
doi: 10.1098/rsta.2009.0085
, 3267-3280367 2009 Phil. Trans. R. Soc. A

 
Ávila
Nicolas Rubido, Cecilia Cabeza, Arturo C. Martí and Gonzalo Marcelo Ramírez
 
oscillators
stable states in locally coupled light-controlled 
Experimental results on synchronization times and
 
 

References
l.html#ref-list-1
http://rsta.royalsocietypublishing.org/content/367/1901/3267.ful

 This article cites 25 articles

Rapid response
1901/3267
http://rsta.royalsocietypublishing.org/letters/submit/roypta;367/

 Respond to this article

Subject collections

 (16 articles)statistical physics   �
 
collections
Articles on similar topics can be found in the following

Email alerting service  herein the box at the top right-hand corner of the article or click 
Receive free email alerts when new articles cite this article - sign up

 http://rsta.royalsocietypublishing.org/subscriptions
 go to: Phil. Trans. R. Soc. ATo subscribe to 

This journal is © 2009 The Royal Society

 on 21 July 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/content/367/1901/3267.full.html#ref-list-1
http://rsta.royalsocietypublishing.org/letters/submit/roypta;367/1901/3267
http://rsta.royalsocietypublishing.org/cgi/collection/statistical_physics
http://rsta.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=roypta;367/1901/3267&return_type=article&return_url=http://rsta.royalsocietypublishing.org/content/367/1901/3267.full.pdf?ijkey=SpMsMj3WhWs5I9c&keytype=finite
http://rsta.royalsocietypublishing.org/subscriptions
http://rsta.royalsocietypublishing.org/


Phil. Trans. R. Soc. A (2009) 367, 3267–3280
doi:10.1098/rsta.2009.0085
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Recently, a new kind of optically coupled oscillators that behave as relaxation oscillators
has been studied experimentally in the case of local coupling. Even though numerical
results exist, there are no references about experimental studies concerning the
synchronization times with local coupling. In this paper, we study both experimentally
and numerically a system of coupled oscillators in different configurations, including local
coupling. Synchronization times are quantified as a function of the initial conditions and
the coupling strength. For each configuration, the number of stable states is determined
varying the different parameters that characterize each oscillator. Experimental results
are compared with numerical simulations.

Keywords: synchronization times; local coupling; networks

1. Introduction

Synchronization is a common feature of oscillatory systems and may be
understood as an adjustment of rhythms of self-sustained oscillators due to
their weak interaction (Schäfer et al. 1999). Synchronization is a ubiquitous
phenomenon and nowadays is a widely studied topic. Several books have
been devoted to this subject both from rigorous (Pikovsky et al. 2001, 2003;
Manrubia et al. 2003) and popularization points of view (Strogatz 2003).
Different kinds of systems show synchronous behaviour varying from biological
(Glass 2001; Kreuz et al. 2007), chemical (Neu 1980; Fukuda et al. 2005)
and ecological systems (Blasius et al. 1999) to electronic devices (Chua 1993;
Murali et al. 1995; Kittel et al. 1998; Cosp et al. 2004; Pisarchik et al.
2008). Among the different types of models that have been considered to
study synchronization, we could mention coupled maps (Masoller et al. 2003;
Masoller & Marti 2005; Morgul 2008), Kuramoto model (Acebron et al. 2005;
Chen et al. 2008) and relaxation oscillators (Campbell et al. 2004), in particular
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pulse-coupled oscillators (Mirollo & Strogatz 1990; Bottani 1995). In this respect,
the integrate-and-fire model is one of the most studied and it has been studied
analytically (Timme et al. 2002) and numerically (Corral et al. 1995). On the
other hand, few experimental works have been reported concerning these types
of oscillators. A light-controlled oscillator (LCO) is a realistic pulse oscillator
whose behaviour resembles the integrate-and-fire oscillator but differs by the fact
that the discharge is not instantaneous (Guisset et al. 2002). The experimental
results concerning the LCOs have been devoted to local coupling configurations
(Ramírez Ávila et al. 2003). Transients or synchronization times in different sorts
of systems have attracted the attention of several scientists, but they do not so
far seem to have made significant progress in their analysis and only numerical
results have been reported (Politi et al. 1993; Acebron & Bonilla, 1998; Fukai &
Kanemura, 2000; Bagnoli & Cecconi, 2001; Zumdieck et al. 2004). Concerning
the LCOs’ synchronization times, numerical results for local and global
coupling configurations have been reported (Ramírez Ávila et al. 2006, 2007).
This paper deals with the experimental determination of the synchronization
times in LCOs as a function of the initial conditions and the coupling
topology.

