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Abstract

We study the influence of network topology and connectivity on the synchronization properties of chaotic logistic maps,

interacting with random delay times. Four different types of topologies are investigated: two regular (a ring-type and a

ring-type with a central node) and two random (free-scale Barabasi–Albert and small-world Newman–Watts). The

influence of the network connectivity is studied by varying the average number of links per node, while keeping constant

the total input that each map receives from its neighbors. For weak coupling, the array does not synchronize regardless the

topology or connectivity of the network; however, for certain connectivity values there is enhanced coherence. For strong

coupling, the array synchronizes in the homogeneous steady-state, where the chaotic dynamics of the individual maps is

suppressed. For both, weak and strong coupling, the array propensity for synchronization is largely independent of the

network topology and depends mainly on the average number of links per node.

r 2006 Elsevier B.V. All rights reserved.
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The emergence of dynamical order in complex systems has been widely studied during the last years [1–3].
One important issue is the propensity for synchronization of networks of dynamical elements. In this context,
coupled maps [4] are excellent tools for understanding the mechanisms of emergency of synchrony and
collective behavior in complex systems composed of mutually coupled nonlinear units. Not only from an
academical point of view but also from an applied perspective, cooperative behavior arises in many fields of
science and classical examples include the onset of rhythmic activity in the brain, the flashing on and off in
unison of populations of fireflies, the emission of chirps by populations of crickets and the synchronization of
laser arrays and Josephson junctions [1]. Coupled map lattices have proven to be a useful tool because by
simplifying the dynamics of the individual units it is possible to simulate large ensembles of coupled units.

Network synchronizability and its relation with the topology has recently received a great deal of attention.
Atay et al. [5] found, in the case of fixed (constants) delays that scale-free and random networks exhibit better
synchronization properties than regular networks. More recently, Motter et al. [6] identified that the
synchronization of complex networks follows a diffusive mechanism where the mean connectivity plays a key
e front matter r 2006 Elsevier B.V. All rights reserved.
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role. In a previous paper [7], we investigated the relation of the topology with the ability to synchronize under
the presence of random delays. We found that in this case the synchronization properties depend largely on the
mean connectivity of the network. However, the topology does not play an important role. The aim of this
paper is to further investigate this point.

The evolution equations for N coupled logistic map with random delays are

xiðtþ 1Þ ¼ ð1� �Þf ½xiðtÞ� þ
�

bi

XN

j¼1

Zij f ½xjðt� tijÞ�. (1)

Here t is a discrete time index, i is a discrete spatial index (i ¼ 1 . . .N), f ðxÞ ¼ axð1� xÞ is the logistic map, the
matrix Z ¼ ðZijÞ defines the connectivity of the array: Zij ¼ Zji ¼ 1 if there is a link between the ith and jth
nodes, and zero otherwise. � is the coupling strength and tij is the delay time in the interaction between the ith
and jth nodes (the delay times tij and tji need not be equal). The sum in Eq. (1) runs over the bi nodes which
are coupled to the ith node (bi ¼

P
j Zij). The normalized pre-factor 1=bi means that each map receives the

same total input from its neighbors.
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Fig. 1. (Color online) Synchronization regions for the four different networks considered. The density plots represent the parameter s2 as
a function of � and b (N ¼ 500 and a ¼ 4:). (a) Smallworld; (b) scale-free; (c) nearest-neighbors and (d) nearest-neighbor with central node.
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In a previous work [7] we found that if the delays tij are random enough, for adequate coupling strength the
array synchronizes in the spatially homogeneous steady-state, xiðtÞ ¼ x0 for all i, where x0 is the non-trivial
fixed point, x0 ¼ 1� 1=a [7]. This synchronization behavior is in contrast with the behavior with fixed delays
(if tij ¼ t0 8i; j, the array synchronizes in a spatially homogeneous time-dependent state, where the dynamics is
either periodic or chaotic depending on t0 [5]), and can be understood in terms of the analogy between globally
coupled maps and a single map with a external driving [8,9].

