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Abstract. We study a network of coupled logistic maps whose interactions occur with a certain distribution
of delay times. The local dynamics is chaotic in the absence of coupling and thus the network is a paradigm
of a complex system. There are two regimes of synchronization, depending on the distribution of delays:
when the delays are sufficiently heterogeneous the network synchronizes on a steady-state (that is unstable
for the uncoupled maps); when the delays are homogeneous, it synchronizes in a time-dependent state
(that is either periodic or chaotic). Using two global indicators we quantify the synchronizability on the
two regimes, focusing on the roles of the network connectivity and the topology. The connectivity is
measured in terms of the average number of links per node, and we consider various topologies (scale-free,
small-world, star, and nearest-neighbor with and without a central hub). With weak connectivity and weak
coupling strength, the network displays an irregular oscillatory dynamics that is largely independent of
the topology and of the delay distribution. With heterogeneous delays, we find a threshold connectivity
level below which the network does not synchronize, regardless of the network size. This minimum average
number of neighbors seems to be independent of the delay distribution. We also analyze the effect of self-
feedback loops and find that they have an impact on the synchronizability of small networks with large
coupling strengths. The influence of feedback, enhancing or degrading synchronization, depends on the
topology and on the distribution of delays.

PACS. 05.45.Xt Synchronization; coupled oscillators – 05.45.-a Nonlinear dynamics and chaos – 05.45.Ra
Coupled map lattices – 05.45.Pq Numerical simulations of chaotic systems

1 Introduction

Complex networks arise due to self-organization phenom-
ena in many real systems, such as food webs, the Inter-
net, social networks, genes, cells and neurons [1]. A lot
of research has been devoted to understanding the collec-
tive behavior emerging in complex networks [2], given the
individual dynamics of the nodes and the coupling archi-
tecture. Ecological webs, for example, describe species by
means of nodes connected by links, representing the inter-
actions. The interactions can be either direct or indirect
through intermediate species, and can be of antagonistic
type, such as predation, parasitism, etc., or mutually ben-
eficial, such as those involving the pollination of flowers
by insects [3]. A study of the network architecture decom-
pose food webs in spanning trees and loop-forming links,
revealing common principles underlying the organization
of different ecosystems [4]. Cells use metabolic networks of
interacting molecular components in processes that gener-
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ate mass, energy, information transfer and cell-fate speci-
fication [5]. Adaptation and robustness have been shown
to be consequences of the network’s connectivity and do
not require the ‘fine-tuning’ of parameters [6]. In a cat’s
brain, functional connectivity has been studied within the
framework of complex networks [7]. In the human brain,
magnetic resonance imaging has been used to extract
functional networks connecting correlated human brain
sites [8]. Analysis of the resulting networks in various tasks
(e.g., move a finger) has shown interesting features in the
brain, such as scale-free structure, a high clustering coef-
ficient, and a small characteristic path length.

Complex network are relevant not only from an aca-
demical point of view but also from an applied perspec-
tive. Models based on complex networks for the spread of
diseases have identified mitigation strategies for epidemic
spread. In [9] the spread of an infection was analyzed for
different population structures, ranging from ordered lat-
tices to random graphs, and it was shown that for the more
ordered structures, there was a fluctuating endemic state
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of low infection. In [10] it was shown that outbreaks can be
contained by a strategy of targeted vaccination combined
with early detection, thus avoiding mass vaccination of the
hole population. In communication networks, error toler-
ance and attack vulnerability are key issues. In [11] it was
shown that error tolerance is not shared by all networks
that contain redundant wiring, but is displayed only by
those with scale-free topology.

The structure of a network is a key issue in determining
its functional properties. In real networks communities,
or modules, associated with highly interconnected parts,
have been identified [12,13]. A nice example of a com-
munity structure has been unveil in networks of musical
tastes [14], having also practical applications for the de-
velopment of commercial music recommendation engines.

Well-characterized modules have been identified in
synthetic gene networks [15], where positive feedback and
noise play important roles for the repression and the acti-
vation of gene expression. An excitable module containing
positive and negative feedback loops has been identified
as a key mechanism inducing transient cellular differenti-
ation [16]. A method for classifying nodes into universal
roles according to their intra- and inter-module connec-
tions has been recently proposed [17] and applied to the
study metabolic networks.

