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This paper presents a spatiotemporal characterization of the dynamics of a single-mode
semiconductor laser with optical feedback. | use the two-dimensional representation of a
time-delayed systertwhere the delay time plays the role of a space varjaioleepresent the time
evolution of the output intensity and the phase delay in the external cavity. For low feedback levels
the laser output is generally periodic or quasiperiodic and with the 2D representation | obtain
quasiperiodic patterns. For higher feedback levels the coherence collapsed regime arises, and in the
2D patterns the quasiperiodic structures break and “defects” appear. In this regime the patterns
present features that resemble those of an extended spatiotemporally chaotic system. The 2D
representation allows the recognition of two distinct types of transition to coherence collapse. As the
feedback intensity grows the number of defects increases and the patterns become increasingly
chaotic. As the delay time increases the number of defects in the patterns do not increase and there

is a signature of the previous quasiperiodic structure that remains. The nature of the two transitions
is understood by examining the behavior of various chaotic indicdtbes field autocorrelation
function, the Lyapunov spectrum, the fractal dimension, and the metric entndan the feedback
intensity and the delay time vary. @997 American Institute of Physics.
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Single-mode semiconductor lasers are often used in opti-
cal communication systems because they are compact,
relatively inexpensive, and can be modulated at high
speeds. However, unwanted reflectiongeven of the order
of 1% of the emitted power) from an optical disk or op-
tical fiber frequently destabilize the laser and induce a
transition to a chaotic state, which has been called coher-
ence collapsed state, and is characterized by a broadband
spectrum (the linewidth increases from a few megahertz
to several gigahert. The phenomenon is important both
for its theoretical interest and practical applications. In
this paper | study the dynamics in the chaotic regime,
and effects of varying the intensity of the light fed back
into the laser cavity, and the distance of the external re-
flector. | use the two-dimensional representation of time-
delayed systems to represent the time evolution of the
laser variables as 2D patterns. When the delay time is
much longer than the intrinsic oscillation period, there
are two very different time scales in the dynamics. In
addition, there are time-localized events, which corre-
spond to jumps among coexisting chaotic attractor ruins.
This leads to chaotic patterns that resemble those arising
from extended spatiotemporally chaotic systems. | show
that 2D representation provides a powerful tool for the
visualization of some features of the dynamics, hidden in
the time evolution of the variables. When the feedback
intensity increases, the dynamics become more chaotic,
and the patterns appear increasingly irregular. On the
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contrary, when the distance of the external reflector in-
creases, although the dimension of the attractor grows,
the patterns do not appear increasingly disorganized. |
explain these results by examining the behavior of vari-
ous chaotic indicators.

I. INTRODUCTION

In recent years semiconductor lasers have been exten-
sively used in optical communication systems because they
are compact and efficient and can be modulated directly at
relatively high speeds. Unfortunately, they are particularly
sensitive to reflections from a surface of another device such
as an optical disk or optical fibér.

It is well known that a dynamical system can be either
stabilized or destabilized by a feedback loop. Laser diodes
are good examples of this rule. Optical feedback can be used
for mode stabilization and spectral linewidth narrowfrigt
one must carefully choose the external cavity parameters,
because optical feedback can also induce the transition to the
coherence collapsed regimén this regime the laser line-
width broadens from a few megahertz to several gigahertz
and the dynamics is chaoffc.

The governing equations of a single-mode semiconduc-
tor laser with weak and moderate optical feedback are the
Lang and Kobayashirate equations. They are the standard
laser equations plus a time-delayed term that accounts for the
field reflected from the external mirrgfor low feedback
levels multiple reflections can be negledtedhe external
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cavity is described by two parameters: the feedback paramtrum (\,) which does not scale as7l/Nevertheless, it was
eter,y, which is proportional to the strength of the feedback,found that in the long delay time limit the rest of the spec-
and the delay timer, which is proportional to the external trum scales as %/ h,, remains finite, and grows linearly.
cavity length. The model gives a good understanding of th& herefore, it can be conjectured that the asymptotic behavior
observed laser behavior, such as the linewidth reduction foof the dimension and entropy withare generic properties of
low feedback levels and the transition to the coherence cotime-delayed systems, while the behavior of the Lyapunov
lapsed regime for higher feedbatk. spectrum depends on the nonlinearity of the equations.

