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Two-layer stratified flows over abrupt topographic obstacles, simulating relevant situations in
oceanographic problems, are investigated numerically and experimentally in a simplified
two-dimensional situation. Experimental results and numerical simulations are presented at
low-to-intermediate Froude numbers for two different obstacles: one semicylindrical and the other
prismatic. In both cases, four different flow regimes downstream of the obstacles are found: �I�
subcritical flow, �II� internal hydraulic jump, �III� Kelvin–Helmholtz instability at the interface, and
�IV� shedding of billows. The critical values of the Froude number for the transition between
different regimes depend strongly on the shape of the obstacle. In regime �III�, we show that the
characteristics of the lee wave that appears past the obstacle can be explained with a theoretical
stability analysis. Almost independence of the vortex shedding frequency with upstream velocity is
observed and explained. © 2009 American Institute of Physics. �DOI: 10.1063/1.3110108�

I. INTRODUCTION

The interaction between topography and stratified flows
is a striking phenomena of interest for fundamental reasons
and for its relevance in practical problems.1–5 A challenging
task is to quantify the characteristic features occurring at the
interface of a stratified flow over an obstacle,6–9 a situation
very widespread in nature. In the atmosphere, for example,
the flow around buildings or mountains is particularly impor-
tant because such conditions are often related with high lev-
els of atmospheric pollution due to low wind speeds and
suppressed vertical mixing.10–12

In physical oceanography, the interaction of marine cur-
rents with topographic features, such as ocean banks and
coastlines, result in a complex system of circulation whose
characteristics are directly related to the Coriolis effect, cur-
rent speed, and the size of seamounts. In this case, observa-
tional,13–16 analytical,17–20 numerical,4,21,22 and previous
laboratory20,23,24 studies have suggested that the combination
of streamlines splitting, current intensification, and breaking
of internal lee waves, play a significant role as a mixing
source in the ocean.

It is well known that seamounts enhance biological pro-
ductivity and act over the ecological processes that deter-
mine the structure of local ocean life.25,26 The rich diversity
of geobiophysical scenarios has also attracted interest to un-
derstand the conditions for which generated lee waves break
down and produce turbulence and vertical mixing.27 In par-
ticular it is of interest to study mixing processes in small and

coastal banks28,29 and the influence of tides on these
processes.30

An important number of works present systematic mea-
surements in situ and a comparison with numerical models.
Farmer and Armi14 studied the role of small-scale instabili-
ties and mixing in flow establishment at Knight Inlet sill.
This fjord has a strong tidal flow which generates internal
waves propagating along a pycnocline on both sides of the
sill. This work led to a series of papers reporting different
issues and possible explanations for them.4,31–33 In particular,
the formation of a strong downslope jet flow past the ob-
stacle has received much attention. This phenomenon is of
interest also in the atmosphere context, where this kind of jet
flow is known as downslope windstorm.10 All these works
agree that larger-scale response can be sensitively dependent
on small-scale instabilities.

On the other hand, in,10 it was shown that Kelvin–
Helmholtz �KH� instabilities are responsible for the wind
pulsations in downslope windstorms, being three-
dimensional �3D� effects of secondary relevance. We focus
the present work on these instabilities, addressing an analysis
of the different regimes that appear downstream near the
obstacle. The effect of stratification and other parameters on
the downslope jet flow was considered by Lamb,33 maintain-
ing the topography fixed. In this work it has been shown the
influence of boundary layer separation and instabilities on
the emergence of a high-drag state, and a procedure to esti-
mate when and where flow separation can be expected was
also given. Here we shall consider the influence of the ob-
stacle shape on the jet flow and on the generation of internal
waves.

Considerable efforts have been dedicated to the upstream
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generation of solitary waves4,34–36 and the trapped wedge of
mixed fluid behind the sill. These works show that the re-
sponse of the fluid includes large-amplitude resonantly gen-
erated internal solitary waves propagating upstream. Up-
stream influence as a consequence of variable forcing has
been also widely discussed in theoretical analysis, laboratory
experiments, and numerical simulations of stratified flow.5,31

Flow separation by a topographic obstacle and the final stage
of vortex shedding in 3D orography has also received
attention.31,32,37 Note that in our setup, in contrast to Ref. 37
where vortex shedding is a consequence of the three dimen-
sionality of the flow, the dynamics is two dimensional.

Analytic theories for lee waves and hydraulic jumps usu-
ally assume that flow separation does not occur.1 However,
under suitable conditions the mainstream ceases to flow ap-
proximately parallel to the obstacle beyond a certain point
causing the phenomenon of separation and flow reversion.

In a similar way to the theoretical analysis, experimental
investigations studying the interaction between stratified
flows and topography are also mostly limited to the cases in
which the bottom surface is smooth.1,6,24 However, in a few
exceptions the role of abrupt obstacles is investigated. For
example, in the work of Aguilar and Sutherland9 the genera-
tion of internal waves by different periodic abrupt topogra-
phy is investigated. They showed that internal waves are
generated not only by flow over the hills but also by flow
over boundary-trapped lee waves and vigorous turbulence
created in the lee side of sharp-crested hills. Thus, it is of
interest to go deeper into the mechanisms of mixing over
abrupt obstacles in stratified flows.

