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Departamento de Astronomı́a, Facultad de Ciencias, Iguá 4225, 11400 Montevideo,
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ABSTRACT

The main goal of this work is to analyze the possible dynamical mechanisms

that dominate the motion of the HD 12661 extrasolar planetary system. By an

analytical approach using the expansion of the disturbing function given by El-

lis & Murray (2000) we solve the equation of motion working in a Hamiltonian

formulation with the corresponding canonical variables and by means of appro-

priate canonical transformations. Comparing this results with a direct numerical

integration we can conclude that the system is dominated by a pure secular evolu-

tion very well reproduced with a disturbing function including at least sixth order

terms in the eccentricities. Because of the uncertainties in the orbital elements

of the planets, we also contemplate the occurrence of mean-motion resonances in

the system and analyze possible contribution from these resonant terms to the

total motion.

Subject headings: canonical variables, celestial mechanics, extrasolar planets,

secular evolution.

1. Introduction

There are some characteristics of the extrasolar planetary systems that make them dif-

ferent from the solar system, like the presence of massive planets close to the central stars

(i.e, small values of semimajor axis) and with large values in the orbital eccentricities. Large

eccentricities and small semimajor axis are the result of early migration processes where the

planets were driven by tidal interaction with the disc where they were formed (Papaloizou

2003). Also, preliminary orbital determinations suggest the existence of resonant systems

like Gliese 876 and HD 82943 with two planets locked in a 2:1 mean-motion resonance, 55

Cnc (3:1), 47 UMa (7:3)(Beaugé & Michtchenko 2003, Hadjidemetriou 2002). These charac-

teristics make classical perturbation theories originally developed for the solar system, like
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the Lagrange-Laplace secular theory, very limited to deal with the dynamics of extrasolar

planets.

The system HD 12661 that we study here is composed by two massive planets around a

central star with a relatively low semimajor axis ratio α ' 0.29 (see Table 1). Some attempts

have been done to explain the dynamical behavior of this system. In most of them, stabil-

ity analysis are considered estimating the dynamical limits on the orbital parameters that

provide quasi-periodic motions of the system (Goździewski 2003). The difficult to get the

desired accuracy in the orbital fits in most of the extrasolar planets produces very important

differences between similar works. This is also the case for HD 12661 where there are differ-

ent results published according to the orbital elements taken. The system was supposed very

affected by the 2:11 or 1:6 mean-motion resonance according to data published by Fischer

et al. (2003) or new fits in the same year respectively (Goździewski and Maciejewski 2003,

Ji et al. 2003). There are few analytical treatments applied to this particular case, unless

the study by Lee & Peale (2003) (see also Nagasawa et al. 2003 for a low order treatment

in a cosmogonic framework) where they give an approach by means of the so called octopole

secular theory. In that formulation using Jacobi coordinates the authors use a Hamiltonian

function including up to third order terms in α and some fourth order terms in eccentricities.

They find a qualitatively good description for the system but severe discrepancies between

the frequencies predicted by the theory and the ones computed from the numerical integra-

tion of the full equation of motion. In this paper we present a semi-analytical theory that

explains the dynamical evolution of the system.

The present paper is organized as follow: In section 2 we present the actual data of

the system, perform a numerical integration using the orbital fits by Debra Fischer (2004,

private communication) and discuss the possible effects of the main mean motion resonances

near the system. The canonical variables necessary to work in an analytical framework are

presented in section 3. In section 4 we compute the value of the disturbing function to

several orders in eccentricities through the Ellis & Murray (2000) expansion and investigate

the contributions of possible mean-motion resonances. In section 5 we present and resolve

our secular model and compare with numerical integrations. Discussion and finals remarks

are devoted to section 6.



– 3 –

2. The HD 12661 Extrasolar System

Some authors considered the possibility of this system being strongly affected by a mean

motion resonance. In particular Lee & Peale (2003) suggested that discrepancies between

their octopole model and the direct numerical integration could be due to the 2:11 resonance.