The synchronizability of a network, or is propensity
for synchronization, is another key issue in determining
the network functional properties [18]. Why some topo-
logies are easier to synchronize than others, is still an
issue not fully understood. Heterogeneity in the connec-
tion strengths tends to enhance synchronization [19]. A
weighting procedure based upon the global structure of
network pathways has been shown to improve synchro-
nizability [20]. Dynamical adaptation, where the coupling
strengths develop according to the local synchronization
of the node and its neighbors, resulting in weighted cou-
pling strengths that are correlated with the topology, also
enhances synchronizability [21]. However, heterogeneity in
the connectivity distribution can have the opposite effect:
networks with homogeneous connectivity have been found
to have larger propensity for synchronization than the het-
erogeneous ones [22].

The speed of transmission of information among the
network also affects the synchronizability. Instantaneous
interactions have been studied a lot in spite of the fact
in many situations they are not realistic, because the in-
formation propagates with a finite speed. A more realis-
tic scenario considers that the links have associated delay
times, and that the delays are the same for all the links.
It has been shown that the presence of such uniform de-
lays in the communications among the nodes can result in
enhanced synchronizability. In [23] it was shown that, in
a network of chaotic maps, it was possible to synchronize
the delayed network where the undelayed network, with
instantaneous links, did not. Analytic results were pre-
sented for an arbitrary differentiable function mapping a
finite interval to itself, and were numerically demonstrated
for the case of the logistic map, with a value of the non-
linear parameter for which the map is fully chaotic.

Networks of coupled chaotic logistic maps have been
extensively studied in the literature (see, e.g., [23] and
references therein). The logistic map is a paradigmatic
model, originally proposed in 1976, in a seminal paper by
the biologist Robert May [24], as a nonlinear equation de-
scribing ecological systems where the populations display
oscillations that are erratic and irregular over time [25].
The map was one of the first examples of a simple equa-
tion having nontrivial dynamics, and it has been widely
used for characterizing the irregular oscillatory behavior
of many ecological systems. Because foodwebs and ecolog-
ical networks, describing interactions between species, are
known to exhibit characteristics typical of complex sys-
tems [3,4], the study of a network of chaotic logistic maps
can be interesting for a better understanding of patterns
arising in ecological systems. An advantage of the logistic
map is that, because of its simplicity, is computationally
efficient to simulate large ensembles of coupled maps. This
is particularly important in the presence of delays that sig-
nificantly increase the computation requirements.

An even more realistic approach for understanding
complex and disordered systems is to consider delays that
are heterogeneously distributed. In previous work [26,27]
we studied networks of coupled chaotic logistic maps with
heterogeneous links that have heterogenous delays, and
investigated the relation of the network topology with its
ability to synchronize. We found that (i) the synchroniz-
ability was enhanced by random delays as compared to
networks with uniform delays, (ii) the network synchro-
nized in a steady state in the presence of random delays
(in contrast, with uniform delays the synchronization is
in time a dependent state, [23]) and (iii) the synchroniz-
ability depends mainly on the mean connectivity and is
rather independent of the topology.

The aim of this paper is to further analyze how the syn-
chronizability depends on the connectivity and on the
topology, when there are delays in the links among the
nodes. We consider both regular and random network to-
pologies, covering the cases of homogeneous and heteroge-
neous distribution of the links. We also study the effects
of centrality and locality on the dynamics of the array.
We characterize the synchronizability in terms of two in-
dicators, one that tends to zero when the networks syn-
chronizes, regardless if the synchronization is in a time
dependent or in a steady state, and the other that tends
to zero only when the synchronization is in a steady state.
Using these indicators we also analyze the impact of self-
feedback links.

This paper is organized as follows. Section 2 presents
the model, the different distributions of delays, and sev-
eral topologies used. Section 3 presents the results of the
simulations, and, finally, Section 4 presents a summary
and the conclusions.

2 Model

We consider N logistic maps coupled as:

xi(t + 1) = (1 − ε)f [xi(t)] +
ε

bi

N∑

j=1

ηijf [xj(t − τij)], (1)
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where t is a discrete time index, i is a discrete spatial index
(i = 1 . . .N), f(x) = ax(1 − x) is the logistic map, ε is
the coupling strength and τij ≥ 0 is the delay time in the
interaction between the ith and jth nodes (the delay times
τij and τji need not be equal). The matrix η = (ηij) defines
the connectivity of the network: ηij = ηji = 1 if there is
a link between the ith and jth nodes, and zero otherwise.
The sum in equation (1) runs over the bi nodes which are
coupled to the ith node, bi =

∑
j ηij . The normalized pre-

factor 1/bi means that each map receives the same total
input from its neighbors.