The present paper compares experimental and numerical
results in the case of isolated abrupt obstacles, with those
obtained from hydraulic theories for smooth obstacles in or-
der to test their range of applicability. The experiments were
performed in such a way that the flow could be assumed two
dimensional. We used two layers of different densities, with
constant density inside each layer. In a previous work38 we
studied numerically and experimentally the different insta-
bilities developed in a two-layer stratified flow over a pro-
nounced obstacle. Here, we extend this previous work to
two-layer flows over prismatic and semicylindrical abrupt
obstacles focusing on the role of the geometry, flow separa-
tion and mixing mechanisms.

This paper is organized as follows. In Sec. II we briefly
review the treatment of two-layer flows using hydraulic
theory. In Sec. III we present the experimental setup. The
numerical simulations are given in Sec. IV. The results ob-
tained from the experiments and simulations and their com-
parison are given in Sec. V. In Sec. VI we present the results
of linear stability analysis of the flow past the obstacle. Fi-
nally, a summary and the conclusions are given in Sec. VII.

II. HYDRAULIC THEORY OF A TWO-LAYER
FLOW PROBLEM

Let us consider a linear theory for a flow consisting of
two layers of different densities �1 and �2��2��1� over a
fixed obstacle. Throughout this paper, subindices 1 and 2
correspond to the upper and lower layers, respectively. We

define a Cartesian reference frame with coordinates �x ,y ,z�,
where the flow is in the x direction and z is directed verti-
cally upward. As mentioned in Sec. I, we shall focus on
situations where variations in the y direction can be ne-
glected and the problem can be considered two-dimensional.
The depths of the layers are functions of x, as their thick-
nesses depend on the position where measured. Thus, the
depth of the upper and lower layers are d1�x� and d2�x�,
respectively, and the height of the obstacle is h�x�, as
sketched in Fig. 1. Far upstream, the depths are named
d1�x=0�=d10 and d2�x=0�=d20.

The mean velocities of the fluid in each layer are u1 and
u2. Let us assume that the fluid velocity is uniform far up-
stream, with u10=u20=U. In addition, we assume: �a� the
pressure is hydrostatic, �b� Boussinesq approximation, which
implies that �= ��2−�1� /�2�1, is valid, and �c� the top
boundary of the upper layer is a free surface at constant
pressure ps, taken to be ps=0. The flow over the topography
is then characterized by the densities �1, �2, the depth of the
layers d1, d2, the mean velocity in each layer u1, u2, and the
height of the obstacle h. With these assumptions, Bernoulli
functions for each layer may be written as

E1 = �1g�d2 + d1 + h� + 1
2�1u1

2,

�1�
E2 = �1gd1 + �2g�d2 + h� + 1

2�2u2
2.

Following Lawrence’s model,6,7 from the conditions dEi /dx
=0 and imposing mass conservation in each layer the follow-
ing relation is obtained:

�1 − F2�
�F1

2F2
2

dD

dx
=

dh

dx
, �2�

where F2=F1
2+F2

2−�F1
2F2

2 is the composite internal Froude
number while Fi

2=ui
2 / �g�di� �i=1,2� are the Froude numbers

for each layer with g�= �1− ��1 /�2��g, and D=d1+d2+h. It
has been shown6 that F is the adequate composite Froude
number for characterizing a two-layer flow; i.e., if F�1 the
flow is internally supercritical �the internal small waves can-
not propagate upstream against the background flow�, and if
F�1 the flow is subcritical �the disturbances may propagate
in both directions�. When F=1, the flow is termed critical

FIG. 1. Sketch showing variables used in the description of the two-layer

flow. U� is the upstream uniform fluid velocity, d1, d2 are the depth of the
layers, and h is the height of the obstacle at a given location with hm the
maximum height of it.
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and this location is usually called a control point. The tran-
sition from subcritical to supercritical flow is of special in-
terest in our experiments. When the flow is supercritical, an
internal hydraulic jump which is an important source of tur-
bulence and mixing may take place. From Eq. �2�, it follows
that the critical condition F=1, may occur if dh /dx=0. For
that value of F, when the surface has horizontal tangent, i.e.,
at the crest of the obstacle, the flow undergoes a transition
from subcritical to supercritical. If, in addition, the condition
��1 is imposed �which is satisfied in our experiments�, the
composite Froude number may be expressed as F2=F1

2+F2
2.

On the other hand, in the present study we consider flows
where Fi

2�1. Thus, from Eq. �2� and the Boussinesq ap-
proximation it follows that

dD

dx
=

�F1
2F2

2

1 − F2

dh

dx
� 0. �3�

Therefore, we consider D=d10+d20 a constant. Hence the
free surface will be taken as horizontal.