Different orbital determinations according to different data sets and methods (Lee & Peale

2003, Goździewski & Maciejewski 2003) lead to substantial differences in the semimajor axis

of the exterior planet. On the contrary, the semimajor axis of the internal planet seems to be

well determined according to the successive orbital determinations. For illustration purposes

at Figure 1 we show the approximate position of the most important exterior mean motion

resonances deduced from the simple relation a = a1(p/(p + q))2/3 together with the most

probable location of the exterior planet according to Table 1. The parameter p is the degree

of the resonance and is taken positive for interior resonances and negative for exterior ones.

The parameter q, always positive, is the order. The width of each resonance is not indicated,

we refer to Goździewski & Maciejewski (2003) for a numerical estimation of the width of the

most important resonances. The exterior planet is very near the 2:13 and 3:19 resonances,

but both are very high order resonances. In an expansion of the disturbing function for quasi

planar orbits the most important resonant terms are of order q in the eccentricities. Then

that terms are of order 11 and 16 in eccentricity respectively and for small and medium

eccentricity values as in this particular system in principle we cannot expect those terms

to became relevant for the dynamical evolution of the system. But, in spite of not being

important for the approximate description of the system, some of those slight effects could

be detected with numerical methods like MEGNO (Cincotta & Simó 2000) as was clearly

shown by Goździewski & Maciejewski (2003). We will discuss more profoundly this point at

section 4.

We perform a numerical integration of the HD 12661 extrasolar planetary system sup-

posed coplanar, with sin i = 1 and with a central star mass of 1.07M¯. The main goal is to

compare the results with an analytical model to find the dynamical mechanisms that dom-

inate the system. The orbital elements of HD 12661 had recently changed from their last

values (Fischer et al. 2003). The astrocentric osculating orbital elements used here to make

the numerical integrations are presented at Table 2 and were deduced from Table 1 assuming

the radial velocity fit for the planet c better emulate an orbit referred at the baricenter of

the star and planet b as suggested by Lissauer & Rivera (2001). The numerical integrator

used was MERCURY (Chambers 1999).
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Fig. 1.— Approximate localization of the exterior mean motion resonances |p + q| : |p| near

the exterior planet. Higher order resonances should have less dynamical signatures. It should

be kept in mind that each resonance covers some range ∆a that is not indicated here. The

semimajor axis of the exterior planet was taken from Table 1 which is approximately equal

to its mean semimajor axis.

Planet P (days) K(m/s) e ω(deg) Tp(MJD) m(MJup) a(AU)

HD 12661b 262.37 75.02 0.34 296.6 9952.267 2.33 0.821

Error(+/-) 0.32 0.85 0.02 2.6 3.6 0.02 0.001

HD 12661c 1681.7 29.9 0.06 102.8 10314.221 1.83 2.834

Error(+/-) 14.2 0.93 0.02 77.9 641.7 0.06 0.016

Table 1: Parameters P , K, e, ω and Tp are from two-Kepler fits by Debra Fischer (2004,

private communication). The errors were estimated by a Monte Carlo method. Parameters
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m and a were deduced following formulae 2,4,6 and 8 from Lee & Peale (2003) assuming

sin i = 1 and a stellar mass of 1.07M¯.

Planet a(AU) e ω(deg) M(deg)

HD 12661b 0.821 0.34 296.6 136.7

Error(+/-) 0.001 0.02 2.6 4.9

HD 12661c 2.855 0.066 102.1 0.7

Error(+/-) 0.016 0.02 77.9 137

Table 2: Astrocentric osculating orbital elements deduced from Table 1 for the epoch JD