A single-mode laser coupled to an external cavity is a  The scaling properties of the chaotic indicators of a de-
multimode laser because the external cavity adds a series tfy dynamical system in the—< limit have analogies with
new modes, which are the so-called external cavity modethose of a one-dimensionélD) spatially extended system in
(ECMs). The ECMs are the fixed point solutions of the LangtheL—o limit (whereL is the system si2e® (For example,
and Kobayashi equations. They are created in pairs aftdpr 1D spatiotemporal chaotic systems the fractal dimension
saddle-node bifurcations and their number grows with theof the attractor typically grows with., while for a time
value of C=yr\1+a? (Ref. 4 (wherea is the linewidth  delayed systenD grows with 7.) This suggests that ideas
enhancement factd?). For increasing feedbadlor increas- from extended systems in tHe—o limit might be appli-
ing delay time the initially stable external cavity modes be- cable to delayed systems in theso limit. Arecchi et al*®
come unstable due to Hopf bifurcations, and quasiperiodiéntroduced a two-dimension&PD) representation of a time
routes to chaos occur as the feedback paranfeteéhe delay delayed system in the following way: decomposing the con-
time) is increased furthetlf C is large enough, several co- tinuous time variablet, into a continuous variableg
existing chaotic attractors can be fOLﬂ‘?cStronger feedback (0<o=7), and a discrete variable,
destabilizes all the coexisting attractors and induces the co-
herence collapsed regime. In this regime a global attractor
forms from the ruins of the single ECM attractors, and thea generic time can be represented by two numbersand
laser switches among all the merged attractor ruins. o, identifying the delay uni{“time” variable) and the po-

In Ref. 11 | analyzed the dynamics of the Lang andsition inside the delay unit‘spatial” variable). In this way,
Kobayashi model when the delay time is sh@tfew relax- a 1D signal arising from a time-delayed system can be rear-
ation oscillation periods of the solitary laseand the feed- ranged as a 2D pattern of length= 7.
back level is below the onset of attractor merging. In this  The 2D representation of a time-delayed system allows a
case the ECM attractors are generally low dimensi¢itedd  simple visualization of the dynamics, and sheds light on
points, limit cycles, and two-toriis Regions of improved some features of the complex dynamics, hidden in the long
stability exist for values of such thatr/ 7g~n (Whererg is 1D series of the data. Giacomebi all’ investigated the
the period of the relaxation oscillations of the solitary laserdynamics of a CQ laser with delayed feedback on the
andn is an integer numberin these resonances the attractorlosses, and for delays long with respect to the oscillation
reverses the route to chaos: if it was a limit cycle, in theperiod found evidence of phase defects and two distinct dis-
resonance it becomes a fixed point; or if it was a two-torusprdered phases.
in the resonance it becomes a limit cycle. As the delay time In this paper | use the 2D representation to analyze the
increases the width of the resonant regions decreases adginamics of the Lang and Kobayashi model when the optical
they become more difficult to detect. feedback is from a distant reflectors g).

In this paper | proceed further and study the high dimen-  For feedback levels corresponding to the attractor merg-
sional dynamics that is induced by moderately strong opticaing regime, the global attractor that forms from the ruins of
feedback(above the onset of attractor mergjrfgpm a large  the ECM attractors has a large fractal dimensitypically,
external cavity ¢ much larger than the relaxation oscillation D>30). | am interested in determining whether the dynam-
period. ics in this regime(which consist of evolution in the ruin of

Farmel? was the first to investigate in detail the proper- an ECM attractor and jumps among neighboring ruinas
ties of a delay dynamical system in the long delay limit.common features with the dynamics usually observed in 1D
Farmer studied the Mackey—Glass model, which describesxtended spatiotemporal chaotic systems. Also, | am inter-
the creation of blood cells, and found that as the delay time igsted in comparing in this regime the effects of the external
increased the Lyapunov spectruNy, decreases asd/the cavity parameters. Although bothand 7 increase the num-
metric entropy, h,, remains roughly constant, and the ber of exited external cavity mod¢and induce a quasiperi-
Lyapunov dimensior, grows linearly. Similar results were odic route to chaos in each mgdéhey have distinct effects
found by lkeda and Matsumotdin the Ikeda model of a when the laser operates in the coherence collapsed regime.
nonlinear optical resonator and by Le Beeteal*in a non- This paper is organized as follows. Section Il presents
linear ring cavity. In these models the nonlinear interactionghe 2D representation of the dynamics of the laser. The time
pertain only to the delayed term. Leti al1° studied a more  series of the output intensity and phase delay in the external
general class of iterative delay maps, which includes a locatavity are arranged as 2D patterns. The dynamics in a single
nonlinear coupling, and found that the local nonlinear inter-ECM attractor gives rise to quasiperiodic patterns. At the
action was responsible for the existence, under certain corbeginning of attractor mergingwhen few attractors have
ditions, of an anomalous component of the Lyapunov specmerged the quasiperiodic structures break, and “defects”