2. Light-coupled oscillator setup

The LCO used in this work is an open electronic version of an oscillator that
mimics gregarious fireflies. Basically, the LCO is composed of an LM555 chip to
function in an astable oscillating mode (Ramírez Ávila et al. 2003). It possesses an
intrinsic period and pulse-like IR light emissions, both of which can be manually
modified on the spot enabling quantitative measurement of phase differences and
period variations with the required precision.

The dual RC circuit (figure 1) was mounted on an 8×5 cm proto-board. The
characteristic frequencies, named λ and γ , corresponding to the charging and
discharging stages of the capacitor C , respectively, are determined when no
external perturbation is done. The timing components are set due to two variable
resistors, Rλ and Rγ , so the intrinsic longer charging period can be changed by
acting on Rλ, and flashing can be widened by modifying the discharging stage,
thus, Rγ . Coupling is achieved by photosensor diodes connected in parallel, which
act as current sources when they are receiving IR light, shortening the charging
time and making a longer discharging stage. When all photosensors are masked,
namely in the dark, the periods only depend on the electronics. An LM555
constitutes the brain of the electronic firefly, managing these current deviations
and setting the maximum charging and minimum discharging voltages to 2/3 and
1/3 of the source voltage, correspondingly.

In our model, the resistors were changed through the different configurations
used to ensure synchronization when coupling strength was small, though the
values used were usually set to be almost identical between oscillators. Typical
values are

Rλ = [58.7 − 73.4] ± 0.1 kΩ,

Rγ = [1.00 − 1.30] ± 0.01 kΩ.
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Figure 1. Simplified block diagram of the LCO and schematic view of the coupling between LCOs.

These specific values are those used when coupling of two LCOs by mutual
interaction was held. The ratio between these two resistors was always set smaller
than 2.5 per cent in order to keep the pulse-like light emission hypothesis that
mimics its biological analogue. Using a 0.47 μF capacitor, the natural periods
are Tλ = 27.6 ms and Tγ = 0.43 ms. The voltage source being a 9 V battery, the
LM555 sets the lower and upper threshold voltages of the RC circuit to 3 and 6 V,
respectively. The coupling strength is changed by varying the distance between
the LCOs and can also be changed by placing different resistors in series with
the diodes. The temporal signals in the capacitors were acquired using a NI-
USB 6215 data acquisition device. The characteristic frequency of the LCO was
calculated using a standard fast Fourier transform algorithm. In figure 2, a typical
temporal signal and a spectrum are shown corresponding to the master LCO
before coupling.

Master–slave (MS) and mutual interaction (MI) were used in this work. In the
MS configuration, one LCO is in the dark and it is namely the master, LCO1;
the other LCO, namely the slave, LCO2, can be excited through the light-pulse
emitted by LCO1. In the MI configuration, both LCOs have the same mutual
influence; they act on each other in the same way with equal strength, so they are
interchangeable. In order to study the influence of the coupling parameter on the
synchronization time, we vary the distance between the IR diode and the photo-
sensor. We have used d1 = 5.0 cm, d2 = 10.0 cm, d3 = 15.0 cm and d4 = 25.0 cm.
In addition, for a fixed distance, we vary the current on the IR diode, which
implies that we can increase the current in a way that the coupling parameter is
duplicated. The experimental setup is shown in figure 3.
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Figure 2. (a) Temporal signal and (b) normal spectrum corresponding to the master
LCO before coupling.

LCO 2

LCO 1

coupling

Figure 3. Experimental setup corresponding to a master–slave (MS) configuration and a separation
of d1 = 5.0 cm.

3. Experimentally determined synchronization times

As a system of LCOs can be modelled by a set of ordinary differential equations,
see §4, initial conditions play an important role in determining which solutions
will correspond to the oscillator’s evolution. When coupling is taken into account,
particular solutions are modified due to the appearance of a connection matrix,
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Figure 4. Perturbation acting upon charging stage in a slave LCO. Grey dashed line corresponds
to master LCO and black line corresponds to slave LCO. The circle indicates the start of the
perturbation.

linking the equations. Solutions are now not only initial conditions-dependent,
but they are also a function of how coupling is set, meaning that it matters what
configuration and coupling strength is implemented. Nevertheless, in all cases,
the frequency at which flashes occur, corresponding to the discharging stage of
the RC circuit, can be considered as a basic feature of an LCO.

