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Numerical investigation of noise-induced resonance in a
semiconductor laser with optical feedback
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Abstract

We numerically study the effect of additive Gaussian white noise in the dynamics of a time-delayed feedback system.
The system is a semiconductor laser with optical feedback from a distant reflector. For moderate feedback levels the system
presents several coexisting attractors, and noise levels above a threshold value induce jumps among these attractors. Based on
the residence times probability density,P(I), we show that with increasing noise the dynamics of attractor jumping exhibits
a resonant behavior.P(I) presents peaks at multiples of the external-cavity delay time, and the strength of the peaks reaches
a maximum value for an optimal level of noise. The results are explained by the interplay of noise and delayed feedback.
© 2002 Elsevier Science B.V. All rights reserved.
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It is well known that in nonlinear systems an ad-
equate amount of noise may induce a more ordered
behavior. Examples of the constructive role of noise
are the enhancement of the response of a bistable
system to a weak periodic forcing signal (stochastic
resonance) [1], the appearance of regular pulses in
an excitable system (coherence resonance) [2], the
formation of patterns in spatially extended systems
(noise-sustained spatial structures) [3]; the decay
from an unstable state driven by amplification of noise
(for example, the laser switch-on[4]), among others.
Many of these effects have been recently reviewed by
San Miguel and Toral[5].

In a previous work we have shown that when a
system has a time-delayed feedback loop, noise might
induce a new resonance phenomenon[6]. In this pa-
per we study with detail this resonance phenomenon
in the dynamics of a semiconductor laser with optical
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feedback from a distant external reflector. For mod-
erate feedback from a distant reflector, the system
exhibits the coexistence of several chaotic attractors.
We find a resonant behavior in the noise-induced
attractor jumps, which is measured based on the prob-
ability density of the residence time in an attractor,
P(I). P(I) exhibits a structure of peaks at multiples
of the external-cavity delay time, and the strength of
the peaks reaches a maximum value for an optimal
level of noise. The results are interpreted in terms of
the interplay of noise and the delayed feedback loop.

The model equations are as follows[7]:

Ė = k(1 + iα)[G − 1]E(t)

+γE(t − τ) e−iωoτ +
√

Dξ(t), (1)

Ṅ = j − N − G|E|2
τn

. (2)

Here,E is the slowly varying complex field, andN
is the normalized carrier density. The parameters are:
k is the cavity losses,α the linewidth enhancement
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factor, G = N/(1 + ε|E|2) the optical gain (where
ε is the gain saturation coefficient),γ the feedback
intensity,ωo the optical frequency without feedback,
andτ is the round-trip time in the external cavity.j

is the normalized injection current, andτn is the car-
rier lifetime. ξ(t) is a complex Gaussian white noise,
and D measures the noise intensity. Since the reso-
nance effect reported in this paper occurs for large
noise levels (larger than the typical value of the rate of
spontaneous emission), we consider a noise term that
represents externally injected incoherent light (and
therefore, the noise term does not depend on the num-
ber of carriers in the active medium). Although the
deterministic model does not include multiple longitu-
dinal modes, or multiple reflections in the external cav-
ity, it describes qualitatively well many of the observed
phenomena, over a wide range of parameter values[8].

The fixed points of(1) and (2)can be written as
E(t) = Ei exp[i(ωi − ωo)t ] and N(t) = Ni , respec-
tively. The frequenciesωi are the solutions of

ωτ − ωoτ + γ τ
√

1 + α2 sin(ωτ + arctanα) = 0,(3)

and are shifted positively and negatively with respect
to ωo. The carrier density and field amplitude of a
fixed point are functions ofωi . For increasing feedback
pairs of fixed points appear though saddle-node bifur-
cations, and each initially stable fixed point undergoes
a quasiperiodic route to chaos. The two frequencies
that appear in the route to chaos are the same for all
the fixed points. One is nearly equal to the frequency
of the relaxation oscillations of the solitary laser,fro,
and the other is nearly equal to the external-cavity fre-
quency,fext = 1/τ .

The chaotic attractors are localized in phase space
around the destabilized fixed points. If the feedback
level is not too large, the coexisting attractors are
widely separated in phase space. Higher feedback
increases the volume of the attractors, inducing a
deterministicmerging of the ruins of several attractors
to form a global attractor. In this global attractor the
trajectory traverses various ‘attractor ruins’, spend-
ing a certain amount of time in the vicinity of an
attractor, before jumping to another. The jumps are
self-triggered by the dynamics, without the need for
the presence of external noise or parameter variations.