In order to obtain the critical values of the flow param-
eters for the subcritical-supercritical transition, we impose
that E2−E1 is constant and, using the Boussinesq approxima-
tion, we obtain

1

2
r�1 − r�F0

2� r0
2

r2 −
�1 − r0�2

�1 − r0H − r�2� + r0�H − 1� + r = 0,

�4�

where r=d2 /D, r0=d20 /D, H=h /d20, and

F0 =� U2

g�d10
+

U2

g�d20
�5�

is the Froude number F calculated in the upstream flow far
from the obstacle. We shall call F0 as the global Froude
number. On the other hand, the critical condition F2=1 may
be expressed as

r�1 − r�F0
2� r0

2

r3 +
�1 − r0�2

�1 − r0H − r�3� = 1. �6�

Thus, Eqs. �4� and �6� imposed at the crest of the ob-
stacle may be used to determine, F0c, the critical value of F0

for the occurrence of supercritical flow. In our experiments
we fixed the aspect ratio r0=0.6, and we considered different
values of Hm=hm /d20, hm being the height of the obstacle.
The critical values, F0c, for the occurrence of critical flows as
a function of Hm are obtained solving Eqs. �4� and �6�. The
results are shown in Sec. V, Fig. 7 where they are compared
to the experimental results.

Theoretical solutions for the flow when F0 is larger than
F0c, i.e., when the flow is beyond the critical condition, have
been obtained in Refs. 1 and 7. These solutions predict a
range of F0 values for which there is a wave moving back-
ward to the flow changing the conditions upstream. These
approaches allow the calculation of the velocity and ampli-
tude of this wave. This type of wave has been also obtained
using the Korteweg–de Vries equation including quadratic
and cubic nonlinearity,3 and numerical simulations, with
steplike stratification36 and linearly varying stratification.34

For Froude numbers clearly exceeding the critical condition,
experiments inside a container may be difficult due to accu-
mulation of wave effects on one edge of the tank. Conse-
quently, this provokes grater thickness of the layers than
those obtained in an unlimited flow. This effect is more im-
portant the greater the F0 is. For instance, from the theory1

follows that for F0=0.181, r0=0.6, and Hm=0.833, the incre-
ment of the thickness is significant, d10� /d10=1.10, where d10�
is the thickness of the interface taking into account the
effects of the upstream wave. On the other hand, for
F0=0.11, d10� /d10=1.03, the effects of this wave are negli-
gible. Since for Hm=0.833 and r0=0.6, the critical value is
F0c=0.06, we can moderately exceed this value without sig-
nificant distortion of the upstream wave. Thus, quantitative
good results may be obtained within a broad range of param-
eter values.

III. EXPERIMENTAL SETUP

Our experiments were performed in a water tank of size
equal to 2.0�0.29�0.137 m3. We used a closed channel
where we towed the obstacle at different velocities with a
calibrated motor �Fig. 2�. The velocities of the fluid referred
to a reference frame fixed to the obstacle. In our previous
work,38 we showed that this configuration is equivalent to the
flow over a fixed obstacle. Moreover, we only focused our
observations on the central region of the tank where the
structures are persistent and the far boundary effects can be
neglected. In this work, we always show images and dia-
grams of leftward moving obstacles.

We used two different obstacle shapes, prismatic and
semicylindrical, both of them with height of hm=0.125 m,
width of W0=0.13 m, and length of L=0.25 m, see Fig. 3.
The obstacles were scaled in such a way that the confinement
aspect ratio verifies W0 /W�1 �W=0.137 m, width of the
water tank� and the lateral flow around the obstacle can be
neglected in order to reduce the problem to a quasi-two-
dimensional situation.

As mentioned above, we want to create a density profile
with an abrupt gradient at the interface. In order to get this
steplike stratification we first filled the tank with a layer of
density �2=1002 kg /m3 using NaCl solution. To fill the up-
per layer, pure water with density �1=1000 kg /m3 was care-

FIG. 2. Schematic of the experimental configuration and the two visualiza-
tion techniques used. �a� The upper layer is dyed with KMnO4 to obtain
good contrast for visualization when the tank is lighted from behind. �b� The
DPIV is carried out lightening from above with a laser. In this case, in order
to distinguish the interface, only a thin portion of the upper layer is dyed.
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fully poured over a sponge floating on the free surface. The
time scale of the molecular diffusion between the layers is
much longer than the typical experimental times. Despite
that, due to the mixing produced by the moving obstacle,
after a few measurements, the tank had to be emptied and
new fluid layers poured in again.