A particularly simple solution of equation (1) is such
that all the maps of the network are in a fixed point of
the uncoupled map, i.e.,

xi(t) = x0 ∀i, (2)

with x0 = f(x0). While this solution exists for all delay
distributions (τij) and for all coupling topologies (ηij),
the statistical linear stability analysis performed in [26]
showed that this solution is unstable unless the distribu-
tion of delays is wide enough. In the other limiting case
of all-equal delays, τij = τ ∀i and j, it was shown in ref-
erence [23] that the network synchronizes isochronally, in
a spatially homogeneous time-dependent state:

xi(t) = x(t) ∀i, (3)

with x(t + 1) = (1 − ε)f [x(t)] + εf [x(t − τ)].

2.1 Distribution of delays

We consider delays distributed as: τij = τ0 + near(cξ),
where c is a parameter that allows varying the width of
the delay distribution; ξ is Gaussian distributed with zero
mean and standard deviation one; near denotes the near-
est integer. Depending on τ0 and c the distribution of de-
lays is truncated to avoid negative delays.

The synchonizability of the network depends on both,
the mean delay and the width of the delay distribu-
tion [26]. The larger the value of τ0, the larger the dis-
persion of the delays has to be, for the network to syn-
chronize in the steady state (see Fig. 3 of [26]). A similar
observation was recently reported in [34], for an integro-
differential equation describing the collective dynamics of
a neural network with distributed signal delays. An inter-
esting interpretation of both observations is provided by
the work of Morgado et al. [37]: a certain degree of ran-
domness in a network (due to random delays, random con-
nectivity, or even random initial conditions) results in ad-
ditive and/or multiplicative noise terms in an “effective”
single-node equation of motion for xi(t + 1), expressed in
terms of xi(t) and nonlinear feedback memory terms, that
for the Logistic map are of polynomial type in xi(t − n)
with 1 < n < t. In [37] it was found that the right mem-
ory profile can create optimal conditions for synchroniza-
tion, in other words, an optimal memory range enhances a
network propensity for synchronization. The relationship
between the stability of the steady state and the distri-
bution of delays was studied in detail in [35,36]. Based

on the Gershgorin theorem [35] and on the mathematical
structure of the Jacobian [36], necessary conditions were
found for the stable steady state, with the coefficients of
the equations being related to the delay distribution.

Since our aim is to study the roles of the topology
and of the connectivity, we keep fixed the distribution of
delays, defined by the parameters τ0 and c. However, we
compare the results obtained for distributed delays (c �= 0)
with those obtained for all-equal delays (c = 0) and with
those obtained for no delays (τ0 = 0, c = 0).

2.2 Network connectivity and topology

The connectivity of a network is measured in terms of the
average number of links per node,

〈b〉 =
1
N

N∑

i=1

bi. (4)

We consider the five topologies, three of them are regular
networks where the links are distributed deterministically
among the nodes, while the other two are heterogenous
networks where the links are distributed stochastically,
with given rules. The networks are:

(i) a nearest-neighbor network (referred to as NN net-
work) with periodic boundary conditions where each
node i is linked to its neighboring nodes i ± 1, i ±
2, ..., i ± K, with K an integer. The number of neigh-
bors is the same for all the nodes, and 〈b〉 = 2K;

(ii) the NN network with the addition of a central node
connected to all other nodes (referred to as ST net-
work). In this case, N −1 nodes have 2K +1 links and
one node has N − 1 links. Thus, 〈b〉 = [(2K + 1)(N −
1) + (N − 1)]/N = (2K + 2)(N − 1)/N ;

(iii) a star-type network where there are K central nodes
that are connected to all other nodes and N − K pe-
ripheric nodes that are connected only to the central
ones (referred to as KA). In this case, K nodes have
N − 1 links and N − K nodes have K links. Thus,
〈b〉 = [K(N − 1) + (N −K)K]/N . This network has a
pure star-type structure and is centrally organized, in
contrast to NN, that is locally organized;

(iv) a small-world (SW) network constructed according
to the Newman and Watts algorithm [28];

(v) a scale-free (SF) network constructed according to the
Barabasi and Albert method [29].

Recently, the influence of feedback loops on the synchro-
nization of complex systems has received attention. In net-
works of globally coupled units (self-sustained oscillators
or maps) delayed feedback in the mean field can, depend-
ing on the feedback strength and on the delay time, en-
hance or suppress synchronization [30]. In a system com-
posed by two phase oscillators with instantaneous mutual
coupling, a delayed feedback loop in each oscillator en-
hances synchronizability if the coupling strength is not
too strong, while degrades synchronizability if the cou-
pling exceeds a threshold value [31]. In small networks of
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mutually delayed-coupled oscillators, which typically do
not exhibit stable isochronal synchronization, by includ-
ing delayed feedback loops to the nodes, the oscillators
become isochronally synchronized [32,33]. To analyze the
relevance of feedback loops we consider two situations: the
diagonal elements of the coupling matrix, ηii, are all set
equal to 1, or are all set equal to 0. In this way, in each
node a feedback loop is included, or is forbidden. The de-
lays of the feedback loops, τii, have the same distribution
as the delays of the mutual interactions, τij .