The dynamics is a form ofchaotic itinerancy[9],
which consists of the successive visit of different
manifolds (with a chaotic dynamics within each of
them), persisting for a time much longer than the tran-
sition time from one another. For low injection current
and moderate feedback the laser exhibits excitable
behavior, with random, abrupt, intensity dropouts
followed by gradual, deterministic recoveries[10].
The dynamics ofEqs. (1) and (2)in this regime is a
form of chaotic itinerancy with a drift[11], where the
trajectory traverses the attractor ruins with a definite
direction in phase space towards the fixed point with
maximum gain.

Here we chose parameters such that the feedback
level is slightly lower than the feedback at which
deterministicattractor merging begins. In the absence
of noise, which attractor the trajectory evolves to in
its long-term behavior depends only on the initial con-
ditions. Noise levels above a threshold value induce
jumps among the attractors (stochasticattractor merg-
ing). The injection current is chosen large enough such
that the jumps are random in direction.

Fig. 1(a) shows a typical stochastic trajectory,
plotted in the plane formed by (�φ, |E|2), where
�φ = φ(t) − φ(t − τ) is proportional to the laser
frequency averaged over a timeτ (φ is the phase of
the complex fieldE), and|E|2 is proportional to the
laser intensity.Fig. 1(b) illustrates the time evolution
of the phase delay, where the attractor jumps can be
clearly distinguished.

The effect of noise on a stochastic trajectory is
shown in Fig. 2. For low noise (Fig. 2(a)), the tra-
jectory might spend a large amount of time in an
attractor before noise induces a jump. Larger noise
levels induce more frequent jumps (Fig. 2(b) and (c)),
and the mean residence time on an attractor dimin-
ishes. For even larger noise the dynamics becomes
increasingly noisy, until there is almost no structure
present in the trajectory.

Fig. 3 shows the power spectrum of�φ(t), for
the same parameters and noise levels asFig. 2.
The frequencies appearing in the spectra are the re-
laxation oscillation frequency,fro ∼ 3.5 GHz, and
the external-cavity frequency,fext ∼ 0.1 GHz, and
their harmonics. The investigation of the spectra was
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Fig. 1. (a) Global attractor created by noise-induced jumps. (b) Time evolution of the phase delay. The parameters arek = 500 ns−1,
τn = 1 ns,α = 3, j = 2, ε = 0.003, γ = 2 ns−1, τ = 10 ns,ωoτ = 6 rad, andD = 0.0225 ns−1.

motivated by the conjecture put forward by Arecchi
and co-workers[12], that a multistable system with
fractal basin boundaries disturbed by noise (such that
attractor jumping occurs), exhibits a 1/f α spectrum at

Fig. 2. Typical stochastic trajectory: (a)D = 0.0025 ns−1; (b) D = 0.0225 ns−1; (c) D = 0.09 ns−1. All other parameters as inFig. 1.

low frequencies, withα ∼ 0.5–1.5. The exact condi-
tions that give rise to a low-frequency spectral diver-
gence are still not fully clarified[13], but experiments
and simulations suggest that some ‘weak stability’ in
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Fig. 3. Power spectrum of�φ(t), for the same parameters and
noise levels as inFig. 2. The spectra were calculated averaging
over 100 trajectories with different noise realizations.

the attractors is required. A 1/f α spectrum was found
in experiments with electronic circuits and lasers[12],
and more recently, in simulations of a multiattractor
map[14].

The spectra shown inFig. 3 are all well fit by
a Lorentzian, with a flat low-frequency part, and a
1/f 2 high-frequency asymptotic tail. A nontrivial
low-frequency spectrum was not observed, perhaps
because for the feedback level considered the attrac-
tors of the noiseless system are stable. For a slightly
higher feedback level (for which there is deterministic
attractor merging), the spectrum of�φ(t) (illustrated
in Fig. 4) changes quantitatively, being well fit, at low
frequencies, by a power law 1/f α with α ∼ 1.3.

Next, the statistics of the residence time in an attrac-
tor is investigated as a function of the noise intensity.
The time interval between two consecutive jumps was
determined by approximating the jumps as instanta-

Fig. 4. Power spectrum of�φ(t) when deterministic attractor
merging begins. The parameters areγ = 2.2 ns−1, D = 0 and the
rest are as inFig. 3.

neous events. To determine the time at which a jump
occurs, at every step of the integration the value of
�φ was averaged over a time window of a few oscil-
lation periods (typically, one to three oscillation peri-
ods). If the trajectory is in the vicinity of theith fixed
point, 〈�φ〉 ∼ (ωi − ωo)τ . Therefore, at each step of
the integration the label ‘i’ of the attractor was deter-
mined, and comparing with the label in the previous
step, it was established if a jump occurred. The time
window over which the phase delay was averaged had
to be short enough to accurately detect the fast jumps,
but not too short to detect ‘false jumps’, due to the
oscillations of�φ(t) when the trajectory evolves in
the vicinity of an attractor.