2450314.22

The Figures 2 and 3 show the time evolution of the astrocentric semi-major axes and

eccentricities for the two planets. We can see the periodic evolution in eccentricities show-

ing an almost perfect coupling between them, i.e both elements oscillates with the same

period. This is a simple consequence of the conservation of the total angular momentum of

the system, which is approximately equal to the angular momentum of the planets because

the angular momentum of the star with respect to the barycenter is negligible. Then, the

summation of the angular momentum of the planets is almost conserved and this explain the

coupling between the eccentricities. A rigorous explanation can be found in Ferraz-Mello et

al. (2004). On the other hand, the semi-major axis a2 shows very small oscillations with

frequency equal to the synodic frequency of the planetary system. These short period oscil-

lations in the osculating astrocentric a2 almost disappear when working in a reference system

with center at the baricenter of the star and the first planet. It seems that the dynamics is

mainly driven by a typical secular behavior. However, this is only a suggestion because we

must demonstrate it by means of the analysis of the disturbing function for this particular

system, isolating the secular terms in a particular development, resolving the equation of

motion and then comparing the results with the ones obtained by the direct numerical inte-

gration.

From Figure 3 we see that the eccentricities oscillate in the ranges 0.14 < e1 < 0.34 and

0.04 < e2 < 0.27 reaching periodically high eccentric orbits. By means of a spectral analysis

(Gallardo & Ferraz-Mello 1997) we found a value of Te = 26150 yrs for the period in the

time evolution of the eccentricities. This parameter will serve as reference for the results

obtained here and those calculated after in an analytical context.
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Fig. 2.— Time evolution for the astrocentric semi-major axes. Initial orbital elements taken

from Table 2. Elapsed time from the epoch.

We refer the reader to Figure 7 were we show the evolution in the plane (e1 cos ∆$,

e1 sin ∆$), where ∆$ ≡ $1 −$2 is the difference of longitude of pericenter of the planets

and e1 is the eccentricity of planet b. These variables represent a modification of the classical

(k, h) ones that appear in the usual literature (Murray & Dermott 1999). The vector going

from the origin to any point of the picture gives the value of the eccentricity at this point. We

see in the figure that the angle ∆$ exhibit a libration around π, meaning that the pericenters

are averagely anti-aligned. In fact, this was the first discovered extrasolar system showing

that behavior (Lee & Peale 2003). We mention again that this behavior as the previous found

results will be contrasted in the next sections with the corresponding analytical model to deal

the dynamics of the system. Moreover, we will try to answer if it is the dynamical evolution

explained by a pure secular effect or on the contrary it is dominated by another mechanism

like a mean-motion resonance. Now let us work with the mathematical formulation of the

problem.
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Fig. 3.— Time evolution for the eccentricities. Initial orbital elements taken from Table

2. The coupling between eccentricities is a natural secular behavior for systems with two

planets. Elapsed time from the epoch.

3. Hamiltonian Equations for the Two-Planet Problem

In this section we will obtain the differential equations describing the dynamical evolu-

tion of the system. We can use the Langrange’s planetary equations but we prefer to follow

a Hamiltonian formulation as is explained in Morbidelli (2002) or Ferraz-Mello et al. (2004).

Although it seems to be an easy problem, most papers referred to the three-body problem

in celestial mechanics deal with the so-called restricted three-body problem, where only two

bodies have finite masses. Here, we begin with a presentation of the general three-body prob-

lem and then define the adequate canonical variables necessary to work in the Hamiltonian

formalism.

Let us consider the system composed by three objects (a central star plus two planets)

with masses mi (i = 0, 1, 2) subject to their mutual gravitational attraction. Let O the

barycenter of the system and Ri, Pi = miṘi the coordinates and linear momenta in the
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barycentric reference frame, i.e respect to O. These variables are canonical then we can

write the Hamiltonian of the system in the form:

H =
1

2

2∑
i=0

P 2
i

mi

−G

2∑
i=0

2∑
j=i+1

mimj

∆ij

(1)

where ∆ij =| Ri − Rj | is the relative distance between the bodies and G the constant of

gravitation. It is not other thing than the sum of the kinetic and potential energy of the

system, H = T + U . This system has nine degrees of freedom (i.e, 3(N + 1) in the general

N -planet plus star problem) and using the adequate sets of canonical variables it can be

reduced to six taking into account the conservation laws concerning the inertial motion of

the barycenter.

