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A study of a stable front propagating in a turbulent medium is presented. The front is generated
through a reaction-diffusion equation, and the turbulent medium is statistically modeled using a
Langevin equation. Numerical simulations indicate the presence of two different dynamical
regimes. These regimes appear when the turbulent flow either wrinkles a still rather sharp
propagating interfase or broadens it. Specific dependences of the propagating velocities on stirring
intensities appropriate to each case are found and fitted when possible according to theoretically
predicted laws. Different turbulent spectra are considered1987 American Institute of Physics.
[S1070-663(197)01212-9

I. INTRODUCTION An enlarged perspective has been gained recently when
experiments on liquid phase reactibhsave brought out a
Front propagation has been a problem of great interest ifhore simplified scenario as compared to that of combustion
a rich variety of nonequilibrium phenomena originating pat-processes. In such liquid reactions the change of density and
tern structures:® The most usual and studied situation cor-the increasing of the temperature are negligible compared
responds to a stabl@lanaj front propagating in a quiescent with those occurring in typical combustion proces¥en
homogeneous and isotropic medium at a constant velocitynis way experimentalists are closer to reproduce the set of

This situation can be modeled easily by a reaction-diffusiorsjmpjified assumptions invoked by most of the theoretical
equation for the order parameter. Reactiponlineaj terms  ,qqels.

have to present at least two possible steady states: one stable even more controlled situation concerning liquid

and a seconﬁ uns:\abrl]e or mett)?stable.TEhen the star?le Stalfase reactions can be envisaged when considering front
pro.p%glgateit roug ; € ﬁns]:ta € one. " te rfgl?r? Wtﬁre t. ‘?opagation under externally imposed stirring conditions.
variable changes abruptly rom one staté 1o the Other 1%;q ;e precisely the context we will address in this paper. In

called the interface or front width, whose size is controlled .

A . essence, stirring can be thought of as a sort of controlled way
by the diffusion coefficient. These fronts propagate at a Ve, iniect enerav into a fluid medium throuah random forces
locity vy which results from the interplay between the I 9y 9

chemical time scaléreaction 7,emand the species diffusiv- of stat|st|c_a : natl{trhé. Esp_em;’;lllly S;g:d tﬂ rtt_e prtodtL)Jcle such
ity coefficient (diffusion) D: vo~ (D735 ) 2 These facts an scenario are the generically caffedynthetic turbulence

are well known and have been discussed and applied in digenerating models. In particular we will employ here an al-
ferent fields gorithm to generate stochastic, turbulent-like, flows satisfy-

A more complicated situation is found when consideringi"d Langevin type equatiortS. Specifically, random flows

front—like patterns propagating in non—quiescent media. |yvith zero mean velocity and statist.ically isotropic, homoge-
such a case, the additional length and time scales introducdt0US and stationary are created independently of the front
by the advecting flow will interact with those intrinsic to the conditions.
reaction-diffusion front dynamics, resulting in new and dis-  The closest experimental reference we are aware con-
tinctive propagation regimes. Particularly interesting in thiscerning this question is the recently reported experimental
context is the problem of reaction propagation in premixedVork by Ronneyet al*? dealing with different stirred media.
combustible gaseésMainly due to its practical relevance in From the theoretical side, however, there is no specific lit-
combustion processes, the subject has motivated numeroggature focusing on stirring effects, so we rely on the general
theoretical as well as experimental effotts® The generic references of front propagation under turbulent flows. Most
understanding coming from these studies is that the turbulersif the existing theoretical models refer to the so-called Huy-
front velocity vt is larger tharw,, to an extent which de- gens mechanism valid for thin front conditioi$lamelet
pends on the intensity and spatiotemporal correlations of theegime”). Among them we mention those based on the so-
turbulent flow. Some other issues, however, such as velocitgalled G-equatiod,nonlinear averaging of reaction-diffusion
quenching effects, role of turbulent spectra remain somewhaquations,and specially, for the purpose of comparison with
more open. our results here, the approaches of Kersfettakhot'” and
Pochead® These authors based on different assumptions

dPresent address: Instituto désien, Facultad de Ciencias, Universidad de proposed scaling relations for: in terms of the intensity of