2.3 Synchronization indicators

To characterize the degree of synchronization and to dis-
tinguish between steady state and time dependent syn-
chronization, we use the following indicators,

σ2 =
1
N

〈
∑

i

(xi − 〈x〉s)2
〉

t

(5)

σ′2 =
1
N

〈
∑

i

(xi − x0)2
〉

t

, (6)

where 〈.〉s denotes a space average over the nodes of the
network, 〈.〉t denotes a time average, and x0 is the fixed
point of the uncoupled logistic map, x0 = f(x0). σ2 = 0
if and only if xi = xj ∀i, j, while σ′2 = 0 if and only if
xi = x0 ∀i. Thus, σ′2 allows to distinguish synchroniza-
tion in the steady state from synchronization in an time
dependent state. In the former case, both σ2 and σ′2 are
zero, in the latter case, only σ2 = 0.

3 Results

In this section we present the results of the simulations.
We consider a network of N = 200 logistic maps with
a = 4 interacting with different topologies, as described
above. The parameters of the Gaussian delay distribution
are τ0 = 5 and c = 2. Similar results are found for other
values of τ0 and c, with c large enough [26]. To asses the
role of distributed delays, we compare with two limits: (i)
instantaneous coupling, τij = 0 ∀i, j, and (ii) homoge-
neous delays, τij = τ0 ∀i, j (c = 0).

The simulations start from a random initial configu-
ration, with xi(0) randomly distributed in [0,1], and the
maps evolve initially without coupling, during a time in-
terval 0 < t < max(τij), because the integration of delayed
equations requires the knowledge of the past state of the
system over a time interval given by the maximum delay.
After that, the coupling is turned on. We neglect transient
effects disregarding a few thousands of iterations.

Networks of coupled elements usually show multista-
bility: different initial conditions lead to different final
states, and delayed coupling tends to increase the number
of coexisting states [38,39]. Multistability is also enhanced
when the local dynamics of the uncoupled maps presents

two or more competing attractors [40], which does not oc-
cur for the logistic map with a = 41. When the coupling
is weak and the network is not synchronized, we observe
a large diversity of dynamical clustered states. However,
in this “weak coupling regime” the global synchronization
indicators, σ2 and σ′2, depend mainly on ε and only in a
small extend on the initial conditions, the distribution of
delays, the network topology and the connectivity (with
the exception of all-even delays, for them there is a syn-
chronization “island” that will be discussed below). In the
following, the plots of σ2 and σ′2 are done by averaging
over 10 different states generated from randomly chosen
initial conditions. The only exception is Figure 7, that is
done with just one initial condition (that is the same for
all ε).

In the first section we characterize the network propen-
sity for synchronization in terms of the indicator σ2; in the
second section, in terms of σ′2. In these two sections the
network does not contain self-feedback links (ηii = 0 ∀i).
In the last section we asses the role of feedback links, by
studying the same networks (with the same delay distri-
butions and topologies) but with a feedback link in each
node (ηii = 1 ∀i).

3.1 Characterization in terms of σ2

color-coded plots of the synchronization indicator σ2 as
a function of the coupling strength, ε, and the average
number of neighbors, 〈b〉, for the different topologies and
delay distributions.

Figure 1 displays results for the regular topologies
(NN: top row, ST: central row, KA: bottom row) and
the three distributions of delays considered (no-delays:
left column, homogeneous delays; central column, and dis-
tributed delays: right column). Figure 2 displays results
for the heterogeneous networks (SW: top row, SF: bot-
tom row) and the same delay distributions.

We observe a general trend towards synchronization
when increasing the coupling strength and the average
number of links. However we note some important differ-
ences depending on the topology and on the delays.

(i) Heterogeneous delays: if 〈b〉 is large enough, the syn-
chronizability does not dependent on the topology,
note the remarkable similarity of the five panels in the
right columns of Figures 1 and 2, for 〈b〉 � 10.