3.1. Canonical Astrocentric Variables

We will follow here the Poincaré’s reduction of degrees of freedom by means of a canon-

ical transformation. It consist in taking the coordinates and momenta as

ri = Ri −R0 pi = Pi i = 1, 2 (2)

The choice of the variables is such as the coordinates are the astrocentric position vectors

and the linear momenta are the same that those in the barycentric formulation. To complete

the transformation we need to define

r0 = R0 p0 =
2∑

i=0

Pi (3)

Now (ri,pi), (i = 0, 1, 2) are canonical and we can express the above Hamiltonian in the new

variables. To do this, we split the whole Hamiltonian in the sum of the kinetic and potential

energy and express each one in the new variables, then we add both parts and obtain the

final expression. Doing that we see that r0 do not appear in the Hamiltonian, so it is an

ignorable variable. Therefore p0 is a constant that we can set equal zero by construction

(the linear momentum of the system). In this way, we reduce the degrees of freedom from

nine to six (see details in Ferraz-Mello et al. 2004, Laskar & Robutel 1995 and Morbidelli

2002):

H = H0 + H1 (4)
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H0 = T0 + U0 =
2∑

i=1

( p2
i

2βi

− µiβi

ri

)
(5)

H1 = T1 + U1 =
2∑

i=1

2∑
j=i+1

(
− Gmimj

∆ij

+
pi.pj

m0

)
(6)

where

µi = G(m0 + mi) βi =
m0mi

m0 + mi

(7)

and in analogy to Laskar & Robutel (1995) we will call canonical astrocentric variables to

the (ri,pi), (i = 1, 2). We can see that H0 is of the order of the planetary masses mi while

H1 is of order two with respect to this masses. Then H is composed of the unperturbed

contribution H0 and the disturbing part H1 (also called Disturbing Function, arising from the

potential energy of the interaction between the planets), where the direct and indirect terms

are identified. In contrast with the classical description of the disturbing function where

the indirect part depend on the positions of the planets, here it depends on the velocities

through the p’s.

We also see that in the expression 5, H0 is composed by two terms of the form

Fi =
( p2

i

2βi

− µiβi

ri

)
=

( p2
i

2βi

−G
m0mi

ri

)
(8)

Each Fi is the Hamiltonian of a two-body problem in which the mass mi is moving around

the mass m0. One of the Hamilton equations generated by H0 is

ṙi =
pi

βi

(9)

Then in analogy to the two body problem we can define orbital elements from (r,p) in spite

of being referred to different origins (r belonging from an astrocentric reference frame and

p from a barycentric reference frame). The trouble with this is that the actual value of ṙi

will have a contribution from H1 in the equation of motion:

ṙi =
∂H0

∂pi

+
∂H1

∂pi

(10)

and in consequence the actual astrocentric velocity ṙ will not follow the direction given by

p, and that means we are defining ellipses which are not tangent to the real trajectory.

These ellipses they no more represent ”osculating” ellipses. We recall that osculating means

”kissing” or tangent ellipses. This particularity, as suggested by Laskar & Robutel (1995),

is probably the reason that explain their few usage. We will call canonical orbital elements
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to the orbital elements defined from the astrocentric canonical variables to distinguish from

the usual osculating orbital elements.

An alternative to the canonical astrocentric variables from Poincare are the Jacobi

coordinates used by Lee & Peale (2003) in their octopole model. For hierarchical planetary

systems the orbital elements defined from Jacobi coordinates have the advantage of exhibiting

lower amplitude short period perturbations.