To investigate the influence of the topology we consider four networks, two of them are regular and the
other two are random. The regular ones are a ring of nearest-neighbor elements while in the second one we
added a central node connected to all other nodes. The random networks consist of a scale-free network
constructed according to the Barabasi–Albert method and, concerning the last one, we use the small-world
topology proposed by Newman and Watts. To characterize the transition to synchronization we use the
indicator s2 ¼ 1=Nh

P
i ½xiðtÞ � hxi�

2it, where h�i denotes an average over the elements of the array and h�it
denotes an average over time. If the array synchronizes in a spatially homogeneous state, xiðtÞ ¼ xjðtÞ 8i; j,
and, obviously, s2 ¼ 0.

We consider Gaussian distributed delays: tij ¼ t0 þ nearðcxÞ, where c is a parameter that allows varying the
width of the delay distribution; x is Gaussian distributed with zero mean and standard deviation one; near
denotes the nearest integer. Depending on t0 and c the distribution of delays has to be truncated to avoid
negative delays. Since the focus of this paper is the influence of the array topology and the connectivity we
keep the random delays Gaussian distributed with htiji�t0 ¼ 5 and c ¼ 2. The numerical results are
summarized in Figs. 1–3.

In Fig. 1 we can see density plots of s2 as a function of the mean number of links per node, b ¼ 1=N
PN

i¼1 bi

and �. The four different panels correspond to the different networks mentioned above. Despite the differences
for small number of neighbors, we observe that the synchronizability is largely independent of the topology.
Furthermore, the similarity between Figs. 1(c) and (d) clearly suggest that the synchronizability does not
depend on the average path length (defined as the distance between two nodes, averaged over all pairs of
nodes).

For weak coupling (roughly speaking, �t0:4), the array does not synchronize regardless the number of
neighbors and topology. However, there are worth noting different behaviors depending on the value of �. To
gain additional insight, it is shown in Fig. 2 the value of s2 as a function of b for different values of �. We
observe that for � ¼ 0:02 (a) the value of s2 decreases monotonously as b increases, to a limiting non-zero
value. For � ¼ 0:04 (b) there is still no synchronization for any connectivity value, but there is a non-
monotonous dependence of s2 with b, that reveals the existence of an optimal number of neighbors for which
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Fig. 2. s2 as a function of the number of neighbors b for the weak coupling regime and different topologies: nearest-neighbors with central

node ð�Þ; scale-free ð&Þ; nearest-neighbors ð�Þ and small-world ðnÞ. Parameters are: N ¼ 500, a ¼ 4; (a) � ¼ 0:02; (b) � ¼ 0:04 and

(c) � ¼ 0:06.
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Fig. 3. s2 as a function of the number of neighbors for the strong coupling regime and different topologies. (a) � ¼ 0:6, (b) � ¼ 0:8 and

(c) � ¼ 0:9. Same symbols and parameters values as Fig. 2.
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there is an enhancement of the array propensity for synchronization. Finally, in (c) we observe that, for
� ¼ 0:06, in sharp contrast to (a), s2 increases monotonously before reaching a non-zero limiting value.

On the other hand, for strong enough coupling (�\0:4) the array synchronizes in the homogeneous steady
state if the number of the neighbors is large enough. In Fig. 3 we observe s2 as functions of b for different
values of �. Depending on the value of � there is a minimum value of neighbors required to synchronize the
array. Moreover, this critical value decreases with increasing �.

In summary, we studied the synchronization of coupled maps in complex networks with time-delayed
interactions focusing on the influence of array connectivity and topology. For weak coupling no
synchronization was found, but an enhancement of the synchronization propensity was observed for
particular connectivity values. On the other hand, for strong coupling there is synchronization provided that
the number of neighbors was large enough.
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