(ii) No-delays and homogeneous delays (left and central
columns in Figs. 1 and 2): the topology makes a sig-
nificant difference in regular networks (Fig. 1), and is

1 The uncoupled map with a = 4 is in the fully chaotic
regime. Being developed from a period-doubling bifurcation
sequence, a characteristic time-scale of the dynamics of the
uncoupled map is 2; however, the periodicity is weak because
the dynamics is chaotic and the power spectrum is broad (the
value a = 4 is far from the accumulation point of the period-
doubling cascade and the onset of chaos, that is at a = 3.57).
This characteristic time scale is smaller than the average delay
time considered here, which is equal to 5.
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Fig. 1. (Color online) Plot of σ2 in the parameter space (cou-
pling strength, average number of neighbors) for three net-
works with regular topologies: nearest-neighbors (NN), top
row, nearest-neighbors with central node (ST), middle row,
and bottom row K-to-all (KA). The delays are: zero (left col-
umn), homogeneous (τij = 5 ∀i and j, central column), and
heterogeneous (τ0 = 5, c = 2, right column).

less important in heterogenous networks (Fig. 2), al-
though some differences can be observed for small 〈b〉
(〈b〉 � 10).

(iii) Regular networks: in Figure 1, comparing the pan-
els in the right and central columns we notice that
the network KA (bottom row) is the one with bet-
ter propensity to synchronization, while the network
NN (top row) is the one exhibiting poorer synchro-
nizability. We also notice that ST (middle row) has
better synchronizability than NN when 〈b〉 is small,
but there are no significant differences between them
for large enough 〈b〉.
We note that for larger values of 〈b〉 (not shown in
Fig. 1 because we focus on the weak connectivity
region) the NN network eventually synchronizes. Syn-
chronization occurs for ε above a certain value, ε∗, that
decreases with increasing 〈b〉, in good agreement with
the results of reference [41] (see in particular Fig. 4b
of [41], where the variable α plays the role of 〈b〉 here;
increasing 〈b〉 resulting in a transition from local to
global coupling).

(iv) Heterogeneous networks: in Figure 2 we do not ob-
serve a significant difference: the panels in the top and
bottom rows are similar, at least for 〈b〉 > 5.

(v) With homogeneous delays, middle column in Figs. 1
and 2, there is an “island of synchronization” in the
region ε ∼ 0.15 to 0.19. In spite of the fact that the
coupling is weak, the network tends to synchronize, re-
gardless of the topology. This is due to the fact that
the delay times are even; for odd delays this synchro-
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Fig. 2. (Color online) Plot of the order parameter σ2, equa-
tion (5) in the parameter space (coupling strength, aver-
age number of neighbors) for two heterogeneous networks of
200 nodes: SW (small-world, top row), SF (scale-free, bottom
row). The delays are as in Figure 1: no-delays (left column), ho-
mogeneous delays (center column), and heterogeneous delays
(right column). Other parameters as Figure 1.

nization window does not exist (see, e.g., Fig. 1 in [23]
and Fig. 2 in [40]). In the middle column of Figures 1
and 2 we observe that the “synchronization island” is
robust and occurs for all the topologies.

The synchronization regions are also robust with respect
to the initial conditions. The plots of σ2 involve, as ex-
plained previously, an average over time and over the en-
semble of coupled maps, equation (5), and also, an av-
erage over states generated after different random initial
conditions for the uncoupled maps. The “synchronization
island” and the synchronization region for large coupling
are the same regardless of the number of averaged initial
conditions, but the boundaries of these regions are not
well defined if just one initial condition is considered. In
other words, the number of initial conditions mainly in-
fluences the boundaries of the regions: in the 2D plots the
boundaries become well defined only when results from
simulations of several initial conditions are averaged. This
evidences multistability near the synchronization bound-
aries: some conditions result in synchronized states, while
others, in desynchronized states.

3.2 Characterization in terms of σ′2

In order to investigate in more detail the two synchroniza-
tion regimes (time-dependent and fixed-point synchro-
nization) now we consider the synchronization indicator
σ′2, equation (6), that tends to zero only when the net-
work synchronizes in the fixed point. Figures 3 and 4 dis-
play color-coded plots of σ′2 as a function of the coupling
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Fig. 3. (Color online) Plot of the order parameter σ′2, equation (6) in the parameter space (coupling strength, average number
of neighbors) for three networks with regular topologies: nearest-neighbors (NN), top row, nearest-neighbors with central node
(ST), middle row, and nearest-neighbors with two central nodes (KA). Parameters are as in Figure 1.

0 0.5 1

5

10

15

0

0.05

0.1

0.15

0.2

0 0.5 1

5

10

15

0 0.5 1

5

10

15

ε

<
b>

0 0.5 1

5

10

15

0 0.5 1

5

10

15

0 0.5 1

5

10

15

Fig. 4. (Color online) Plot of σ′2 in the parameter space (coupling strength, average number of neighbors) for three heterogeneous
networks: SW (small-world, top row), RN (random network, middle row), SF (scale-free, bottom row); and the different delay
distributions; instantaneous (left column), homogeneous delays (center column), and heterogeneous delays (right column).
Parameters are as in Figure 1.

strength, ε, and the average number of neighbors, 〈b〉, for
the same delay distributions and network topologies as
Figures 2 and 3 respectively.