(a) Phase locking and frequency entrainment

As perturbations due to other LCOs do not modify the oscillating
amplitudes, the coupling between oscillators imposes a relation between their
characteristic frequencies. By means of an external periodic perturbation,
frequency entrainment is possible and as a consequence, LCOs. The latter occurs
due to the fact that any external (pulse-like in our case) perturbation acting
upon an oscillator will increase the capacitor charge, causing modifications in
its charging or discharging stage, depending on where it is held. Thus, if the
perturbation acts during the charging stage, it will increase the LCO frequency,
and if it acts upon the discharging stage, it will decrease its characteristic
frequency. In figure 4 a charge–discharge cycle is shown, corresponding to MS
configuration.

The frequency entrainment that happens when LCOs are coupled can be
quantified determining period variations in time. By choosing a reference period
T ∗, we can define a phase difference for each LCO as

�Φi =
(

1 − Ti(Φ)

T ∗

)
,

Phil. Trans. R. Soc. A (2009)

 on 21 July 2009rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


3272 N. Rubido et al.

0 0.5 1.0 1.5 2.0 2.5 3.0
−1.0

−0.5

0

time (s)

ph
as

e 
di

ff
er

en
ce

2.5 2.6 2.7 2.8 2.9 3.0

0

0.5

1.0

lig
ht

 p
ul

se
s

(b)

(a)

Figure 5. (a) Phase difference between oscillators. (b) IR light pulses in each LCO.

where Ti(Φ) represents the new period of the oscillator being perturbed. The
phase difference between LCOs can be defined as

�Φij = �Φi − �Φj .

When constant phase difference is achieved, oscillators are synchronized.
Taking the maximum charging voltage as our reference for choosing the

LCO period, we could qualify two different behaviours towards synchronization:
positive phase difference and negative phase difference. The first one corresponds
to a shortening of the free-running period Tλ, which only means that perturbation
acts as a positive feedback through the charging stage. A lower phase-locking
limit is achieved when the duration of the perturbation is not sufficient anymore
to reach the switching point of λ towards γ . As a consequence, this case is
a stable situation. In figure 5, we can observe the temporal evolution of the
phase difference and IR light pulses in the MS configuration. At t = 1.61 s,
the phase difference becomes zero, i.e. the LCOs are synchronized and the
IR pulses are emitted in unison. When phase difference is negative, it means
that perturbation acts to widen γ , consequently the period is increased and the
phase-locking should be stable. However, this influence is of little importance
because the discharge current is usually two orders of magnitude greater than
the photocurrent (except figure 4 where the coupling strength was set greater by
electronic changes), and also perturbation width is of the order of 0.02λ. As a
consequence, the upper limit is reached as soon as the photocurrent shortens the
next charging stage resulting in an unstable situation.

Figure 6 shows the evolution of the trajectories in phase space for two identical
coupled LCOs, where LCO1 was set as reference.
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Figure 6. Evolution of phase space trajectories for two identical coupled LCOs.

(b) Different initial conditions

Now the quantification of synchronization times by means of constant phase
differences is possible; we start dealing with initial conditions. Experimentally,
by leaving LCO1 on, we managed to control coupling by switching on the other
LCOs afterwards and, thus, we found a way of creating different initial conditions
and recorded their corresponding synchronization times, obtaining behaviours like
those shown in figure 7. Nevertheless, this way of proceeding gives rise to random
initial conditions for both LCOs in every measurement.

The initial condition for LCO2 was recorded as the voltage corresponding to
the first IR lightning from the other. This was done because where this value
is located will matter directly to the time that LCOs will take to synchronize,
meaning that it determines which phase-locking situation rules the evolution of
the system.

(c) Stable configurations

In addition, with the aim of increasing the coupling strength electronically,
we place a greater photocurrent (this is done by changing the resistors
connected in series with the diodes), and we can obtain different connection
matrices corresponding to different types of networks. As mentioned in §2,
these matrices are the symmetric MI and asymmetric MS configurations. For
each configuration, coupling strength was changed by placing LCOs further
apart. Then, coupling strength was changed electronically, thus, increasing
perturbation influence, and the procedure was repeated. Figures 8 and 9 display
typical behaviours for a coupling strength that corresponds to the one shown
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Figure 7. Different initial conditions generated when LCO2 is turned on.

in figure 7, where differences between synchronization curves within these
figures are visible on the times LCOs take to approach synchronization, thus,
their slope.

