
vides a summary and conclusions.

II. TWO-DIMENSIONAL REPRESENTATION OF THE
COHERENCE COLLAPSED REGIME

In this section I use the 2D representation introduced
Arecchi et al.16 @Eq. ~1!# to recognize spatiotemporal fea
tures in the dynamics of the laser in the coherence collap
regime.

Writing the intracavity complex electric field a
E(t)5E(t)exp@i(v0t1f(t))#, wherev0 is the laser frequency
without feedback, the Lang and Kobayashi equations are

d@E~ t !eif~ t !#

dt
5S 11 ia

2 D FG~N,E2!2
1

tp
GE~ t !eif~ t !

1gE~ t2t!eif~ t2t!e2 iv0t, ~2!

dN~ t !

dt
5J2

N~ t !

ts
2G~N,E2!E~ t !2. ~3!

In these equationsN(t) is the carrier population
~electron-hole plasma! and the modulus of the electric fiel
E(t) is normalized such thatVcE(t)2 is the total photon
number in the laser wave guide~whereVc is the volume of
the active region!. The external cavity parameters are t
feedback parameter,g, that measures the intensity of th
light fed back into the laser cavity, and the delay tim
t52Lext/c, that is the round-trip time of the light in th
external cavity of lengthLext. Other parameters are:ts the
carrier lifetime, tp the photon lifetime,G5GN(N–N0)(1
2 eE2) the gain per unit time, whereGN is the modal gain
coefficient,N0 the carrier density at transparency, ande the
nonlinear gain coefficient.a is the linewidth enhancemen
factor, andJ is the current density~in carriers per unit vol-
ume and unit time!. The quantum noise terms that take in
account the effect of spontaneous recombination are om
since this effect plays a negligible role when the laser
operated well above threshold in coherence collapse.

The simulations were carried out with a fourth-ord
Runge–Kutta method~with an integration stepDt 5 0.01
ns!, and the parameter values given in Table I. In all t
simulations the first 500 round-trips in the external cavity
neglected in order to let transients die away. The time
quences of the normalized intensity,I (t)5E2(t)/I sol ~where
I sol is the intensity of the solitary laser!, and the phase dela
in the external cavity,Df(t)5f(t)2f(t2t), are repre-
sented as 2D patterns.

Df(t) is related with the laser mean optical frequen
by
Chaos, Vol. 7,
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Since the ECMs have optical frequenciesv i that are sepa-
rated by approximately 2p, when the laser operates in th
ECM attractor developed from modei ,Df oscillates around
the value (v i2v0)t, while when the laser operates in co
herence collapse, the time evolution ofDf(t) shows brusque
variations~of approximately 2p) that reveal the switching
among the merged attractor ruins.

Figure 1 shows the time evolution ofI (t)/I sol and
f(t)2f(t2t) for increasingg and t 5 10 ns. Forg
5 2.0 GHz the system evolves in a single ECM attractor.
the time sequences of the intensity and the phase delay@Figs.
1~a!, 1~b!#, trains of large amplitude oscillations are inte
rupted by localized events, where the amplitude of the os
lations markedly decreases, and the value of the intensit
approximately constant~equal to the solitary laser valu
I sol). The period of the large amplitude oscillations is a
proximately the period of the relaxation oscillations of t
solitary lasertR52pAtp /GNI sol (tR 5 0.15 ns for the pa-
rameter values of Table I!. The periodicity of the small am-
plitude oscillations is slightly larger thant. ~The two fre-
quencies that appear in the quasiperiodic route of
external cavity modes are the relaxation oscillation f
quency of the solitary laser,f rsol51/tR , and the external
cavity frequency,f ext, which is slightly lower than 1/t4.!

For g>2.5 GHz the ECM attractors begin to merge. T
intensity signal@Figs. 1~c!, 1~e!, 1~g!# appears increasingly
chaotic and the plot ofDf(t) @Figs. 1~d!, 1~f!, 1~h!# shows
that the evolution occurs in several ECM attractor ruin
Note that the rapid variations in the phase delay~originated
in the jumps among the attractor ruins! are not reflected in
the time evolution of the output intensity.

Figures 2 and 3 show the 2D representation ofI (t)/I sol

andf(t)2f(t2t) for a fixed delay time (t 5 10 ns! and
increasing feedback levels.~In the 1D plots, only 10 delay
units were shown, while in the 2D patterns, 1000 delay un
are represented.!