In the case of heterogenous delays, again we notice a re-
markable similarity in the five panels in the right columns
of Figures 3 and 4 for 〈b〉 large enough, confirming that the
synchronizability of the network is largely independent of
its topology. However, we note that for the topology KA
(bottom panel, right column in Fig. 3) the network losses
synchrony if the coupling is too strong (ε ≈ 1).

Regular networks: comparing the panels in the right
and central columns of Figure 3, we can notice that the

network KA (bottom row) is the one with poorer synchro-
nizability in the steady-state.

Heterogenous networks: in Figure 4 is observed that
the SW and SF topologies have very similar propensity
for synchronization in the steady-state.

It can be noticed that, as the average number of links
per node and the coupling strength increase, the networks
with heterogenous delays tend to synchronize in the steady
state, while the networks with no-delays or with homoge-
nous delays do not (in Figs. 3 and 4, compare the left and
central columns with the right column). This tendency
is particularly clear in heterogeneous networks, Figure 4,
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Fig. 5. (Color online) Plot of σ2 (left column) and σ′2 (right
column) in logarithmic scale, in the parameter space (normal-
ized width of the delay distribution, c/τ0, average connectivity,
〈b〉) for three system sizes: N = 200 (top row), N = 400 (mid-
dle row), and N = 800 (bottom row). Parameters are τ0 = 5
and ε = 1, SW topology.

where in the left and in the central columns σ′2 is large for
〈b〉 ≥ 15 and ε ≥ 0.8 (right, bottom corner of the panels),
while in the panels of the right column, σ′2 is zero or very
small in that region.

The “synchronization island” discussed in the previous
section is not observed in Figures 3 and 4 because in this
“island” the network synchronizes in a time-dependent
state that has σ′2 different from zero.

3.3 Connectivity threshold

In the presence of heterogeneous delays, it can be expected
that the average number of neighbors has to be above a
certain value for the distribution of delays to play an ef-
fective role. This is indeed shown in Figure 5, where we
plot the synchronization indicators σ2 and σ′2 in the plane
(c/τ0, 〈b〉) for various network sizes and the SW topology.
σ2 and σ′2 are here plotted on a logarithmic scale to reveal
the following features of the synchronization transition:
for connectivity below 〈b〉 ≈ 10, the network does not syn-
chronize, regardless of the network size and of the width of
the delay distribution. Similar results are found for other
values of ε and τ0. For 〈b〉 ≥ 10, as c increases and the de-
lays become more heterogeneously distributed there is a
sharp transition to isochronous synchronization, reveled in
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Fig. 6. (Color online) Plot of σ2 (top row) and σ
′2 (bottom

row) vs. the coupling strength for a NN network with two
neighbors per node and a feedback link (solid line), for the same
ring without feedback links (dot-dashed line, blue online) and
for the ST network composed by the ring plus a central node
(dashed line, red online). The delays and other parameters are
as in the previous figures: no-delays (left column), homoge-
neous delays (central column) and heterogeneous delays (right
column).

the plot of σ2 (left column), which shows a sharp boundary
between the dark and light regions, at c/τ0 slightly below
0.5. The smooth transition seen in the plot of σ′2 (right
column) reveals that initially the network does not syn-
chronize in the fixed point but in a time-dependent state,
and as c increases and the delay distribution enlarges, it
gradually approaches the fixed point.

3.4 Influence of self-feedback links

We assess the effect of self-feedback links by setting ηii =
1 ∀i, in the previously studied network topologies.

In a large enough network (as the one studied so far,
with N = 200 maps), the simulations show that feedback
links have a small influence on the network synchroniz-
ability when the connectivity is low (when 〈b〉 � 0.5N),
and their effect is negligible when 〈b〉 is larger. With 2D
color-coded plots is difficult to appreciate the influence of
the feedback links; therefore, we plot in Figure 6 the global
synchronization indicators vs. the coupling strength, for a
fixed value of 〈b〉, that is as low as possible.