The flow was examined via two standard techniques: dye
visualization and digital particle image velocimetry �DPIV�.
In the first case, the upper layer was dyed with KMnO4 so-
lution in order to obtain a good visual contrast between both
layers. A powerful source of fluorescent light from behind
was used to obtain a uniform illumination. We obtained glo-
bal qualitative pictures of the flow with this technique. In the
second case, DPIV allows us to obtain quantitative values of
velocity field based on the cross correlation of two consecu-
tive images recorded by a digital camera. Neutrally buoyant
polyamide particles of 50�10−6 m diameter were seeded in
the bottom layer. A green laser sheet of 100 mW is used to
illuminate a cross section plane of the flow which is recorded
by a digital camera PIXELINK PL-A741. In order to control
the interface and avoid attenuation of the laser light as much
as possible, when using this technique, only a thin layer of
water at the bottom of the upper layer is dyed.

For both obstacle shapes, five different sets of heights
were chosen always keeping constant the characteristic ratio
r0=0.6. The experiment was repeated for each set of heights
with a wide range of velocities analyzing the different behav-
iors, using the two visualization techniques mentioned
above.

IV. NUMERICAL METHOD

The numerical simulations considered here were ob-
tained with the in-house flow solver CAFFA3D.MB �Ref. 39�
developed jointly by Universitat Rovira i Virgili �Tarragona,
Spain� and Universidad de la República �Montevideo, Uru-
guay�. It is an original FORTRAN95 implementation of a fully
implicit finite volume method for solving the 3D incom-
pressible Navier–Stokes equations in complex geometry us-
ing block structured grids. This 3D solver, based on a previ-
ous two-dimensional solver,40 is described and validated in
Refs. 41 and 42.

The unsteady incompressible Navier–Stokes equations
with Boussinesq approximation for buoyancy terms were
considered. Since the Reynolds number was below Re

=1.103 for all cases, no turbulence model was required and
transient solutions were computed directly. The time step
was set to 2.0�10−2 s for all cases. This time scale is about
�hm /U� /103 for the highest velocity case. Simulations were
run starting from null-velocity fields through 104 time steps,
or about 200 s of flow time.

In the simulations, the obstacle remains fixed against a
steady two-layer current of fluid. Thus a uniform velocity
profile was specified at the upstream boundary located at a
distance of 8hm upstream from the obstacle, and a null gra-
dient outlet was used at the downstream boundary, located
15hm downstream. As the top surface is not disturbed by the
flow, it was modeled as an horizontal slip boundary at fixed
height. All other boundaries correspond to wall surfaces.
Nonslip condition was directly applied to them, including the
vertical walls of the channel. Hence, the simulation accounts
fully for 3D effects, although the flow reveals itself as essen-
tially two dimensional due to the geometry of the obstacles
and the relatively low Reynolds numbers.

For both obstacles the grid was made up of three blocks,
although the topology was different in each case. For the
prismatic obstacle, three straight blocks were assembled with
two at each side of the obstacle and the third extending on
top of them along the domain. On the other hand, for the
cylindrical obstacle one C-grid block was used around the
obstacle together with two other straight blocks, upstream
and downstream of the obstacle.

Grid resolution was set essentially uniform through the
domain at hm /25, being enough to resolve flow details at
these rather low Reynolds numbers. Due to the layout of the
grid in the cylindrical obstacle case the spatial resolution
normal to the wall was slightly higher near the obstacle,
reaching about hm /35.

V. RESULTS

Let us start this section by discussing the different re-
gimes observed in the experiments and simulations. Using
the dye technique we visualized the different regimes as a
function of the obstacle velocity and the aspect ratio. In Figs.
4 and 5, we show experimental and numerical results for the
prismatic and semicylindrical obstacle with r0=0.6, Hm

=0.833, and different values of F0. In all the considered ex-
periments, the upstream flow is subcritical, i.e., F0�1. In
these figures we distinguish four regimes, all of them present
in both obstacles. However, both experimental and numerical
results reveal a very important point: the regimes begin at
different critical Froude numbers for different geometries. In
spite of relatively small quantitative differences, the numeri-
cal and experimental results for both topographic shapes
show a qualitative similarity.

Regime �I�, Figs. 4�a� and 5�a�, corresponds to situations
in which the flow is subcritical, F�1, everywhere over the
obstacle. At low velocity, we observe that a jet through the
bottom layer develops near the obstacle. As the velocity is
increased, the jet begins to separate from the obstacle and
rises horizontally. A transition from regime �I� to �II�, Figs.
4�b� and 5�b�, occurs when the local Froude number reaches
a control point �F=1� somewhere over the obstacle. Regimes

FIG. 3. Side �top� and plan view �bottom� of the prismatic and semicylin-
drical obstacles, where d10, d20 are the depth of the layers, hm is the maxi-
mum height, and L is the length of the obstacle. W is the width of the water
tank and W0 the width of the obstacle.
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�II� and on are all supercritical past the obstacle. As a con-
sequence, an internal hydraulic transition develops at the lee
side. The interface between the layers is smoothly disturbed
both in regimes �I� and �II�. However, an intense jet is de-
veloped at the lee side. When the velocity gradient around

the jet is strong enough, KH instability appears inside the
lower layer.