la Repiblica, Trista, Narvaja 1674 Montevideo 11200, Uruguay. the flow u(z). Using the so-called flame propagation equation,
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a variant of the well-known KPZ-equation, Kerstein and (KO) spectrum which was introduc&to study Kolgomorov
Ashurst obtained a relation valid for weak stirring intensi- turbulence. To this end we select from the family of KO
ties and large correlation times of the flow. Applying renor-spectra, the following form:

malization procedures to the G-equation, Yakhdound a

relation without adjustable parameters. Pocheau claimed that E(k)=k3
both Kerstein and Yakhot laws converge into a quadratic

relation when invariance over all the scales is assutfed.

simlj?;tio:]s% gg;s;rich;ngécgggn arr?élylggi teor;izgorenf?elzj;tesr As we will assume that the characteristics of the flow are
’ y not going to be affected by front dynamics, then our method

commonly restricts the examined scenarios to small turbulent .. ~. . .
will simply reproduce the above mentioned spectra in a sta-

Isr;:)ecms;s"taiiéteifwoa(jlsrz\xveov:/t dngen;'oﬁn'ngutirz ]fgfmillftzgit'vetistical way (see Ref. 16 for more theoretical details
y ! Our starting point is a generalized Ornstein-Uhlenbeck

a probability density functional is introduced and, after in'like Langevin equation for the stream functiesr 1)
voking some closure approximation and elimination of vari- v

ables procedure, a tractable set of partial differential equa- g7(r,t)

2

+_
! 5k3

—7/3

@

which has its maximum also &t .

tions is obtained. The most important difficulties of this ot =vV2y(r,t) +Q[N?V2IV . 4r,1), (©))
method remain at the fundamental level of the closure ap-
proximation. where v is the kinematic viscosity anf(r,t) is a Gaussian

In comparison with these generic procedures, what wevhite noise process of zero mean and correlation
gain with our random flow generating algorithm is an easy e 2 (F £y = 2608t — 1) S(T 1 — 1) S 4
control over the most representative statistical quantities of (£(r,1)21(r2,t)) = 2€0v (1t~ 1) 6(ry ~r) 61, (4)
the advecting flow: its energy spectrum and spatiotemporal According to these definitiong, and\ are control pa-
correlations. This in turn enables us to explore the role ofameters, respectively, related to the intensity and character-
these parameters in determining the different propagation réstic length of the random flowQ[A2V?] plays a relevant
gimes and particularly in the enhancement of the front speetble in our approach because it introduces through the ran-
under turbulent conditions. In particular, the two basic ex-dom stirring forces the spectra we want to use in each par-
perimentally identified modes of front propagation underticular case. In particular for the K spectrum we take
s_t|rr|ng, i.e., the prev_|ou_sly mentlone_d Huygens propaga- 202
tion _mc_)de a_nd th(_a distributed r(_eac_tlon zone regime, are Q[)\2V2]=ex% ) (5)
gualitatively identified and quantitatively analyzed in our 2
s!mulat|ons. Moreover, we are able to explore for_eaCh,reWhere)\=(3/2)1’2k51. On the other hand, the KO spectrum
gime the role of a pair of different energy spectra displaying:

e 27 is reproduced through
a quite different range of energy containing modes.

The paper is organized as follows. In the next section we ~ Q[\?V?]=(1—A2V?)~ 76, (6)
summarize the method to simulate the turbulent medium. In _

, : where\ = (9/5)Y%, *

Sec. Il we introduce the theoretical model of front propaga- F he st 0 - ¢ . he 2-D i ible ad
tion. Numerical results are presented and commented accord- 'rOTI 1 e_ S fam (;Jnctlon, tl € 2-U Incompressibie ad-
ing the existing theoretical predictions. We devote Sec. IV tg/ecting flow is obtained as usual,

draw some conclusions and perspectives. an(r,t) an(r,t)

v(r,t)= Ty k) )

This two dimensional version of our algorithm is chosen
for the simplicity in dealing with the numerical simulations,