We consider three regular topologies: (i) a ring with
two neighbors per node and a self-feedback link in each
node (black solid line); (ii) the same ring without the self-
feedback links (dot-dashed line, blue online); and (iii) a
ST network composed by the ring with two neighbors per
node (without self-feedback links) and a centrally con-
nected node (dashed line, red online). It can be noticed
that with no delays and with uniform delays (left and



90 The European Physical Journal B

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

ε

σ2

0 0.2 0.4 0.6 0.8 1

0

0.05

0.1

ε

σ2
σ2

Fig. 7. (Color online) Synchronization in-
dicator σ2 for a small network without
feedback loops (left column), and with
feedback loops (right column). The delay
distributions are: no delays (top row), fixed
delays (middle row), and distributed de-
lays (bottom row). The topologies are: a
nearest-neighbors ring with N = 20 nodes
(black), a N = 20 ring with the addition
of a central node (red) and a pure star net-
work composed by a central hub connected
to N = 20 nodes (blue).

5 10 15 20
9900

9920

9940

9960

9980

5 10 15 20
9900

9920

9940

9960

9980

5 10 15 20
9900

9920

9940

9960

9980

5 10 15 20
9900

9920

9940

9960

9980

i

t

5 10 15 20
9900

9920

9940

9960

9980

i
5 10 15 20

9900

9920

9940

9960

9980

Fig. 8. (Color online) Synchronization pat-
terns with instantaneous interactions. The
network topologies are: a nearest-neighbors
ring of N = 20 nodes (top row); a N = 20
nearest-neighbors ring with the addition of
a central node (middle row) and a star net-
work composed by a central hub connected
to N = 20 nodes (bottom row). With-
out feedback loops (left column), with feed-
back loops (right column). The coupling
strength is ε = 1.

central columns in Fig. 6), the ST network synchronizes
for ε large enough, while the ring, with and without self-
feedback links, does not. With randomly distributed de-
lays (right column in Fig. 6), the three networks do not
synchronize for any value of ε.

Let us now consider the influence of feedback links in
a smaller network of N = 20 maps. Figure 7 displays the
global synchronization indicator while Figues 8–10 present
some examples of the space and time evolution of the net-

work. The figures are done by representing in a color scale
the variable xi(t), with the space index i on the horizon-
tal axis and the time index t on the vertical axis. The
left column of Figures 8–10 shows results for networks
without feedback loops, and the right column, for the
same networks with feedback loops. A relevant effect of
the feedback can be observed on both, the global macro-
scopic indicator and on the microscopic network configura-
tion. There are situations in which feedback loops enhance
coherence, giving rise to spatially more ordered patterns
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Fig. 9. (Color online) Synchronization pat-
terns with homogeneous delays (τ0 = 5,
c = 0). The network topologies are as in
Figure 8.
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Fig. 10. (Color online) Synchronization
patterns with heterogeneous delays (τ0 =
5, c = 2). The network topologies are as
in Figures 8 and 9.

(e.g., in Fig. 8, top and bottom row), while in others, on
the contrary, feedback loops destroy the spatial coherence
of the pattern (e.g., in Fig. 10). Interestingly, it can be
observed that with random delays, Figure 10, the syn-
chronization is not always on a homogeneous state, but
there are also static patterns with spatial “antiphase” ar-
rangement. These patterns are static in both, space and
time: the spatial arrangement is fixed in time, and the
state of a map is also fixed in time, resulting in verti-
cal lines in the space-time plots (Figs. 8 and 10, center-

left captions). The mechanism generating these patterns
is currently under investigation. Since these patterns ap-
pear at large coupling strength, their origin could be re-
lated to that of oscillation dead, where the oscillations
stop in all units. Antiphased oscillatory states, coexisting
with a single fixed-point attractor, were recently reported
in an ensemble of limit-cycle oscillators with global repul-
sive coupling [42]. The behavior resembles the one found
here also because in [42] the fixed-point is the only stable
attractor if the coupling is strong enough.
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It is also interesting to notice that when the coupling
strength is small (roughly speaking, when ε < 0.2) the de-
pendence of the global synchronization indicators σ2 and
σ′2 with ε, shown in Figures 6 and 7, is very similar. This
suggests that the global dynamics is almost independent
of the topology, the connectivity, the network size and the
delay distribution. We refer to this region as the “weak
coupling” region. It has been recently shown that in this
region all the nodes exhibit a qualitatively similar sym-
bolic dynamics, that, for instantaneous interactions, de-
pends mainly on the network architecture and only to a
small extent, on the local dynamics [43].