Increasing the Froude number F0 further we reach re-
gime �III�, Figs. 4�c� and 5�c�, where a clearly visible lee
wave perturbs the interface separating the two layers with a
quasisinusoidal profile. This perturbation, as we show in Ref.
38 and we will demonstrate in Sec. VI, is produced by KH
instability when the jet arrive to be horizontal enough to
produce a substantive difference in the velocity of the fluid at
both sides of the interface. Downstream, a secondary insta-
bility develops mixing is observed. Finally, regime �IV�,
Figs. 4�d� and 5�d�, is characterized by the shedding of vor-
tical portions of lighter fluid which are separated from the
upper layer. As a consequence, intense mixing between the
two layers takes place. In this regime, the interface between
both layers is strongly disturbed. The jet drags fluid from the
upper layer and shedding of billows take place. A peculiar
characteristic of this shedding is the frequency of the vortical
billows which is almost constant in respect to variation in the
velocity U. To the best of the authors’ knowledge, this type
of vortex shedding has, hitherto, been unreported.

Numerical results are in good agreement with experi-
mental results, as can be visualized in Figs. 4 and 5. The
regimes observed in the experiments were also obtained in
the numerical simulations for the two obstacles that were
used. The overall agreement between numerical and experi-
mental method can be also seen in Fig. 6, corresponding to
regimes III and IV.

However, as F0 gets well above the critical value F0c

�regime IV, vortex shedding�, numerical and experimental
results begin to differ. For the prismatic obstacle, vortex
shedding starts earlier in experiments than in the simulations
�Fig. 4�d��. Whereas in the cylinder case the numerical simu-
lations show vortex shedding before experiments do so �Fig.

FIG. 4. Experimental snapshots �left� and numerical simulations of a flow
�right� past an prismatic obstacle corresponding to the different regimes, for
r0=0.6 and Hm=0.833. �a� Subcritical regime �i�. �b� Internal hydraulic tran-
sition �II�. �c� KH instability at the interface �III�. �d� Billow formation �IV�.
In all the images the values of the Froude numbers F0 are indicated on the
labels.

FIG. 5. Experimental snapshots �left� and numerical simulations of a flow
�right� past a semicylindrical obstacle for the different regimes. �a� Subcriti-
cal regime �i�. �b� Internal hydraulic transition �II�. �c� KH instability at the
interface �III�. �d� Billow formation �IV�. Same parameters as in Fig. 4.

FIG. 6. Comparison between experimental �left� and numerical �right� re-
sults for semicylindrical obstacle. Top row r0=0.6 and F0=0.111. Bottom
row r0=0.6 and F0=0.187.
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5�d��. We attribute these differences to the effect of the up-
stream moving wave. This point will be discussed below.

In Fig. 7 we show the global Froude number F0 as a
function of the aspect ratio Hm for the transition from sub-
critical to supercritical flow. The continuous line corresponds
to the theoretical global Froude number for a smooth ob-
stacle as it was calculated solving Eqs. �4� and �6�. The ex-
perimental F0 is represented by open squares for the semicy-
lindrical obstacle and with filled squares for the prismatic
one. The dashed lines are the linear fitting of the experimen-
tal points. This graph clearly reflects the fact that the
smoother the obstacle, the higher the velocity that will be
needed to reach the critical Froude number. Then, the critical
values for the semicylindrical obstacle are located between
the values of the prismatic obstacle and the theoretical pre-
diction �valid for a very smooth obstacle�. In this way, with
laboratory experiments, we prove that the transition from one
regime to another strongly depends on the geometry of the
obstacle. Hence, given an upstream flow, the flow down-
stream may be subcritical or supercritical, depending on the
geometry of the obstacle.

In order to establish the transition between different re-
gimes, we use DPIV technique. With the measured velocity
field we determine if the flow attained the critical point F
=1. A stability diagram is presented in Fig. 8, showing the
different regimes as a function of the global Froude number
F0 and the aspect ratio Hm, for r0=0.6. The diagram shows
the transition values between the regimes for the prismatic
obstacle �full symbols� and semicylindrical obstacle �open
symbols�. The dotted curves are guides for the eyes. We also
show the transitions between the different regimes with the
cylindrical obstacle for Hm=0.833 �open symbols, see details
in the figure caption�. It is interesting to note that although
the prismatic obstacle reaches the supercritical regime at a
lower velocity than the semicylindrical obstacle, KH devel-

ops at higher velocities than in the case of the semicylindri-
cal obstacle.

The slope of the jet after the obstacle plays an important
role in the transition between the different regimes. Indeed, it
was observed that transition depends not only on F0, r0, and
Hm but also in the shape of the obstacle, i.e., the slope of the
jet after the obstacle. As a result, the lee waves past the
prismatic and semicylindrical obstacles have similar charac-
teristics at different Froude numbers. We exemplified this in
Fig. 9 where we show KH instability at the interface for the
two obstacles. Although the prismatic obstacle reaches the
supercritical regime at a lower velocity than the semicylin-
drical obstacle, for the prismatic obstacle KH develops at
higher velocities than in the case of the semicylindrical ob-
stacle. This is due to the abrupt geometry of the prismatic
bank, in which the jet flow needs higher velocity to rise up
and develop KH.