When comparing different distances, figure 10, the curves for each configuration
exhibit similar shapes. Thus, synchronization times depend on the coupling
strength in a way that once the coupling strength is fixed, the system will locate
itself, for different initial conditions, within the corresponding curve.

4. Numerical method

LCOs might be described by a simple model consisting of a set of differential
equations that take into account the charging and discharging stages due to the
RC circuits and the flip-flop LM555; this last element establishes well-defined
thresholds for the RC circuit charging at 2VM /3 and at VM /3 for the RC circuit
discharging, where VM is the source voltage value which takes the value 9 V
because in experimental work we use simple batteries as has been stated in §2.
The equations that describe the coupled LCOs are

dVi(t)
dt

= λi[(VMi − Vi(t)]εi(t) − γiVi(t)[1 − εi(t)]

+
N∑
i,j

βijδij [1 − εj(t)], i, j = 1, . . . , N , (4.1)

where βij is the coupling strength, δij = 1 if the LCOs interact and δij = 0
otherwise, and εi(t) is the oscillator state that takes the value 1 (charging stage) or
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Figure 8. Synchronization times as a function of the initial conditions, corresponding to MS
configuration and different distances. Filled circles, 10 cm; open squares, 15 cm; stars, 25 cm.
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Figure 9. Synchronization times as a function of the initial voltage, corresponding to MI
configuration and different distances. Filled circles, 10 cm; open squares, 15 cm; stars, 25 cm.

0 (discharging stage); εi(t) changes its value when it achieves the upper threshold
(2VM /3) or the lower threshold (VM /3). We must mention that this model has
been validated experimentally (Ramírez Ávila et al. 2003).

Numerical results for the two configurations used when LCO1 initial condition
is 3 V are shown in figures 11–13. Figures 14 and 15 show the comparison between
experimental and numerical results. Clearly, we can observe a good agreement
between them.
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experimental data.
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5. Conclusions

Through our work, we checked that the LCOs designed had a great resemblance
with the behaviour predicted by the model. Furthermore, this design allowed us
to modify on the spot their intrinsic period and pulse-like IR light emissions,
enabling quantitative measurement of phase differences and period variations
with fine precision, and produce electronically different coupling strengths.
Synchronization times for two LCOs interacting in MS and MI configurations
were found experimentally as well as numerically.

The effect of the coupling strength was analysed in detail. Experimentally,
the strength of the coupling was changed forcing greater IR light emissions
by changing resistors in series with the photodiodes and by placing LCOs at
different distances from each other. Comparing simulations with experimental
data, we could see behaviours very much alike for synchronization times versus
initial conditions, and by doing so, we have also found a way of quantifying
the experimental coupling strength. Insight and facilities gained through this
experimental work will allow us in the future to tackle other aspects of the system,
in particular those related to complex networks coupling, synchronization times
for different networks, and also analyse the multistability patterns that arise for
different initial conditions when more LCOs are interacting.

We acknowledge financial support from PEDECIBA (PNUD URU/06/004, Uruguay), CSIC
(Universidad de la República, Uruguay). G.M.R.A acknowledges Jean-Louis Deneubourg and the
Unit of Social Ecology of the Université Libre de Bruxelles.

References

Acebron, J. A. & Bonilla, L. L. 1998 Asymptotic description of transients and synchronized states
of globally coupled oscillators. Physica D 114, 296–314. (doi:10.1016/S0167-2789(97)00197-8)

Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. & Spigler, R. 2005 The Kuramoto
model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185.
(doi:10.1103/RevModPhys.77.137)

Bagnoli, F. & Cecconi, F. 2001 Synchronization of non-chaotic dynamical systems. Phys. Lett. A
282, 9–17. (doi:10.1016/S0375-9601(01)00154-2)

Blasius, B., Huppert, A. & Stone, L. 1999 Complex dynamics and phase synchronization in spatially
extended ecological systems. Nature 399, 354–359. (doi:10:1038/20676)

Bottani, S. 1995 Pulse-coupled relaxation oscillators: from biological synchronization to self-
organized criticality. Phys. Rev. Lett. 74, 4189–4193. (doi:10.1103/PhysRevLett.74.4189)

Campbell, S. R., Wang, D. & Jayaprakash, C. 2004 Synchronization rates in classes of relaxation
oscillators. IEEE Trans. Neural Networks 15, 1027–1038. (doi:10.1109/TNN.2004.833134)