3.2. The Canonical Orbital Elements

Once we know the (r,p) it is possible to reconstruct the orbit of each planet considering

the unperturbed part of the whole Hamiltonian. If the problem is expressed as the perturba-

tion of an integrable Hamiltonian H0, it is natural to use action-angle variables as canonical

coordinates to resolve the corresponding Hamilton-Jacobi equations. In that context it is

classical to define the Delaunay variables as action-angle variables and construct the corre-

sponding orbital elements from them. However here we have H0 defined as a function of

pi which depends of the reduced mass βi. So the corresponding Delaunay variables will be

affected by this modification, and for the planar case we obtain:

λi Λi = βi
√

µiai (11)

−$i Γi = −Λi(1−
√

1− e2
i ) (12)

(i = 1, 2), where µi, βi are defined as before in (7) and a, e are the canonical orbital elements

introduced by the definitions (for each planet)

a =
µr

2µ− rw2
(13)

e =

√(
1− r

a

)2

+
(r.w)2

µa
(14)

where w is not the astrocentric instantaneous velocity but w = p/β. The angles λ and $

for each planet are obtained with the usual equations for the planar problem. We refer to

Ferraz-Mello et al. (2004) for more details.

A very important simplification occurs when considering the secular part, HSec, of H.
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As can be shown (Ferraz-Mello et al. 2004);

∂HSec

∂pi

= 0 (15)

there is no contribution to ṙ from HSec and then from the equation of motion

ṙi =
pi

βi

(16)

which implies wi = ṙi so there is no difference between the canonical orbital elements and

usual astrocentric Keplerian elements. We remark: when studying the secular evolution of

the system, the usual Keplerian orbital elements are equal to the canonical orbital elements.

In both cases we must understand they are mean elements because we are dealing with the

secular terms of the disturbing function.

4. The Disturbing Function for Moderate Eccentricities

In order to obtain a good analytical description of the system it is necessary to work with

an adequate expression for the disturbing function which is part of the Hamiltonian of the

system. As numerical integrations show, the planetary eccentricities of this system can reach

values as high as 0.34. A disturbing function truncated to second order in the eccentricities

most probably will fail in the attempt to describe correctly the dynamical evolution of this

system. Due to the same reason the Lagrange-Laplace secular planetary theory obtained by

a second order perturbing function with simplified Lagrange’s planetary equations (Murray

& Dermott 1999, Morbidelli 2002) neither can be applied. In this section we will explore

how many terms we need to consider for the disturbing function. This will be done looking

at the contribution given by terms of successive higher order.

The disturbing function can be expanded in several ways. The reader can refer to Ellis

& Murray (2000) for a review on classical expansions and to Beaugé & Michtchenko (2003)

for an alternative viewpoint for the expansion which can be applied even when the orbits

intersect. In this paper we will use the expansion given by Ellis & Murray (2000). An

alternative expansion can be found in Laskar & Robutel (1995).

Assuming planar orbits the disturbing function for both planets will depend on (α, e1,

e2, λ1, λ2, $1, $2) and also on the masses of the three bodies. It can be shown via averaging

methods that to first order in the planetary masses the Hamiltonian which describe the long

term evolution of the system (i.e. the secular evolution of the system) can be obtained from

the secular part of the disturbing function, that means, the terms not depending on the

quick varying mean longitudes. It is also possible to show the secular part will be a function
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of (α, e1, e2, ∆$) (Brouwer & Clemence 1961).

To determine the order of the secular part of the disturbing function necessary for a

correct description of the long term evolution of the system we have plotted at Figures 4

and 5 the secular disturbing function as a function of e1 for two values of e2 (0.1 and 0.4)

and assuming ∆$ = π. The value of α was taken equal to the nominal one from Table 1.

The different curves represent the expansion of the secular part of the disturbing function

truncated at different orders. For the case in which e2 is small the curves corresponding to

truncation to 4, 6 and 8 order are coincident, then we can expect an expansion truncated at

fourth order will give enough precision. But, when e2 is greater a sixth order or eight order

expansion will be required for a correct analytical description.

We also plotted the contribution from the terms corresponding to the resonance 1:6

(evaluated at λ1 = 0 and λ2 = π) which is distinguishable for the case e2 = 0.4 at the higher

values of e1 (Fig. 5). It is important to stress that the system never gets so high values

for both eccentricities simultaneously. This is a very small contribution which a precise

numerical analysis like MEGNO could detect. In a similar way we also computed the contri-

bution of the terms corresponding to the 2:13 resonance. We found that the contribution of

these terms is completely negligible and of order 10−7 in the same relative units of the figures.