To obtain a good statistics, we had to compute a
large number of jumps for each noise level. We inte-
gratedN1 trajectories (with the same parameter val-
ues, initial conditions, and noise intensity, but distinct
noise realizations), a time long enough such that in
each trajectory,N2 jumps occurred. In this way, we
obtained a total ofN1N2 jumps for each noise level.
Since the jumps are more frequent for large noise, for
low noise it was necessary to integrate the trajectory
a long time, to obtain the desired number of jumps.
In the following, the results shown are evaluated from
samples of more than 106 jumps.

Fig. 5 shows the probability distribution,P(I), of
residence times for increasing noise.P(I) decreases
exponentially for large residence times (for low noise
there is a large spread in the values ofI , and the ex-
ponential decay for largeI is not seen inFig. 5(a)).
For short residence times,P(I) exhibits a multipeaked
structure which depends on the noise level. On increas-
ing the noise level from small up to large values,P(I)

goes from a distribution with minimums (or ‘gaps’)
for values ofI that are multiple ofτ , to a distribution
with maximums for values ofI that are multiple ofτ .
The peaks are superimposed onto an exponentially de-
caying background, which is weak for low noise, but
that grows and hides the peak structure for large noise.

For low noise, the gaps ofP(I) at I ∼ nτ are
due to the deterministic dynamics on an attractor and
can be understood by considering the moment when
the trajectory can jump from one attractor to another.
In a single attractor the trajectory spends some time



C. Masoller / Physica D 168–169 (2002) 171–176 175

Fig. 5. Probability distribution of short residence times: (a)
D = 0.0025 ns−1; (b) D = 0.0225 ns−1; (c) D = 0.04 ns−1; (d)
D = 0.09 ns−1; (e) D = 0.16 ns−1; (f) D = 0.25 ns−1. All other
parameters as inFig. 1.

orbiting around the destabilized fixed point, until it
reaches the neighborhood of the fixed point. Then,
the trajectory traverses the vicinity of the fixed point,
and starts oscillating again. This process, in which the
trajectory is orbiting around the fixed point, or is in
the vicinity of the fixed point, keeps repeating with
a period∼τ . The noise-induced jump to an attractor
with lower �φ usually occurs in the middle of the
stage in which the trajectory oscillates around the fixed
point (Fig. 6(a)), while the jump to an attractor with
larger �φ occurs at the end of the oscillating stage
(Fig. 6(b)). Therefore, for low noise, residence times
that are multiple ofτ are less probable.

For larger noise, the deterministic dynamics on an
attractor is mostly washed out by the noise, and a
jump can occur at any time (Fig. 6(c) and (d)). For
even larger noise, the residence timesI ∼ nτ become
increasingly probable. This unexpected feature is
caused by the delayed feedback loop, and can be

Fig. 6. Typical attractor jumps: (a), (b)D = 0.0025 ns−1; (c), (d)
D = 0.09 ns−1.

understood qualitatively in the following terms: a
fluctuation strong enough to trigger a jump, due to
the delay term in (1) is re-injected in the system and
might induce another jump, one or few delay times
later. Therefore, with increasing noise residence times
multiple of τ become increasingly probable.

Similar peaks inP(I) are found in stochastic
resonance[15], and the strength of the peaks (once
the exponential background was subtracted) is used to
quantify the resonance.Fig. 7 shows that the strength
of thenth peak achieves a maximum at a certain level
of noise,Dopt. Dopt decreases with the indexn of
the peak, and this can be interpreted in the following

Fig. 7. Peak strengthsP1 (solid), P2 (dashed),P3 (dotted), andP4

(dash-dotted), as a function ofD. The parameters are as inFig. 1.
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terms: the mean residence time〈I 〉 diminishes with in-
creasing noise, and the trajectory does not stay in an at-
tractor long enough to jump out of it due to the delayed
effect of the fluctuation that induced the original jump.

In conclusion, the effect of noise was studied nu-
merically in a semiconductor laser with optical feed-
back from a distant reflector. The major finding of the
analysis is a resonant behavior in the noise-induced
attractor jumps, which is measured by the residence
times probability density.P(I) exhibits a structure of
peaks at multiples of the delay time, and strength of
the peaks reaches a maximum for an optimal level
of noise. These results are interpreted in terms of the
interplay of noise and the time-delayed feedback loop.

It is important to remark the difference between
the resonance effect reported in this paper and
well-known phenomenon of coherence resonance
(see, e.g.,[2,16]). The resonance reported here is due
to the existence of a feedback loop with a charac-
teristic delay time, which is absent in the physical
mechanism of coherence resonance.

Time-delayed systems are infinite dimensional sys-
tems, and there are important physical and biological
models with time delays. Our results suggest that
time-delayed dynamics, typical for instance in neu-
ronal processes, might introduce noise-induced phe-
nomena not found in simpler models of such systems.
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