When the dynamics occurs in a single attractor, the
tensity pattern and the phase delay pattern are very sim
and have the structure of straight lines in a background
thin rolls @Figs. 2~a!, 3~a!#. The straight lines represent th
regions of small amplitude oscillations, and the thin ro
represent the large amplitude oscillations. This type of p
tern appears when the optical feedback is from a large ex

TABLE I. Meanings and values of the parameters in Eqs.~2! and ~3!.

Modal gain coefficient Gn 8.387 3 10213 m3 s21

Carrier density at transparency N0 1.231 3 1024 m23

Nonlinear gain coefficient e 2.0 3 10224 m3

Photon lifetime tp 1.4 ps
Carrier lifetime ts 1.0 ns
Linewidth enhancement factor a 4.4
Volume of the active region V 1.2 3 10216 m3

Injected current J 5 2.0* Jth 4.167 3 1033 m23 s21

Threshold current Jth 2.083 3 1033 m23 s21
No. 3, 1997
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458 Cristina Masoller: Dynamics in the regime of lasers
FIG. 1. Time evolution of the output intensity and the phase delay in the external cavity, fort 5 10 ns and~a!, ~b! g 5 2.0 GHz;~c!, ~d! g 5 2.5 GHz;
~e!, ~f! g 5 3.0 GHz; ~g!, ~h! g 5 3.5 GHz.
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nal cavity (t@tR) and there are a large number of ro
contained in a single delay unit. The oscillation periodtR is
independent ofg, and therefore the number of the rolls co
tained in a delay unit is constant for increasingg ~in all the
2D patterns, the spatial lengthL was set to a value slightly
larger thant, in order to contain an integer number of roll
and therefore eliminate the drift of the rolls!. The straight
lines are not vertical but tilted because the periodicity of
regions of small amplitude oscillations is nott, but slightly
larger.

For g 5 2.5 GHz the ECM attractors begin to merg
and in the intensity pattern@Fig. 2~b!# the dark straight lines
Chaos, Vol. 7,
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e

break and defects appear. Also, the thin rolls in the ba
ground do not form a periodic pattern anymore but pres
dislocations and asymmetries. The phase delay pattern@Fig.
3~b!# presents in addition a phase structure~three different
gray regions! because the evolution occurs in the ruins
three different attractors which have different mean ph
delay @in the 1D plot, Fig. 1~d!, we observe a brusque jum
between two of them#.

As g increases the patterns become increasingly chao
In the intensity pattern@Figs. 2~c!, 2~d!# the number of de-
fects increase and the straight gray lines are destroyed. A
the number of phases in the phase delay pattern@Figs. 3~c!,
ed.
t

FIG. 2. A 2D representation of the output intensity fort 5 10 ns and~a! g 5 2.4 GHz; ~b! g 5 2.5 GHz; ~c! g 5 3.0 GHz; ~d! g 5 3.5 GHz. The
amplitude of the signals sets the gray scale: the darker~lighter! gray corresponds to the maximum~minimum! data values. 1000 delay units are represent
The horizontal axis ranges over a value slightly larger thant ~there are 504 points sampled withDt 5 0.02 ns!. The ‘‘spatial’’ variable increases from lef
to right, and the ‘‘time’’ variable from top to bottom.
No. 3, 1997
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459Cristina Masoller: Dynamics in the regime of lasers
FIG. 3. A 2D representation of the phase delay signal~the same parameters as Fig. 2!.
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3~d!# rapidly increases and their width decreases, becaus
number of merged attractors increases and the jumps am
them became more frequent.

Figures 4 and 5 show the 2D representations
I (t)/I sol and f(t)2f(t2t) for a fixed feedback intensity
(g 5 2.5 GHz! and increasing delay time. Since the oscil
tion periodtR is independent oft, the number of rolls con-
tained in a delay unit increases, and therefore in the 2D
terns the rolls appear to become thinner with increasingt.
For t 5 5 ns the dynamics occurs in a single ECM attract
and the 2D representations ofI (t)/I sol and f(t)2f(t2t)
are quasiperiodic patterns@Figs. 4~a!, 5~a!#. As t increases,
the ECM attractors merge and defects appear@Figs. 4~b!,
4~c!, 4~d!#. The gray straight lines are almost horizontal f
t 5 5 ns @Fig. 4~a!# and tend to became more vertical ast
increases due to the fact that the periodicity of the sm
amplitude oscillations is slightly larger thant, but its differ-
ence relative tot becomes smaller ast increases.