t=o+nr, 1)
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appear. | study the effects of varying the feedback intensity'ABLE |. Meanings and values of the parameters in Egsand (3).
and the delay time. A increases the number of defects

. . Lo Modal gain coefficient G, 8.387x 102 m®s?
increases, and the previous q_ua5|per|od|c strun_:(uoere- Carrier density at transparency No 1231 % 1% m-2
sponding to the evolution in a single ECM attragtisrcom-  Nonlinear gain coefficient € 20X 1024 m3
pletely destroyed. As increases, defects appear but there isPhoton lifetime Tp 1.4 ps
a signature of the previous quasiperiodic structure that re‘?a”'e,fd“r‘:e“”;]e . Ts 1-‘?4“5
mains. These results are explained in Sec. Il by examining#/'new' th enhancement factor « PP

. . . olume of the active region \% 1.2 X 10 m
the b(_ahqwor of the autocorrelation function of the_ comp_lexmjected current J= 200, 4167x 10° m3s!
electric field, the Lyapunov spectrum, the fractal dimension;threshold current Jin 2.083x 10® m3s?!

and the metric entropy, whep and 7 vary. Section IV pro-
vides a summary and conclusions.

II. TWO-DIMENSIONAL REPRESENTATION OF THE 1 (t+r Ag
COHERENCE COLLAPSED REGIME ;f o(t")dt'=wy+ - 4
t

In this section | use the 2D representation introduced by,._. . .
Arecchi et al!® [Eq. (1)] to recognize spatiotemporal fea- Since the ECMs have optical frequencies that are sepa-

tures in the dynamics of the laser in the coherence collapser ted by approximately 2, when the laser Qperates in the
regime. CM attractor developed from modgA ¢ oscillates around
the value {;— wg) 7, while when the laser operates in co-

Writing the intracavity complex electric field as . .
_ : . herence collapse, the time evolutionké(t) shows brusque
= +

E(1) =E()exri(wgt+ #(1)], wherew, is the laser frequency variations (of approximately 2r) that reveal the switching

without feedback, the Lang and Kobayashi equations are .
among the merged attractor ruins.

d[E(t)e'*V] [1+ia , 1 ot Figure 1 shows the time evolution df(t)/l¢, and
= G(N,E?)— —|E(t)e'¢V v : i _
dt 2 Tp @(t)— ¢d(t—7) for increasingy and 7 = 10 ns. Fory
(1) o gr = 2.0 GHz the system evolves in a single ECM attractor. In
tyE(t—1)e e o, 2 thetime sequences of the intensity and the phase {Elgy.
dN(t) N(t) 1(a), 1(b)], trains of large amplitude oscillations are inter-
T =J- —G(N,E?)E(t)2. 3 rupted by localized events, where the amplitude of the oscil-
Ts

lations markedly decreases, and the value of the intensity is

In these equationsN(t) is the carrier population approximately constantequal to the solitary laser value
(electron-hole plasmeaand the modulus of the electric field |g,). The period of the large amplitude oscillations is ap-
E(t) is normalized such thaV¥ E(t)? is the total photon proximately the period of the relaxation oscillations of the
number in the laser wave guidehereV, is the volume of  solitary laserrg=2m7,/Gy\lso (7r = 0.15 ns for the pa-
the active region The external cavity parameters are therameter values of Table.IThe periodicity of the small am-
feedback parametery, that measures the intensity of the plitude oscillations is slightly larger than. (The two fre-
light fed back into the laser cavity, and the delay time,quencies that appear in the quasiperiodic route of the
7=2L/C, that is the round-trip time of the light in the external cavity modes are the relaxation oscillation fre-
external cavity of length_,;. Other parameters are; the  quency of the solitary laseff,,=1/7g, and the external
carrier lifetime, 7, the photon lifetime,G=Gy(N-Ng)(1 cavity frequencyf ¢y, which is slightly lower than %)
— €E?) the gain per unit time, wher&,, is the modal gain For y=2.5 GHz the ECM attractors begin to merge. The
coefficient,N, the carrier density at transparency, anthe  intensity signal[Figs. 1c), 1(e), 1(g)] appears increasingly
nonlinear gain coefficiente is the linewidth enhancement chaotic and the plot oA ¢(t) [Figs. 1d), 1(f), 1(h)] shows
factor, andJ is the current densityin carriers per unit vol- that the evolution occurs in several ECM attractor ruins.
ume and unit time The quantum noise terms that take into Note that the rapid variations in the phase ddlagginated
account the effect of spontaneous recombination are omitteith the jumps among the attractor rujirare not reflected in
since this effect plays a negligible role when the laser ighe time evolution of the output intensity.
operated well above threshold in coherence collapse. Figures 2 and 3 show the 2D representation (0/1 ¢