Chen, M., Shang, Y., Zou, Y. & Kurths, J. 2008 Synchronization in the Kuramoto model:
a dynamical gradient network approach. Phys. Rev. E 77, 027 101–027 104. (doi:10.1103/
PhysRevE.77.027101)

Chua, L. O. 1993 Complex dynamics and phase synchronization in spatially extended ecological
systems. J. Circ. Syst. Comp. 3, 93–108. (doi:10.1142/S0218126693000071)

Corral, A., Prez, C. J., Daz-Guilera, A. & Arenas, A. 1995 Self-organized criticality and
synchronization in a lattice model of integrate-and-fire oscillators. Phys. Rev. Lett. 74, 118–121.
(doi:10.1103/PhysRevLett.74.118)

Cosp, J., Madrenas, J., Alarcón, E., Vidal, E. & Villar, G. 2004 Synchronization of nonlinear
electronic oscillators for neural computation. IEEE Trans. Neural Networks 15, 1315–1327.
(doi:10.1109/TNN.2004.832808)

Phil. Trans. R. Soc. A (2009)

 on 21 July 2009rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1016/S0167-2789(97)00197-8
http://dx.doi.org/doi:10.1103/RevModPhys.77.137
http://dx.doi.org/doi:10.1016/S0375-9601(01)00154-2
http://dx.doi.org/doi:10:1038/20676
http://dx.doi.org/doi:10.1103/PhysRevLett.74.4189
http://dx.doi.org/doi:10.1109/TNN.2004.833134
http://dx.doi.org/doi:10.1103/PhysRevE.77.027101
http://dx.doi.org/doi:10.1103/PhysRevE.77.027101
http://dx.doi.org/doi:10.1142/S0218126693000071
http://dx.doi.org/doi:10.1103/PhysRevLett.74.118
http://dx.doi.org/doi:10.1109/TNN.2004.832808
http://rsta.royalsocietypublishing.org/


3280 N. Rubido et al.

Fukai, T. & Kanemura, S. 2000 Precisely timed transient synchronization by depressing synapses.
Neurocomputing 32–33, 133–140. (doi:10.1016/S0925-2312(00)00154-5)

Fukuda, H., Morimura, H. & Kai, S. 2005 Global synchronization in two-dimensional
lattices of discrete Belousov–Zhabotinsky oscillators. Physica D 205, 80–86. (doi:10.1016/
j.physd.2005.01.007)

Glass, L. 2001 Synchronization and rhythmic processes in biology. Nature 410, 277–284.
(doi:10.1038/35065745)

Guisset, J. L., Deneubourg, J. L. & Ramírez Ávila, G. M. 2002 The phase information associated
to synchronized electronic fireflies. (http://arxiv.org/abs/nlin/0206036)

Kittel, A., Parisi, J. & Pyragas, K. 1998 Generalized synchronization of chaos in electronic circuit
experiments. Physica D 112, 459–471. (doi:10.1016/S0167-2789(97)00186-3)

Kreuz, T., Mormann, F., Andrzejak, R. G., Kraskov, A., Lehnertz, K. & Grassberger, P. 2007
Measuring synchronization in coupled model systems: a comparison of different approaches.
Physica D 225, 29–42. (doi:10.1016/j.physd.2006.09.039)

Manrubia, S. C., Mikhailov, A. S. & Zanette, D. H. 2003 Emergence of dynamical order. Singapore:
World Scientific Publishing.

Masoller, C. & Martí, A. C. 2005 Random delays and the synchronization of chaotic maps. Phys.
Rev. Lett. 94, 134 102–134 104. (doi:10.1103/PhysRevLett/94.134102)

Masoller, C., Martí, A. C. & Zanette, D. H. 2003 Synchronization in an array of globally coupled
maps with delayed interactions. Physica A 325, 186–191. (doi:10.1016/S0378-4371(03)00197-3)

Mirollo, R. E. & Strogatz, S. H. 1990 Synchronization of pulse-coupled biological oscillators. SIAM
J. Appl. Math. 50, 1645–1662. (doi:10.1137/0150098)

Morgul, O. 2008 On the synchronization of logistic maps. Phys. Lett. A. 247, 391–396.
(doi:10.1016/S0375-9601(98)00576-3)

Murali, K., Lakshmanan, M. & Chua, L. O. 1995 Controlling and synchronization of chaos
in the simplest dissipative non-autonomous circuit. Int. J. Bifurcation Chaos 5, 563–571.
(doi:10.1142/S0218127495000466)

Neu, J. C. 1980 Large populations of coupled chemical oscillators. SIAM J. Appl. Math. 38, 305–316.
(doi:10.1137/0138026)

Pikovsky, A. & Maistrenko, Y. (eds) 2003 Synchronization: theory and application. Dordrecht, The
Netherlands: Kluwer Academic Publishers.