As already mentioned, we characterized the velocity pro-
files via DPIV analysis. Figure 10�b� shows the visualization
of the velocity profile over the semicylindrical obstacle ob-
tained with DPIV technique at the places indicated in Fig.
10�a�. We observe that the shape of the jet is nearly triangu-
lar and quite constant at different distances from the obstacle.
These results will be used to make an hydraulic stability
analysis of the interface �see Sec. VI�.

FIG. 7. Critical global Froude number as a function of the aspect ratio Hm,
for a fixed relation between the height of the layers r0=0.6. The continuous
line corresponds to the hydraulic model and the symbols to the experimental
results of the two obstacles considered: semicylindrical �open squares� and
prismatic �full squares�.

FIG. 8. Stability diagram of the different regimes for the prismatic �full
symbols� and the semicylindrical �open symbols� obstacle as a function of
the global Froude number F0 and the aspect ratio Hm for r0=0.6. Dotted
lines are linear approximations of those experimental points. Squares corre-
spond to the transition between subcritical to internal hydraulic jump regi-
men. Circles correspond to the onset of KH regimen. Triangle symbol cor-
respond to the onset of shedding of billows regimen.

FIG. 9. Flow passing over the two obstacles of different geometry. These
snapshots correspond to the KH instability between both layers at F0

=0.102 for the prismatic obstacle and at F0=0.064 for the semicylindrical
obstacle.
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In regime III as the flow velocity U is increased, the
inclination of the jet, the amplitude of the interface wave,
and the velocity of the jet increase. However, when the
Froude number exceeds the critical value, the wave at the
interface is no longer observed and the flow enters in regime
IV. In this regime, there is shedding of vortical portions of
the lighter fluid which submerge into the lower layer.

The shedding of billows in regime �IV�, as can be seen
in Fig. 11, could also be caused by KH instability. In order to
test this hypothesis, we correlated the thickness of the jet a
and the distance between the billows xb. If the shedding is
caused by KH instability, the distance between the billows
must be approximately the wavelength of the most unstable
mode. Table I shows the values of a and xb and the ratio
between them for cases r0=0.6 and Hm=0.83, for the pris-
matic obstacle at different velocities. These results reveal a

clear proportionality between a and xb, with a slope of
xb /a=2.7. Indeed, in Sec. VI we consider a triangular jet,
and we show that the dimensionless wave-number of the
most unstable mode is given by kb=1.225. Then, the ratio
between the corresponding wavelength and the thickness of
the jet a �a=2b� is given by � /a=2.57, which is in very
good agreement with the ratio �2.6–2.7�, obtained experi-
mentally.

As commented in Sec. II theoretical solutions based on
hydraulic theory predict that for F0�F0c, there is a wave that
propagates in opposite sense to the flow, modifying the up-
stream conditions. The role of this upstream wave has been
deeply studied theoretically, observationally, and
numerically.4,14,31,33

In order to study the effect of this upstream wave in our
results, we performed numerical simulations, in a broad
range of values of the F0, focusing on the dynamics far up-
stream the obstacle and looking for the transitory effects.
Temporal evolution of the upstream wave, for F0=0.35, is
shown in Fig. 12. We note that the profile of the upstream
wave is very smooth. This is in contrast with the hydraulic
theory, which considers that the upstream wave has a discon-
tinuity. As already mentioned, accumulation of wave effects
in the closed container for Froude numbers clearly exceeding
the critical condition produces that the thicknesses of the
layers are larger than those obtained in an unlimited flow.

FIG. 10. �Color online� �a� DPIV image for the semicylindrical obstacle for KH instability at F0=0.122. The vertical lines correspond to the places where the
velocity profiles were taken. �b� Velocity profiles for the three positions marked in the image displayed in �a�.

FIG. 11. �Color online� Shedding of billows for Hm=0.76, r0=0.6, and F0

=0.26 for the prismatic obstacle. The frequency of shedding is 0.5 s−1. The
wavelength is the same of the KH.

TABLE I. Thickness of the jet a and distance between the billows xb for
r0=0.6 and Hm=0.83.

U
�cm/s�

a
�cm�

xb

�cm� xb /a

0.45 2.1 5.4 2.6

0.55 2.3 6.2 2.7

0.65 2.8 7.4 2.6
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Furthermore we note that the results in Figs. 7 and 8 for
F0�0.11 are not distorted in any way by the upstream effect.
In the region F0�0.11 although the results could be slightly
distorted, they remain qualitatively correct as we can con-
clude from comparison with the numerical simulations.