Contrary to what occurs wheng increases, whent in-
creases the straight lines are not completely destroyed
the thin rolls in the background remain, forming an almo
periodic pattern. Also, in the phase delay pattern@Figs. 5~b!,
Chaos, Vol. 7,
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5~c!, 5~d!#, there are phases of large width that correspond
attractor ruins where the laser remains a long time bef
switching to another.

Note that the thin rolls~that represent the large ampl
tude oscillations! and the straight zones~that represent the
small amplitude oscillations! are present in all the phases
the phase delay patterns~see Figs. 3 and 5!. The reason is
that the frequenciesf ext and f rsol are common to all the
merged ECM attractors. However, it is interesting that
jumps among the attractor ruins appear to have little or
role in the evolution of the rolls~which evolve in a continu-
ous manner along the pattern!. The jumps among the attrac
tor ruins appear to be related only to the apparition of
defects.

Figures 2–5 suggest a transition to a chaotic or hig
turbulent regime asg increases, and to a laminar or weak
turbulent regime ast increases.

An important advantage of the 2D representation w
respect to the 1D time plots or the phase plots of the tra
tory, is that in the 2D representation of the phase delay sig
we can visualize simultaneously the details of the time e
lution in one attractor ruin~i.e., the large amplitude oscilla
FIG. 4. A 2D representation of the intensity signal, forg 5 2.5 GHz and~a! t 5 5 ns,~b! t 5 10 ns,~c! t 5 15 ns, and~d! t 5 20 ns.
No. 3, 1997
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460 Cristina Masoller: Dynamics in the regime of lasers
FIG. 5. A 2D representation of the phase delay signal~the same parameters as Fig. 4!.
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tions, represented by the thin rolls, and the small amplit
oscillations, represented by the defects!, and the global fea-
tures of the dynamics~i.e., the switching among differen
attractor ruins, represented by the phase structure!. The dif-
ferent effects ofg andt in the dynamics are clearly distin
guished in the 2D representation, while they are hidden
the other representations of the dynamics.

III. QUANTITATIVE CHARACTERIZATION OF THE
TRANSITION TO COHERENCE COLLAPSE

To understand the previous results in this section I
vestigate the behavior of the autocorrelation function of
complex electric field, the Lyapunov spectrum, the frac
dimension, and the metric entropy, wheng andt vary.

The correlation function

GE~ t !5
^E* ~ t81t !E~ t8!&

^E~ t8!2&
~5!

expresses the correlations between the fie
E(t81t)5E(t81t)exp@if(t81t)# and E(t)5E(t)exp@if(t)#
at two temporally separated points. [uGE(t)u is also the laser
visibility, and in Ref. 18 the experimentally measured v
ibility curve of a laser diode operating in the coherence c
lapsed regime was accurately reproduced by the Lang
Kobayashi model; using parameters values approxima
equal to those of Table I#.

The autocorrelation functionGE(t) is appropriate for the
coherence collapsed regime because it is sensitive to v
tions in the phase of the electric field. Figure 6 sho
uGE(t)u for g53.5 GHz andt510 ns. uGE(t)u presents
peaks at multiples of the relaxation oscillation periodtR ,
and revival peaks at multiples of the delay timet ~the revival
peaks were not considered in Ref. 18 because the visib
curves were measured fort!t). The revival peaks appea
becauseGE(t) is related~by the Wiener-Khintchine theo
rem! to the Fourier transform of the optical spectrum, and
optical spectrum presents peaks at harmonics of the freq
cies f rsol51/tR and f ext'1/t.
Chaos, Vol. 7,
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Therefore, the fieldsE(t) andE(t1Dt) are almost un-
correlated ifDt is small relative tot, but strongly correlated
if Dt't. This explains the space-time features found in
2D patterns. There is a slow decay of correlations~occurring
on several delay units! that is responsible for the ‘‘temporal’
disorder, and there is a fast decay~occurring on several re
laxation oscillation periods! that is responsible for the ‘‘spa
tial’’ disorder.

Varying g andt I found that the decay of correlations
much faster wheng increases than whent increases.

I used Farmer’s method12 to compute the Lyapunov
spectrum, and calculated the metric entropy from the Pe
relation

hm5(
i 51

k

l i
1 ~6!