From this analysis we can conclude that it is necessary at least a sixth order expansion

for the secular disturbing function for describing the secular evolution of the system. We also

can conclude that for the most probable values of α and for the range of values exhibited by e1

and e2 we cannot expect evident dynamical effects associated with mean motion resonances.

As shown in section 2, according to the observational data, there are no low order resonances

near the system and then there is no reason for considering resonant terms. Anyway if an

eight order secular disturbing function do not reproduce the results obtained by the numerical

integration of the full equations of motion we will have to consider those resonant terms.

5. Secular Evolution of HD 12661

Once we test the Ellis & Murray development of the disturbing function, our task now

is to use this expansion to make an analytical exploration of the dynamics of the HD 12661

extrasolar planetary system. We suppose that the system is not locked in a mean-motion
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Fig. 4.— The secular part of the disturbing function in relative units truncated at different

orders in the eccentricities and evaluated for e2 = 0.1 and ∆$ = π. The contribution from

terms of orders sixth and eight are negligible. The resonant terms were evaluated at λ1 = 0

and λ2 = π.

resonance, so the dynamics will be dominated by the secular evolution of the system. Then

we will compare the results obtained by this model with the numerical integration of the full

equations of motion. We will begin with the definition of the adequate canonical variables

to deal with the secular evolution in order to integrate then the corresponding Hamilton

equations of motions.

5.1. Canonical Variables for the Secular Dynamics

We want to explore the dynamical behavior of the system studying the time evolution

of the orbital elements of the planets. To do this, we first need to define and resolve the

Hamilton equations of motion. We will work based on the canonical variables defined in
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orders in the eccentricities and evaluated for e2 = 0.4 and ∆$ = π. The contribution from

terms of orders sixth and eight are appreciable. The resonant terms were evaluated at λ1 = 0

and λ2 = π

section 3 with some modifications that become adapted to deal with the secular evolution

(Michtchenko & Ferraz-Mello 2001). Moreover, working in a secular context we need to

express the development of the disturbing function in terms of the mean variables. These

are:

λi Λi (17)

∆$ = $1 −$2 K1 = Γ1 (18)

φ = −$2 K2 = Γ1 + Γ2 (19)

where i = (1, 2) and Λi, Γi defined as before at (11) and (12). Since we have a secular

Hamiltonian, it does not depend on the mean longitudes λi, so the corresponding momenta
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Λi are two constant of motion that we call Λ∗i . This shows from (11) that the semi-major axes

keep constant during a purely secular evolution. Moreover, the averaged planar Hamiltonian

has a φ dependence only trough ∆$ (see Brouwer & Clemence 1961), so φ is a cyclic

coordinate and therefore their momenta K2 is also a constant of motion related to the

angular momentum of the system that we call K∗
2 . With this simplifications, we will have a

secular Hamiltonian:

HSec = −
2∑

i=1

µ2
i β

3
i

2(Λ∗i )2
−RSec(∆$,K1, K

∗
2 , Λ

∗
1, Λ

∗
2) (20)

where RSec is the secular part of the disturbing function expressed in terms of the canonical

variables. This means that the averaged planar three-body problem it has one degree of

freedom and therefore it is integrable. Therefore, the secular solution of the system it has

an important consequence: the solutions for ∆$ and K1 are periodic functions in the time

with the same period. So, it means that the secular evolution is well described by a single

frequency which its signature must be evident in the time evolution of the eccentricities and

perihelion longitudes of both planets. The corresponding equations of motion for the pair

(∆$, K1) are:

∆$̇ =
∂HSec

∂K1

K̇1 = −∂HSec

∂$
(21)

The two equations (17) for λi are trivial and from them we obtain the two constants