VI. STABILITY ANALYSIS OF THE JET PAST
THE OBSTACLE

As described in Sec. V, in the lee side of the obstacle the
flow presents different regimes depending on the values of
F0, r0, and Hm. However the type of flow downstream is not
only determined by the flow parameters but also by the slope
of the jet past the obstacle. We will analyze the stability of
this flow.

In regime III, the interface between the two layers is
perturbed by a quasisinusoidal wave, which breaks down
when its amplitude is sufficiently large, indicating that a sec-
ondary instability takes place. DPIV measurements clearly
show that the jet is located near the interface, and we con-
jecture that this wave results from a primary KH instability.
We test this hypothesis based in the experimental measures
shown in Fig. 10�b� and we will describe the flow near the
interface as a triangular jet. The flow is given by

V = 	V1, for z � b and z � − b

V2 + �V1 − V2�
z
/b , for − b � z � b ,
� �7�

where 2b is the thickness of the jet and the densities are �2

for z�b and �1 for z�b. We perform standard linear stabil-
ity analysis assuming a stream function of the perturbations
	 of the form43,44

	�x,z,t� = 
�z�exp�ik�x − ct�� , �8�

where exp�ik�x−ct��=exp�ik�x−crt��exp �t, with �=kci, and
ci ,cr are the imaginary and real parts of the phase velocity c,
respectively. Thus, � represents the growing rate of the per-
turbations. If ��0, then the flow is unstable to these pertur-
bations, and if ��0 the flow is stable. Since the flow under
consideration has constant density in each layer, 
�z� is de-
termined by Rayleigh’s equation


��z� − k2
�z� = 0, �9�

whose general solution is 	i�z�=Ai exp�kz�+Bi exp�−kz�,
where the index i=1,2 ,3 ,4 denotes the solution for the re-
gions z�b, b�z�0, 0�z�−b, and z�−b, respectively.
The perturbations must be bounded at z→� and z→−�,
then the 
i’s become


1�z� = B1 exp�− kz� ,


2�z� = A2 exp�kz� + B2 exp�− kz� ,

�10�

3�z� = A3 exp�kz� + B3 exp�− kz� ,


4�z� = A4 exp�kz� .

We now impose the boundary conditions across the lim-
its separating the regions by requiring continuity of vertical
velocity and pressure. Since the velocity profile is continu-
ous, the first of these conditions is equivalent to require

i�zj�=
i+1�zj�,

44 where zj denotes the position of the bound-
ary that separates regions i and i+1. The second of these
conditions requires

�Ui�zj� − c�
��zj�i − Ui��zj�
i

= �Ui+1�zj� − c�
��zj�i+1 − Ui��zj�
i+1. �11�

The boundary condition yield a linear system of equation
on �B1 ,A2 ,B2 ,A3 ,B3 ,A4�. The dispersion relation, i.e., the
relationship between k and c, is obtained discarding the

FIG. 12. Transient evolution of the interface showing the upstream influence
of the wave corresponding to F0=0.35. The simulations start at t=0 with a
null-velocity condition.

FIG. 13. Nondimensional growing rate of the perturbations for the
unbounded stratified jet �continuous line� and the stratified jet near a
wall �dashed line�, defined by Eqs. �7� and �12�, where k�=kb and
��=�b / �V2−V1�.
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trivial solution. The numerical results obtained by solving
the dispersion relation are shown in Fig. 13. The normal
modes stability analysis gives that the more unstable mode
corresponds to the wave number k=1.225 /b. For b
=1.1 cm �see Fig. 10�b��, the corresponding wavelength is
�=10.3 cm which is in good agreement with the experimen-
tal data of �=10.2 cm. We also performed the linear stabil-
ity analysis of a jet that is located near the wall of the ob-
stacle, with field velocity given by

V = 	V1, for z 
 b

V2 + �V1 − V2�
z
/b , for − b � z � b ,
� �12�

where the rigid boundary is located at z=−b, and the densi-
ties are �2 for z�b and �1 for z�b. In this case, we have
three regions with corresponding stream functions

1�z� , 
2�z� , 
3�z�. The condition at the rigid boundary is
given by 
3�−b�=0,44 and the other boundary conditions are
the same as the ones imposed for the unbounded jet. From
this analysis we obtained that the jet is partially stabilized in
the proximity of the wall of the obstacle, that is, the insta-
bilities grow slowly compared to the unbounded case �Fig.
13�. This result is in agreement with those obtained previ-
ously by Hazel.45 This stabilizing effect is caused by the
combination of the density stratification and the presence of
the wall. Then the wall has little effect on the stability of the
jet if the density is constant. This explains why the instabili-
ties appear downstream, but not over the obstacle, where the
jet is located on a rigid boundary. The stability analysis re-
sults and the measured wavelength of the lee waves in re-
gimes III and IV, strengthen the assumption that the instabili-
ties observed past the obstacle in both cases are caused by
KH instability.