~where l i
1 are the positive Lyapunov exponents!, and the

fractal dimension from the Kaplan–Yorke formula

FIG. 6. Autocorrelation function of the complex electric field fort 5 10 ns
andg 5 3.5 GHz.GE(t) was calculated as the inverse Fourier transform
the optical spectrum: 65536 data points~sampled withDt 5 0.01 ns! were
used, which span 655 delay units. The inset shows the first few peak
uGE(t)u.
No. 3, 1997
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FIG. 7. Chaotic indicators for increasingg and fixedt (t 5 10 ns!. ~a! Thirty largest Lyapunov exponents. Eighty Lyapunov exponents were computed
integration time was 1000 delay units.~b! Fractal dimension, computed from Eq.~7!. ~c! Metric entropy, computed from Eq.~6!.
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~7!

~where j is the largest integer for which( i 51
j l i>0).

Figure 7 shows the behavior ofl i , D, andhm , wheng
is increased whilet is kept constant. Asg increases there is
a smooth transition to a high-dimensional chaotic state.
the Lyapunov exponents, both positive and negative,
crease roughly linearly.D and hm also grows linearly with
g.

Figure 8 shows the behavior ofl i , D, andhm , when the
delay time is increased while the feedback level is kept fix
The Lyapunov exponents remain finite or get smaller in
solute value ast increases.D grows almost linearly witht,
andhm converges to a finite value. The entropy in this ca
is considerably smaller than wheng increases@compare the
vertical scales of Figs. 7~c! and 8~c!#. As discussed in the
Introduction, the behavior ofl i , D, andhm with t has been
found in other time-delayed systems.

These results give increasing evidence of a transition
a ‘‘weakly turbulent’’ regime ast increases, and to a
‘‘highly turbulent’’ regime asg increases.

In the coherence collapsed regime, the total numbe
ECM attractor ruins in the global attractor increases w
either g or t. Therefore, the volume of the global attract
grows with eitherg or t, and is natural to expect that th
fractal dimension grows with eitherg or t. This is analogous
to the behavior of an extended spatiotemporal chaotic
tem, for which the dimension of the attractor increases w
Chaos, Vol. 7,
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the volume of the system. However, whilet only increases
the number of degrees of freedom of the dynamics,g also
increases its disorder.

IV. SUMMARY AND CONCLUSIONS

I have done a detailed characterization of the transit
to the coherence collapsed regime, in the case where an
tical feedback is from a distant reflector. I used the 2D re
resentation of delayed dynamical systems to rearrange
1D time sequences of the output intensity and phase dela
the external cavity as 2D patterns. The quasiperiodic
chaotic patterns obtained allow the visualization of spa
time-like features of the dynamics hidden in the long 1
series of data, and allow the recognition of two distinct typ
of transitions to coherence collapse.

When the laser operates in a single external cavity
tractor, the intensity pattern and the phase delay pattern
quasiperiodic patterns that present a structure of stra
lines over a background of thin rolls. Coherence collap
arises when several external cavity attractors merge. In
patterns the straight lines break and defects appear, and
thin rolls present dislocations and asymmetries. The ph
delay pattern also presents a phase structure, becaus
laser switches among attractor ruins that have different m
phase delay.

When the feedback parameter is increased the numbe
defects grows and the quasiperiodic structure of the patte
lost. The phase delay pattern has a large number of
FIG. 8. Chaotic indicators for increasingt and fixedg (g 5 2.5 GHz!. ~a! Thirty largest Lyapunov exponents.~b! Fractal dimension.~c! Metric entropy.
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phases, which reveals that a large number of attractors m
and that the jumps among them are frequent. In contr
when the delay time is increased the number of defects in
patterns remains approximately constant, and there is a
nature of the previous quasiperiodic structure~when the laser
operated in a single attractor!. Although the number of
merged attractors increases, in the phase delay pattern
are phases of large width, which correspond to attractor ru
where the laser spends some time before switching to
other.

These results suggest a transition to a developed tu
lent regime when the feedback increases, and to a we
turbulent regime when the delay time increases. This w
confirmed by examining the behavior of various chaotic
dicators. The autocorrelation function of the complex elec
field decays much faster wheng increases than whent in-
creases. All the Lyapunov exponents~both positive and
negative!, the fractal dimension, and the metric entropy
crease withg. On the contrary, the Lyapunov exponents
main finite or decrease in absolute value witht, the fractal
dimension grows witht, and the metric entropy converges
a finite value.

It would be interesting to study the correlations betwe
the defects and the dislocations of the rolls, since it see
that the jumps among the attractor ruins have little or no r
in the evolution of the rolls, but appear to be the origin of t
apparition of defects. It would also be interesting to test
conjecture recently put forward by Egolf and Greenside19 ~in
the context of extended systems!, that the big fractal dimen-
sion of some large homogeneous chaotic systems migh
accurately estimated by simple correlation functions calcu
tions.
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