Λ∗i knowing the values for the initial semi-major axis. The last equation (19) is also trivial

and we get the value of K∗
2 setting HSec(∆$, K1, K

∗
2 , Λ

∗
1, Λ

∗
2) = H∗ for a given H∗ that

can be calculated from the initial conditions for the system. The initial conditions for the

secular system (initial mean orbital elements) are obtained from a short time span numerical

integration of the full equations of motion. So, resolving the equations (21) we obtain the

solutions for the canonical variables ∆$(t) and K1(t). After that, we can use the inverse

transformation to obtain the solution in terms of the mean orbital elements to describe the

temporal secular evolution of the individual orbital eccentricities and relative longitude of

pericenter of the planets e1(t), e2(t) and ∆$(t). As we noted in section 3, the mean orbital

elements are coincident with the canonical orbital elements when the system is driven only

by secular terms. We refer also to Michtchenko & Malhotra (2004), a semi-analytical work

where they study the secular dynamics of a system compound by two massive planets trying

with a similar secular model presented here. However, the dynamical analysis it is done

without any particular development of the disturbing function, i.e the the study is valid for

any value of the eccentricities.
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5.2. Solutions for Successive Higher Orders

We will numerically solve the secular equation of motion (21) using expansions of suc-

cessive higher orders in the disturbing function RSec that appears in the secular Hamiltonian

(20). We perform four different development in HSec, using the disturbing function truncated

to orders two, four, six and eight.

For each expansion we find the time evolution of the canonical variables (∆$, K1)

and the (mean) eccentricities of the planets constructed from them. Both ∆$ and K1 are

periodic functions with the same frequency and in fact this is the frequency present in the

one degree of freedom secular problem. We compute the value of the oscillation period of the

eccentricities Te and compare with the values obtained in the numerical integration of the

full equations at section 2. To compute Te we have used the same algorithm that in section

2. The results are presented at Table 3. We remark that ∆$ is a periodic function with the

same period that the eccentricities.

Order Tmod
e (yrs) Tmod

e − T num
e (yrs)

2 30970 4820 (18.4 %)

4 26760 610 (2.3 %)

6 26380 230 (0.9 %)

8 26350 200 (0.8 %)

Table 3. Oscillation period of the eccentricities from the analytical models compared with

the one deduced from the numerical integration of the full equations of motion.

We find that to order two the secular model fails in reproducing the oscillation period

and amplitudes. In fact, a secular evolution to order two it is equivalent to the Laplace-

Lagrange secular theory, specially adapted to systems with very low values in the eccentric-

ities. With the successive development to higher orders, the differences begin to decrease

until the convergence is reached with a sixth order expansion. Therefore we can say that

for this particular case, at least a sixth order secular Hamiltonian developed with the El-

lis & Murray expansion is necessary to describe the secular dynamical behavior of HD 12661.
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Fig. 6.— Time evolution of the eccentricities. Numerical integration (points) compared with

model (lines) including up to eight order terms in eccentricities.

Figure 6 shows the time evolution (for an eight order expansion) of the eccentricities

compared with the numerical integration of the full equations. Figure 7 shows for the same

expansion the evolution in the plane (k, h) compared also with the numerical integration of

the full equations. We note that the angle ∆$ = $1 −$2 presents a libration close around

π, so this shows and confirm the anti-alignment in the lines of periapses for this system.

There is an excellent agreement between the model and the numerical integration regard-

ing the periods and the amplitudes of the oscillation of the elements. We have reproduced

the numerical results through of an analytical model considering only a secular evolution of

the system.

We have explored the quality of the model in the space (a2, e2) inside the error region for

initial conditions near the nominal solution and leaving unchanged the other orbital elements
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Fig. 7.— Anti-alignment of pericenters. Comparison between numerical integration (points)

and model (lines) in the plane (e1 cos ∆$, e1 sin ∆$)

of the system. The results were similar to the one presented here being the differences

between secular model an numerical integration of the full equations of motion of the order

of 1% reaching the convergence at sixth or eight order in eccentricities.

6. Discussion and Conclusions

The dynamical evolution of planetary systems can be studied by means of the Lagrange’s

planetary equations, but if we are interested in using a Hamiltonian formalism it is necessary

to work with the adequate canonical set of variables. Two sets have been proposed in the

literature: Jacobi coordinates and the canonical astrocentric variables. When studying only

the secular evolution, the problem is simplified considerably because of the drop of the

indirect terms of the disturbing function.