The simulations were carried out with a fourth-order and ¢(t) — ¢(t— 7) for a fixed delay time £ = 10 n9 and
Runge—Kutta methodwith an integration ste@d\t = 0.01 increasing feedback leveléin the 1D plots, only 10 delay
ns), and the parameter values given in Table I. In all theunits were shown, while in the 2D patterns, 1000 delay units
simulations the first 500 round-trips in the external cavity areare represented.
neglected in order to let transients die away. The time se- When the dynamics occurs in a single attractor, the in-
quences of the normalized intensityt) =E2(t)/1, (Where tensity pattern and the phase delay pattern are very similar,
I o is the intensity of the solitary lasgrand the phase delay and have the structure of straight lines in a background of
in the external cavityA ¢(t) = ¢(t)—¢(t—17), are repre- thin rolls [Figs. 4a), 3(a)]. The straight lines represent the

sented as 2D patterns. regions of small amplitude oscillations, and the thin rolls
A ¢(t) is related with the laser mean optical frequencyrepresent the large amplitude oscillations. This type of pat-
by tern appears when the optical feedback is from a large exter-
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FIG. 1. Time evolution of the output intensity and the phase delay in the external cavity,=ol0 ns anda), (b) y = 2.0 GHz;(c), (d) y = 2.5 GHz;
(e), (f) y = 3.0 GHz;(g), (h) y = 3.5 GHz.

nal cavity (r=>7g) and there are a large number of rolls break and defects appear. Also, the thin rolls in the back-
contained in a single delay unit. The oscillation perigdis  ground do not form a periodic pattern anymore but present
independent ofy, and therefore the number of the rolls con- dislocations and asymmetries. The phase delay pdtkegn
tained in a delay unit is constant for increasipdin all the  3(b)] presents in addition a phase struct(iteree different
2D patterns, the spatial lengthwas set to a value slightly gray region$ because the evolution occurs in the ruins of
larger thanr, in order to contain an integer number of rolls, three different attractors which have different mean phase
and therefore eliminate the drift of the rollsThe straight delay[in the 1D plot, Fig. 1d), we observe a brusque jump
lines are not vertical but tilted because the periodicity of thebetween two of ther
regions of small amplitude oscillations is ngt but slightly As v increases the patterns become increasingly chaotic.
larger. In the intensity patterfiFigs. 2c), 2(d)] the number of de-
For y = 2.5 GHz the ECM attractors begin to merge, fects increase and the straight gray lines are destroyed. Also,
and in the intensity patterfrig. 2(b)] the dark straight lines the number of phases in the phase delay paftéigs. 3c),

() (© (d)

200

400

600

t (delay units)

800

1000

0 5 10
t (ns) t (ns) t (ns) t (ns)
FIG. 2. A 2D representation of the output intensity for= 10 ns and@@ y = 2.4 GHz;(b) y = 2.5 GHz;(c) y = 3.0 GHz;(d) y = 3.5 GHz. The

amplitude of the signals sets the gray scale: the ddfigiter) gray corresponds to the maximuminimum) data values. 1000 delay units are represented.

The horizontal axis ranges over a value slightly larger thdthere are 504 points sampled wittt = 0.02 ng. The “spatial” variable increases from left
to right, and the “time” variable from top to bottom.
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FIG. 3. A 2D representation of the phase delay sidtte#@ same parameters as Fig. 2

3(d)] rapidly increases and their width decreases, because tti€c), 5(d)], there are phases of large width that correspond to
number of merged attractors increases and the jumps amomdtractor ruins where the laser remains a long time before
them became more frequent. switching to another.