Here we will present a brief summary of the theoreticalbut at the same time expresses our belief that the basic trends
scheme to simulate a statistically homogeneous, stationa@f front propagation in turbulent media, that we want to ana-
and isotropic turbulent flow characterized by its energy speclyze here, are well reproduced in this reduced dimensional-
trum. As we want to study fronts dynamics under differentity. Moreover, recent experiments in chemical reactions in
turbulent conditions we will generate two types of spectra. quasi-2-D geometriéé and theoretical analysis support

As a first example we adopt the Kraichnan(k)  also this assumption.
spectrum'® describing a distributed band of excitations  The energy spectrur(k) can be expressed in terms of
around a well pronounced peak centered at some welthe Fourier transformed operat@( —\°k?),
defined wave numbéi,

Il. TURBULENT MEDIA MODELIZATION

_ €0 32, 2.2
a2 E(k)—4WkQ( A7k9). 8
E(k)ock® - —].
(k) exr{ 12

0

D

The stirring intensityu?, (u3=f;dk E(k)) and integral
time ty and lengthl, scales of the random flows are easily
In order to take into account the influence of a broaderxpressed in terms of the functional and parametric specifi-
spectrum of modes we will modelize another type of turbu-cations for the noise terms left i) and (4).
lent medium with the choice of the Kiman—Obukhov's In particular for the K spectrum, we have
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1.0 — T T representing a periodic array oiX n eddies, wherd.=NA

a | the system size given in terms of the number of lattice points
N and the unit spacing.

08 s A detailed presentation of the way the algorithm was just
proposed is implemented to simulate turbulent flows can be
found in Ref. 16.

O
Rl 7 1l. FRONT DYNAMICS
._.x‘j I 1 A. The model and theoretical basis
04 7 In this section we present the model used to reproduce a
] chemical stable front propagating in random media with pre-
c scribed statistical properties.
02 7S . The basic ingredient is a reaction-diffusion scheme

which exhibits two steady states of different stability and
connected by a front which otherwise propagates in a stable
00@Le . 1 3 o—o—d—-o (planay way. There are many possible choices in the
0.0 0.5 10 literaturé and we will take a very simple one which corre-
sponds to that of a generic reaction-diffusion equation for the

FIG. 1. Comparison of Kraichnata) and Kaman—Obukhovb) and (c) scalar fieldlp(r,t), used as a relevant variable:
spectra. Continuous lines correspond to the analytical expressidB)Emd

symbols stand for simulation results in the discrete lattiag Kraichnan, 2 .
1o=4.0, ky=0.27; (b) and (c) Karman—Obukhovl,=4.0, k,=0.12 and E_
1o=1.85, ky=0.27, respectively. The intensitkinetic energy is fixed to . . o
u2=0.25. Unless otherwise stated a square lattice obd228 points and ~ Where the nonlinear functiof(#) has a minimum of two

unit spacingA =0.5 has been employed in all our simulations. zeros corresponding to the steady states. In our numerical
simulations we have chosen the nonlinear function
f()= 42— 4> In this case a stable planar front propagates
the stable statey=1 (“products”) into the invaded meta-
€ 7\2_ T stable oney=0 (“reactants”). Two important parameters

2_
UO_SW“’ to= v’ lo= 2 ©) are the dimensionless propagation rate and front thickness
which, respectively, read

DV2y+f(y), (13

And for KO spectrum, we get for the three basic parameters D
Vo= \/\, 50: \8D. (14)
2 960 ¢ )\2 (10) 2
upg=——: to=5-; '
07 35 14 073, The front profile has then the form,
_ 1 X_l)ot
| _)\F(l/Z)F(S/G) a P(x)=5 1—-tan 5 | (15)
0 2r(13) Our numerical results have been checked in relation with

. . . . .. different choices of the reaction term. Confirming our belief
In Fig. 1 three different spectra with the same intensity,

o . that within our formulation, this choice should not be a rel-
(kinetic energy are presented: one of Kraichnan ty{@eand

evant point, we have explicity considered the case
two of the Kaman—Obukhov spectruitb) and (c). We see o
=y(1l- —-0.2 th titat It
how Kraichnan’s energy distribution shows a pronounce (¥)=y(1=4)(/—0.25) and the same quantitative results