Pikovsky, A., Rosenblum, M. & Kurths, J. 2001 Synchronization: a universal concept in nonlinear
sciences. New York, NY: Cambridge University Press.

Pisarchik, A. N., Jaimes-Reátegui, R. & García-López, J. H. 2008 Synchronization of multistable
systems. Int. J. Bifurcation Chaos 18, 1801–1819. (doi:10.1142/S0218127408021385)

Politi, A., Livi, R., Oppo, G. L. & Kapral, R. 1993 Unpredictable behaviour in stable systems.
Europhys. Lett. 22, 571–576. (doi:10.1209/0295-5075/22/8/003)

Ramírez Ávila, G. M., Guisset, J. L. & Deneubourg, J. L. 2003 Synchronization in light-controlled
oscillators. Physica D 182, 254–273. (doi:10.1016/S0167-2789(03)00135-0)

Ramírez Ávila, G. M., Guisset, J. L. & Deneubourg, J. L. 2006 Synchronization and transients in
locally coupled light-controlled oscillators. [in Spanish]. Rev. Bol. Fis. 12, 1–7.

Ramírez Ávila, G. M., Guisset, J. L. & Deneubourg, J. L. 2007 Synchronous behavior in globally
pulse coupled identical relaxation oscillators. Rev. Bol. Fis. 13, 1–10. [In Spanish.]

Schäfer, C., Rosenblum, M. G., Abel, H.-H. & Kurths, J. 1999 Synchronization in the human
cardiorespiratory system. Phys. Rev. E 60, 857–870. (doi:10.1103/PhysRevE.60.857)

Strogatz, S. H. 2003 Sync: the emerging science of spontaneous order. New York, NY: Hyperion
Press.

Timme, M., Wolf, F. & Geisel, T. 2002 Coexistence of regular and irregular dynamics in
complex networks of pulse-coupled oscillators. Phys. Rev. Lett. 89, 258 701. (doi:10.1103/
PhysRevLett.89.258701)

Zumdieck, A., Timme, M., Geisel, T. & Wolf, F. 2004 Long chaotic transients in complex networks.
Phys. Rev. Lett. 93, 244 103–244 104. (doi:10.1103/PhysRevLett.93.244103)

Phil. Trans. R. Soc. A (2009)

 on 21 July 2009rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1016/S0925-2312(00)00154-5
http://dx.doi.org/doi:10.1016/j.physd.2005.01.007
http://dx.doi.org/doi:10.1016/j.physd.2005.01.007
http://dx.doi.org/doi:10.1038/35065745
http://arxiv.org/abs/nlin/0206036
http://dx.doi.org/doi:10.1016/S0167-2789(97)00186-3
http://dx.doi.org/doi:10.1016/j.physd.2006.09.039
http://dx.doi.org/doi:10.1103/PhysRevLett/94.134102
http://dx.doi.org/doi:10.1016/S0378-4371(03)00197-3
http://dx.doi.org/doi:10.1137/0150098
http://dx.doi.org/doi:10.1016/S0375-9601(98)00576-3
http://dx.doi.org/doi:10.1142/S0218127495000466
http://dx.doi.org/doi:10.1137/0138026
http://dx.doi.org/doi:10.1142/S0218127408021385
http://dx.doi.org/doi:10.1209/0295-5075/22/8/003
http://dx.doi.org/doi:10.1016/S0167-2789(03)00135-0
http://dx.doi.org/doi:10.1103/PhysRevE.60.857
http://dx.doi.org/doi:10.1103/PhysRevLett.89.258701
http://dx.doi.org/doi:10.1103/PhysRevLett.89.258701
http://dx.doi.org/doi:10.1103/PhysRevLett.93.244103
http://rsta.royalsocietypublishing.org/

	Experimental results on synchronization times and stable states in locally coupled light-controlled oscillators
	Introduction
	Light-coupled oscillator setup
	Experimentally determined synchronization times
	Phase locking and frequency entrainment
	Different initial conditions
	Stable configurations

	Numerical method
	Conclusions
	References