Figures 4 and 5 show the 2D representations of Note that the thin rollgthat represent the large ampli-
[(t)/1g, and ¢(t)— ¢(t—7) for a fixed feedback intensity tude oscillations and the straight zone@hat represent the
(v = 2.5 GH2 and increasing delay time. Since the oscilla- small amplitude oscillationsare present in all the phases of
tion period Ty is independent of, the number of rolls con- the phase delay patteriisee Figs. 3 and)5 The reason is
tained in a delay unit increases, and therefore in the 2D pathat the frequencies,,; and f,s, are common to all the
terns the rolls appear to become thinner with increasing merged ECM attractors. However, it is interesting that the
For 7 = 5 ns the dynamics occurs in a single ECM attractorjumps among the attractor ruins appear to have little or no
and the 2D representations bft)/1¢, and ¢(t) — d(t—17) role in the evolution of the roll$which evolve in a continu-
are quasiperiodic patternfigs. 4a), 5(@]. As 7 increases, ous manner along the patteérhe jumps among the attrac-
the ECM attractors merge and defects appdags. 4b),  tor ruins appear to be related only to the apparition of the
4(c), 4(d)]. The gray straight lines are almost horizontal for defects.

7 = 5 ns[Fig. 4@] and tend to became more vertical as Figures 2—5 suggest a transition to a chaotic or highly
increases due to the fact that the periodicity of the smalturbulent regime a% increases, and to a laminar or weakly
amplitude oscillations is slightly larger thamn but its differ-  turbulent regime as increases.

ence relative tor becomes smaller asincreases. An important advantage of the 2D representation with

Contrary to what occurs whe increases, when in- respect to the 1D time plots or the phase plots of the trajec-
creases the straight lines are not completely destroyed andry, is that in the 2D representation of the phase delay signal
the thin rolls in the background remain, forming an almostwe can visualize simultaneously the details of the time evo-
periodic pattern. Also, in the phase delay patfdfiys. 3b),  Iution in one attractor ruiri.e., the large amplitude oscilla-

(b) (© (d)

0
200 \
g 400
3 600 \ \. \.\\-\\\‘1\\_\\\&‘\?\'\'\\\\\"\'\"\“
AN ’\\-\
800 {NI
\&\\\\\.\\\\\\\\\{\\&Q&\\Q\‘
1000 JNAANRRRRRRRY g L
0.0 25 5.0 0 5 10 15 0 10 20
t (ns) t (ns) t (ns)

FIG. 4. A 2D representation of the intensity signal, for= 2.5 GHz anda) 7 = 5 ns,(b) = 10 ns,(c) 7 = 15 ns, andd) r = 20 ns.
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FIG. 5. A 2D representation of the phase delay sidtte#¢ same parameters as Fig. 4

tions, represented by the thin rolls, and the small amplitude Therefore, the field&€(t) andE(t+ At) are almost un-
oscillations, represented by the defg¢ctnd the global fea- correlated ifAt is small relative tor, but strongly correlated
tures of the dynamicsi.e., the switching among different if At~ 7. This explains the space-time features found in the
attractor ruins, represented by the phase structditee dif- 2D patterns. There is a slow decay of correlatiGmscurring
ferent effects ofy and 7 in the dynamics are clearly distin- on several delay unit¢hat is responsible for the “temporal”
guished in the 2D representation, while they are hidden iisorder, and there is a fast dec@ccurring on several re-

the other representations of the dynamics. laxation oscillation periogsthat is responsible for the “spa-
tial” disorder.
Varying v and 7 | found that the decay of correlations is
. QUANTITATIVE CHARACTERIZATION OF THE much faster whery increases than whenincreases.
TRANSITION TO COHERENCE COLLAPSE | used Farmer's methdfl to compute the Lyapunov

To understand the previous results in this section | inShectrum, and calculated the metric entropy from the Pesin

vestigate the behavior of the autocorrelation function of théelatIon
complex electric field, the Lyapunov spectrum, the fractal

dimension, and the metric entropy, wherand = vary. K N
The correlation function hfi;l Ai (6)
_(EF(U+DE())
Ge(t)= (E(t")?) 5 (where \;" are the positive Lyapunov exponentand the

. ., fractal dimension from the Kaplan—Yorke formula
expresses the correlations between the fields