. h the oth ‘ broad d sh ave been obtained.
maxmum w ter_leass eto er Zpechra arfh roa zr ag tS OW A turbulent flow is superposed now through a convective
much longer tails. Spectr@ and(c) have the sami,, bu term added to Eq(13)

(&) and(b) have the samk,. These facts will be of relevance

later on to explain the dynamical properties of a front propa- ‘9_¢: DV2y+ P — -V t 16
gating in random media represented by each one of those dt R (v(r,H 1. (16)
spectra. As illustrated in Figs. 2a and 2b, numerical simulations of

For the sake of comparison, we have considered tweq, (16) above, reproduce two distinct limiting regimes of

first one, hereafter referred to as frozen stirring, correspondgjso plotted. Small arrows indicate the local velocity vector
to a frozen configuration of the random flow generated acyf the flow.
cording the rules above introduced. The second one referred | Fig. 2a we see a front in a situation where the typical

to what follows as periodic flow, represent nothing but ajength scale of the flow, is larger than the intrinsic one
periodic set of fixed eddies. It is constructed from the singleassociated to the reaction-diffusion dynamé&s It is clear

mode stream function that the mean size of the observed eddies is larger than the
front width. Then a distorted front propagates with a larger
7(%,Y)= 10 co{ @) cos( niy) ' (12)  Velocity than in the deterministilc case but maintaining a st?ll

L L rather sharp and well defined interface. Such a propagation
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FIG. 3. Svs Lt/L, for turbulent flow(circles,|,=4.0, t,=0.1), random
frozen(squaresl,=4.0) and periodic eddig¢riangles, 8<8 eddies. In all
the simulations presented in this figure we have empldyed.3.

planar case with normal velocity given by, but its length
increases due to wrinkling and this results on faster propaga-
tion velocities. This can be understood as a geometrical con-
sequence of the propagation of curved interface with a local
velocity v,.” Denoting, respectively, byt andL, the front
length and the lateral system size, we have

LT vT
Lo Uo_

1

On the other hand, if we assume that the effect of the
flow velocity in the DRZ regime is completely reproduced
(b) i — by increasing the diffusive transport inside the broadened

0 front then such an effect can be incorporated as a renormal-
ization of the diffusion coefficient. In the DRZ mode we

FIG. 2. Density plot of the stlrr_ed _reactlon front for the K spegtrurr_l. The simply adapt the first fundamental result of Eﬂl4)- to ob-
arrows stand for the local velocity field plotted every 4 mesh points in eac& .

direction. (a) corresponds to the thin front mode, parameter values ar ain
D=0.3, u3=3.0, A\=4.5 andt,=1.0; (b) corresponds to the distributed 2
2 (2% DT

reaction front regime fob=2.0, uS: 10.0,A=2.2,t,=1.0.

) ) ) ) ) whereD+ is the effective turbulent diffusion. The next and

‘r‘ne_chanlsm”|‘s‘ known”m t‘r‘1e co_mbustlon” I|ter_atur1(§ as thenost involved step consists, however, in using B4 and
thin flame,” “flamelet” or “reaction sheet” regime.* (18) above to make detailed predictions for, or its dimen-

The other limit corresponds to a situation for whighis  gjon|ess forns, as a function of the stirring intensity,, or
smaller thans,. Now the mean size of the eddies are com-jis gimensionless valugy/v,=Q. Let us discuss on what
parable or smaller than the interfacial width. This is the situ+siows our numerical results for the HP and DRZ regimes.
ation in Fig. 2b where the front is broader and more diffused
than in the former case. This situation is referred in the lit-
erature as a “distributed reaction zor®RZ) regime!?
Also in this case we also observe that the front velocity is  In Figs. 3-5 we present our numerical results corre-
larger than in quiescent media. sponding to these two modes of front propagation. If it is not

We want to emphasize at this point that both phenom-explicitly indicated the turbulent flow is that of K spectrum.
enologies are well known in experiments dealing with frontOn what refers to the HP mode, our first task was to check
propagation for isothermal chemical reactidfs. relation(17). The collected data for the different vaIuesuﬁf