We can also explain the fact that the frequency of the
billows is almost independent of the velocity U. From Table
I we can see that the thickness of the jet is �for fixed r0 and
Hm� practically proportional to U. The frequency of the bil-
lows can be expressed as f =xb /ub, where ub is the velocity
of the billows. Since xb is nearly proportional to U, if we
assume that ub is proportional to U, then the frequency is
weakly dependent on the velocity U. This is in contrast with
vortices produced in flows such as Von Karman’s street,
where the frequency, in a wide velocity range, is almost pro-
portional to the velocity. The difference resides in the fact
that in Von Karman’s flow, the characteristic length is con-
stant �the diameter of the cylinder�, while here the character-
istic length �the thickness of the jet� varies almost propor-
tional with U, which causes that the wavelength of the most
dangerous mode increases with U. This effect compensates
the increasing of ub with U, leaving the frequency almost
constant.

VII. SUMMARY AND CONCLUSIONS

We studied two-layer stratified flows over abrupt ob-
stacles �prismatic and semicylindrical shapes� focusing on
the effects of the geometry and the generation of distur-
bances and correlated mixing. Although this type of bottom
surface may appear in real situations, the problem has re-
ceived little attention in literature. We performed measure-

ments of the velocity fields with DPIV technique and studied
the stability of the obtained profiles. It is remarkable that in
all cases which we studied, the critical value of the global
Froude number, F0c, was less than that predicted by the hy-
draulic theory, which is valid for smooth varying bottom
surfaces. This result indicates that an abrupt obstacle reaches
the control point for lower velocities than for a smooth ob-
stacle. In other words, for a given F0, a flow that is subcriti-
cal for a certain geometry could be supercritical for another
geometry. As could be expected, as a consequence of its
smoother geometry, the results for the semicylindrical ob-
stacle are closer to the hydraulic theory than those of the
prismatic obstacle. Despite the fact that the conditions are far
from those required for the hydraulic theory to be valid, we
found that this theory still allows us to estimate accurately
the thickness and average velocity of the strong jet that
forms past the obstacle. However, the presence of flow sepa-
ration and dissipation, at the lee side of the obstacle, prevents
the use of hydraulic theory from making further predictions.

As regard the downstream flow, four different regimes
were identified and represented in parameter space F0−Hm.
In regime I the flow is subcritical everywhere, while in re-
gime II and all the subsequent regimes, the flow past the
obstacle is supercritical. The beginning of regime II was de-
termined calculating the local Froude number with the veloc-
ity fields experimentally measured. In this regime, a shear
instability develops mainly in the lower layer. The interface
that separates the layers is disturbed by a quasisinusoidal
wave in regime III. We demonstrate that this disturbance is
originated by KH instability. Hence, the jet that forms past
the obstacle controls the dynamics of the lee side flow. Fur-
thermore, this quasisinusoidal wave disturbance breaks down
through a secondary instability for sufficiently large ampli-
tude and departure from two dimensionality takes place. Re-
gime IV exhibits strong mixing caused by the shedding of
billows. An interesting fact is that the frequency of the billow
generation is almost independent of the velocity U. A stabil-
ity analysis on the jet immediately after the obstacle allowed
us to verify that the mechanism leading to vortex shedding
was also produced by KH instability. The distance between
the billows is in agreement with the wavelength of the most
dangerous mode of the stratified jet. With this theory, we also
explain the weak dependence of the billows frequency with
U. On the other hand, the stabilizing effect resulting from the
combination of the proximity to a rigid boundary and strati-
fication turns out in not observing any instabilities over the
obstacle.

The experimental and simulation results show that the
inclination of the jet plays a central role. In turn, the inclina-
tion is related with the flow separation. The velocity required
for the separation of the jet from the surface is larger in the
cylindrical obstacle than in the prismatic one. This causes the
prismatic obstacle to reach regime III before the cylindrical
obstacle. Although the different regimes reported in this
work appear for both obstacles, the dependence of flow sepa-
ration on the surface curvature makes that the critical values
for passing from one regime to the other vary with the ge-
ometry of the obstacle. This shows that the structure of the
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flow can change drastically when a salient edge is present at
the surface of the obstacle.

We also studied the wave that propagates upstream when
F0�F0c, that it is predicted by hydraulic theory. In the simu-
lations, we reproduced this wave with excellent agreement
with the theory. The enhancement of the deeper layer thick-
ness as well as the velocity of the fluid inside are in very
good agreement with the theory.1 These results indicate that
the effect of this wave must be considered in flows that
clearly exceed the critical conditions. For F0 of the order 0.1
or less �Hm=0.833, r0=0.6�, the effects of the wave may be
negligible. Furthermore, the results in Figs. 7 and 8, where
F0�0.1, are not distorted in any way by the upstream effect.
In the region F0�0.10 the results remain qualitatively cor-
rect following from the comparison with numerical results.
We then conclude that our experimental setup is adequate to
study accurately the stratified flow for Froude numbers rang-
ing from low values to values slightly above the critical
value.
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