E(t'+t)=E(t' +t)exdig(t’' +t)] and E(t) = E(t)exdi¢d(t)]
at two temporally separated point$Gf(t)| is also the laser
visibility, and in Ref. 18 the experimentally measured vis- 10
ibility curve of a laser diode operating in the coherence col- 1.0 .
lapsed regime was accurately reproduced by the Lang and
Kobayashi model; using parameters values approximately
equal to those of Tablg].l

The autocorrelation functioGg(t) is appropriate for the
coherence collapsed regime because it is sensitive to varia-
tions in the phase of the electric field. Figure 6 shows
|Gg(t)| for y=3.5 GHz and7=10 ns. |Gg(t)| presents
peaks at multiples of the relaxation oscillation periggl, A T TR TR Y T N
and revival peaks at multiples of the delay timéhe revival e 20 40 60 80 100
peaks were not considered in Ref. 18 because the visibility time (ns)
curves were measured for 7). The revival peaks appear
becauseGg(t) is related(by the Wiener-Khintchine theo- FIG. 6. Autocorrelation function of the complex electric field for= 10 ns

. . andy = 3.5 GHz.Gg(t) was calculated as the inverse Fourier transform of
rem) to the Fourier transform of the optical spectrum, and thethe gptical Spectrunf:( é5536 data poitsampled withAt — 0.01 n3 were

O_Dtical spectrum presents peaks at harmonics of the frequeQsed, which span 655 delay units. The inset shows the first few peaks of
ciesf go= 1/t and o~ 1/7. |Ge(t)].

Autocorrelation |Gg(t)!
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FIG. 7. Chaotic indicators for increasingand fixedr (7 = 10 n9. (a) Thirty largest Lyapunov exponents. Eighty Lyapunov exponents were computed. The
integration time was 1000 delay unit®) Fractal dimension, computed from EQ). (c) Metric entropy, computed from Eg6).

Z{zl)\i the volume of the system. However, whiteonly increases
+ m (7) the number of degrees of freedom of the dynamigsalso
I+1 increases its disorder.

D=j

(wherej is the largest integer for whicB!_;\;=0).

__Figure 7'shows the behavior af, D, andh,,, wheny ;g ;;yaRY AND CONCLUSIONS

is increased whiler is kept constant. Ay increases there is

a smooth transition to a high-dimensional chaotic state. All | have done a detailed characterization of the transition

the Lyapunov exponents, both positive and negative, into the coherence collapsed regime, in the case where an op-

crease roughly linearlyd andh, also grows linearly with tical feedback is from a distant reflector. | used the 2D rep-

v. resentation of delayed dynamical systems to rearrange the
Figure 8 shows the behavior &f, D, andh,,, whenthe 1D time sequences of the output intensity and phase delay in

delay time is increased while the feedback level is kept fixedthe external cavity as 2D patterns. The quasiperiodic and

The Lyapunov exponents remain finite or get smaller in abchaotic patterns obtained allow the visualization of space-

solute value as increasesD grows almost linearly withr, time-like features of the dynamics hidden in the long 1D

andh, converges to a finite value. The entropy in this caseseries of data, and allow the recognition of two distinct types

is considerably smaller than whenincreasegcompare the of transitions to coherence collapse.

vertical scales of Figs.(€¢) and &c)]. As discussed in the When the laser operates in a single external cavity at-
Introduction, the behavior of;, D, andh, with 7 has been tractor, the intensity pattern and the phase delay pattern are
found in other time-delayed systems. quasiperiodic patterns that present a structure of straight

These results give increasing evidence of a transition téines over a background of thin rolls. Coherence collapse
a “weakly turbulent” regime ast increases, and to a arises when several external cavity attractors merge. In the
“highly turbulent” regime asy increases. patterns the straight lines break and defects appear, and the

In the coherence collapsed regime, the total number othin rolls present dislocations and asymmetries. The phase
ECM attractor ruins in the global attractor increases withdelay pattern also presents a phase structure, because the
either y or 7. Therefore, the volume of the global attractor laser switches among attractor ruins that have different mean
grows with eithery or 7, and is natural to expect that the phase delay.
fractal dimension grows with either or . This is analogous When the feedback parameter is increased the number of
to the behavior of an extended spatiotemporal chaotic sysdefects grows and the quasiperiodic structure of the pattern is
tem, for which the dimension of the attractor increases witHost. The phase delay pattern has a large number of thin
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