A specific mechanism of front propagation applies toare summarized in Fig. 3. For the sake of comparison, we
each one of the previously identified modes. The commorinclude in this figure results obtained for the other two addi-
rationale behind the “thin flame” mode is based on a HP-tional stirring conditions introduced in Sec. Il: the frozen
like argument: the front has the same local structure as in thstirring and the periodic flow. According to this figure, the

B. Results for HP versus DRZ propagation modes
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4.0 - .
* °
00 08 : : : :
0.0 4.0 8.0 12.0
0.0 ‘ ‘ - ‘ ‘ Q
00 100 » 200 30.0 FIG. 5. Svs Q for DRZ regime, full symbols denote simulation results of
(a) Q the front propagation while open symbols stand for simulation of the pure
effective diffusion Eq.(18) (without reactiop. In all the simulations we
15 ‘ . ‘ : ‘ ‘ ‘ have employed =2.0. Circles, squares and triangles correspond to turbu-
m lent flow (1,=2.0, t,=0.1), frozen stirring k;=2.0) and periodic eddies,
respectively, (1& 16 eddieg Continuous lines stand for theoretical predic-
tions (see the text
| ]
| |
13 1

geometric argument leading (@7) seems well-supported by

S - our simulations with the simple exception of those situations
involving very intense periodic flows. Actually, under these
last conditions the interface is largely perturbed by the pres-
11 F 8 ence of overhangs whose dynamics contribute positively to
u the computed velocity, measured as the time variation of the
H rate of occupation of they=1 state, but negatively to the

front length.

In Fig. 4, results foiS(Q) are specifically plotted corre-
0-900 — 0'4 o8 sponding to three of the previously mentioned stirring
' ’ ' modes. Figure 4a shows the simulation resultSof/ersus

Q? for a turbulent flow for two different values df. The
27 theoretical predictions of Yakhdf, (S=exp@Q%S) and
‘ Pocheau &= 1+2Q?) ! are also plotted. Numerical data of
105 L | the case of frozen stirring are included for comparison. Ac-
tually, the numerical results fit reasonably well the linear
A A relation S>°=1+ aQ?, for the whole range 0. Neverthe-
21 . less, the slope of such a linear law dependsgra fact not
‘ ! considered in theoretical predictions of Yakhot and Pocheau.
s | o , 005 A Remarkably, these theoretical predictions fit better with our
A numerical results for frozen stirrindimit of very larget).
A This agreement is not surprising because in Pocheau’s analy-
15 ] sis, both theoretical and experimental, a very large value of
A t, was consideredf Moreover, for this last flow, the behav-
A ior largely depends on the examined rang&ofThe former
- behavior transforms into 8= 1+ o’ Q*® when approaching
OQM L the smallest values d here considere@Fig. 4b).
~0.0 05 1.0 15 20 25 Finally, results for the periodic stirring also show a
() Q crossover from a linear dependence at la@géowards the
quadratic form:S?=1+ «"Q? at smallQ (Fig. 49. Results
for the last two cases are in agreement with theoretical pre-
dictions by Kersteiret al®
FIG. 4. S(Q) for three stirring modes: turbulent flowgircles, to=0.1; A final comment is worth emphasizing at this point: Tur-
romboids,t,=3.0), frozen stirrinq_square}s and periodic eddie(strian_gles). _pulent propagation velocities fall always lower than those
The same parameter values of Fig. 3 have been employed. Continuous Im%%taiHEd for frozen and periodic stirring. This is somewhat at

stand for the theoretical predictiofsee the text (a): Turbulent and frozen ) . -
flows. (b): Frozen flow.(c): Periodic flow. odds with what is reported in Refs. 6 and 12, although one
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6.0 ' . , . , . propagation previously identified and the pair of turbulent
ol spectra introduced in Sec. Il. Respectively, Fig. 6a repro-
duces conditions of thin front propagation, whereas Fig. 6b
0 1 those for distributed reaction fronts. Both in Figs. 6a and 6b,
4.0 - 1 circles stand for results obtained with K spectrum, whereas
squares and romboids correspond to the KO distribution.
k) I o O Since both spectra can be compared either on the basis of
° their integral length scaldg, or of their maximumkg, we
1 have chosen to separately consider both cases. Specifically,
Qg ™ squares represent simulations from both spectra with the
® 1 same value of, i.e., comparing cas€g) and(b) in Fig. 1,
I 1 and romboids correspond to both spectra taken at equal val-
09 : 20 : 20 120 ues ofkg, i.e., comparing casgs) and(c) in Fig. 1. On the
(a) o other hand, black circles in Fig. 6a and black and white ones
in Fig. 6b are, respectively, replotted from Figs. 4a and 5.