The use of disturbing functions truncated to low order in eccentricities are not appro-
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priated for a correct analytical description of planetary systems with moderate eccentricities

like HD 12661. For this system in particular it is necessary at least a sixth order expansion

in eccentricities.

An obvious requirement is the convergence of the expansion of the disturbing function

which must be previously tested. For orbits that intersects, the Ellis & Murray expansion

must be substituted for example by the one given by Beaugé & Michtchenko (2003).

Assuming the present orbital data, with a sixth or eight order expansion of the disturbing

function the secular evolution of HD 12661 is very well reproduced and it is not necessary

to invoke resonant effects although it is very close to the 2:13 and 3:19 resonances. These

very high order resonances cannot affect the global dynamics of the system because these

resonant terms are vanishingly small but their signatures could be detected by numerical

analysis methods like MEGNO (Cincotta & Simó 2000).

The calculation and procedures described in this paper were also applied using the

orbital elements used by Lee & Peale (2003), where a2 was taken 2.56 AU. In that paper the

authors using the octopole model obtained an oscillation period of 21000 yrs contrasting with

the period of 12000 yrs given by the numerical integration of the full equations. Using our

approach with successive higher order expansions we obtained different oscillation periods

converging to a value. For a second order expansion we obtained an oscillation period of 22200

yrs similar as these authors. Using a four order expansion we obtained a period of 15600 yrs

and with a sixth order expansion we get 14500 yrs. No notorious improvements were obtained

using higher order terms. The same results were confirmed by Cristian Beaugé (2004, private

communication) using his expansion. Then we obtained a better secular description than

the octopole model but as these authors we also concluded that for those orbital elements,

and in particular for that value of α, there were a contribution from some resonant terms,

maybe 2:11 and or 1:6 (Fig. 1). However that contribution is notoriously smaller (2500 yrs)

than the one deduced from the octopole model (9000 yrs).

Theoretical analysis based on expansions truncated at small order in the eccentricities

(Zhou & Sun 2003, Lee & Peale 2003, Nagasawa et al. 2003) can give us a qualitatively

good description but fails in predicting the correct time evolution. The high eccentricities

of some planetary systems requires the use of higher order classical expansions or the use

of expansions suited for high eccentricities and even crossing orbits (Beaugé & Michtchenko

2003).

Further observations and reduction methods most probably will change the nominal

values for the orbital elements of this system. Then we can not pretend to have found the
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dynamical mechanism that drives the real system. But at least we have demonstrated that

to have an adequate analytical model we must take into account at least up to the sixth order

terms of the expansion of disturbing function. We can not accept either that the present value

for α is the definitive one. But taking into account the errors provided by the last orbital

determinations we can have an idea of the most important mean motion resonances that can

affect this system (Fig. 1). Having this present, we showed that high order resonances near

the system like 2:13 or 3:19 cannot affect significantly the dynamics of the system because

of the very negligible magnitude of those resonant terms. This is consistent with the results

of Goździewski & Maciejewski (2003) where there is no evident sign of these resonances in

their numerical analysis. The resonance 1:6 instead (Figs. 4 and 5) or less probably the 1:7,

could have appreciable signatures in the dynamical evolution for the appropriate values of

α (which is not the nominal case) specially for high enough eccentricities since the resonant

terms are proportional to eq being q the order of the resonance.

We are grateful to Debra Fischer for providing us the last orbital determinations and

to Cristian Beaugé for helping us in checking our results with his proper programs and for

fruitful discussions. We also acknowledge to an anonymous referee that pointed out some

important observations to the original version.
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Cincotta, P. M. & Simó, C. 2000, A&AS, 147, 205

Ellis, K. M., & Murray, C. D. 2000, Icarus, 147, 129

Ferraz-Mello, S., Michtchtenko, T. A., & Beaugé, C. 2004, to be published in ”Chaotic
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