20 | O

De> O
®
O

o Just for the sake of comparison, we have also included in
Fig. 6a as white circles, results f@ obtained from the
simulated values of the effective diffusion through the use of

4r g__ expressiorn(18).

Let us start with the conditions of the HP regir(fég.
& (sl ] 6a). When both spectra are taken at eqyawwe find smaller
1 8 ] values of the turbulent front velocity for KO than for K spec-
o trum. The situation is just the reverse one when both spectra
® Q are taken with the same maximum. Both findings admit a
10 '@ 1 rather direct interpretation. From Fig. 1a we conclude that
when both spectra have equal integral length scale, the KO
08 I . . . . . distribution displays its maximum at a smaller valuekgf
0.0 20 4.0 6.0 8.0 100 This means that in this last case larger length scale modula-
(b} o' tions are going to be the most relevant ones in bending the

. . ropagating interface. This in turn means that the front
FIG. 6. Comparison between K and KO spectra. Circles stand for the . . .
spectrum while squares and romboids stand for the KO spectrum with th ngth IS going to be less enhanced and, since we are refer-

samel, and the samé,, respectively(see Fig. 1 Black circles are the ring to the HP propagation mode, so will happen with the
same simulation_ data_l of I_:igs. 4a _and 5, and White_ circles corres_po_nd to theffective front speed. Contrarily, when the two maxima co-
simulated effective _dlffusmn(.a) Thin front propagating moddb) Distrib- incide  what makes the difference is the Iong tail in the KO
uted front propagating mode. For KO spectrum we have emplbye@56. R .
distribution. Such large wavenumbers, small spatial modula-
tions, are going to be very effective both in wrinkling more
should keep in mind that the range @fvalues there consid- intensively the front interface but even more, by interfering
ered were of two orders of magnitude larger than ours.  the front dynamics at scales comparable to the front thick-
In Fig. 5 results for the DRZ regimen are presented. Theness. Both effects lead to larger values of the turbulent front
numerical data obtained under different stirring mechanismselocity. In particular the last mentioned feature is evidenced
are plotted. These numerical results are compared with th@hen observing that results for the KO spectrum approach in
corresponding theoretically predicted values based on Eghis case those that would correspond to a front subjected to
(18) above. The values of the effective diffusion COEfﬁCientthe K distribution and propagating under the enhanced diffu-
D+ have been obtained independently from direct simulationsjon mechanismwhite circles. A somewhat similar en-
of pure scalar diffusioriwithout reaction. Theoretical pre- hancement of the front velocity at moderafe has been
dictions based in Eq(18) exhibit a remarkable agreement found in a theoretical analy&when a thin front is slightly
with numerical results for a broad set of tRevalues here perturbed at scales smaller th&g.
cpnsidered and irrespective of.the type of stirring flow con- | ot us turn now to the DRZ regime of Fig. 6b. What we
sidered. Moreover, the theoretical dependences-0bn u_% _ observe in this situation is that no appreciable effect is found
either for 2rar1gom flows in the weak stirring limit \han hoth maxima coincide in the respective spectra. How-
(Dr—=D~ugtp)™ or for pe2r|od|021flows in the limit of small g6 smaller values o8? are observed for equal integral
Peclet number;—D~up/D),” are clearly confirmed in o4 scales. Analogously as before, both results can be in-
this Fig. 5. terpreted just by looking at Fig. 1. In the first case, one can
imagine that the interface thickness would be wide enough to
comprise the most energetic wavenumbers of both flows in
In order to investigate the influence of the different spec-such a way that the effective diffusion would be similarly
tra on the enhancement of the front speed, we present in Figenormalized. Contrarily when prescribing an equal value of
6 numerical results corresponding to the two regimes of fronty, those more energetic modes in the KO distribution are

1@
O

C. Results for K versus KO spectra
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