4 Summary and conclusion

We studied the synchronizability of a network focusing on
the roles of the connectivity, the topology, and the de-
lay times that are associated with the links. The nodes
were modeled by chaotic logistic maps, and various to-
pologies and delay distributions were considered. For low
connectivity (roughly speaking, when the mean number
of links per node is 〈b〉 < 0.1N), and for weak coupling
(ε < 0.1), the network displays an irregular oscillatory dy-
namics, regardless of the network topology and the delay
distribution. For large enough connectivity and coupling,
the synchronization is mainly determined by the delay
times: when the delays are homogeneously distributed the
network shows collective synchronous time-dependent os-
cillations; when the delays are sufficiently distributed, the
network synchronizes in a spatially homogeneous steady-
state. The propensity towards these two synchronization
regimes was characterized in terms of two indicators, σ2

and σ′2 [Eqs. (5) and (6)], the first one tends to zero when
the network synchronizes isochronously (xi(t) = xj(t)
∀i, j), while the second one tends to zero only when the
network synchronizes in the steady state (xi(t) = x0 ∀i,
with x0 = f(x0) being the fixed point of the uncoupled
maps).

When the coupling strength is weak the dependence
of the synchronization indicators with ε is very similar
for all topologies and delay distributions considered. This
suggest that in this region of “weak coupling” the net-
work topology and the delay distribution play no relevant
role in the dynamics. However, is important to remark
that the global synchronization indicators employed, σ2

and σ′2, have the limitation that they characterize only
isochronal synchronization and steady-state synchroniza-
tion respectively. In a complex network where the inter-
actions among the units are not instantaneous, other syn-
chronization patterns are also expected, such as states
where the nodes are synchronized but with lag-times be-
tween them [44,45]. An interesting indicator to analyze in
future studies is the one that measures the average dis-
tance between the present state of a map and the delayed
state of the maps interacting with it:

σ2 = (1/N)
∑

i

(1/bi)
∑

j

ηij〈(xi(t) − xj(t − τij))2〉t.

Also, it will be very interesting to analyze synchronization
patterns using symbolic dynamics [43] and complexity in-
dicators [46,47].

With heterogeneous delays we also found that there
is a connectivity threshold below which the network does
not synchronize, regardless of the network size. This min-
imum average number of neighbors is also independent of
the delay distribution. Above the minimum connectivity
level, as the width of the distribution increases, the plot of
σ2 reveals that there is a sharp transition to isochronous
synchronization, while the plot of σ′2 reveals that the net-
work does not synchronize in the fixed point but in a
time-dependent state, that gradually approaches the fixed
point as the delays become more heterogeneous. Simula-
tions were preformed for SW topology; the study of how
this connectivity threshold depends on the network topol-
ogy is in progress and will be reported elsewhere.

We studied the influence of feedback loops in each node
of the network; these feedback loops having the same de-
lay distribution as the mutual interactions, and found that
when the network is large, feedback loops have very little
impact on the global synchronization indicators. However,
they affect synchronizability of small networks, enhancing
or degrading the synchronization, depending on the net-
work architecture and on the delay distribution. As a fu-
ture study it will be interesting to analyze the interplay of
delayed feedback with instantaneous mutual coupling and
vice-versa, instantaneous feedback with delayed coupling.
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mission (GABA project, FP6-NEST 043309).

References

1. S.H. Strogatz, Nature 410, 268 (2001)
2. See the special issue Pramana J. Phys. 70, 1

(2008): Proceedings of the Conference and Workshop on
Perspectives in Nonlinear Dynamics (2007)

3. J.M. Montoya, S.L. Pimm, R.V. Sole, Nature 442, 259
(2006)

4. D. Garlaschelli, G. Caldarelli, L. Pietronero, Nature 423,
165 (2003)

5. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.L.
Barabasi, Nature 407, 651 (2000)

6. N. Barkai, S. Leibler, Nature 387, 913 (1997)
7. C.S. Zhou, L. Zemanova, G. Zamora et al., Phys. Rev.

Lett. 97, 238103 (2006)
8. V.M. Eguiluz, D.R. Chialvo, G.A. Cecchi, M. Baliki, A.V.

Apkarian, Phys. Rev. Lett. 94, 018102 (2005)
9. M. Kuperman, G. Abramson, Phys. Rev. Lett. 86, 2909

(2001)
10. S. Eubank, H. Guclu, V.S.A. Kumar, M.V. Marathe, A.

Srinivasan, Z. Toroczkai, N. Wang, Nature 429, 180 (2004)
11. R. Albert, H. Jeong, A.L. Barabasi, Nature 406, 378

(2000)
12. G. Palla, I. Derenyi, I. Farkas, T. Vicsek, Nature 435, 814

(2005)



M. Ponce C. et al.: Synchronizability of chaotic logistic maps in delayed complex networks 93

13. J.M. Kumpula, J.P. Onnela, J. Saramaki et al., Phys. Rev.
Lett. 99, 228701 (2007)

14. J.M. Buldu, P. Cano, M. Koppenberger, J.A. Almendral,
S. Boccaletti, New J. Phys. 9, 172 (2007)

15. N.J. Guido, X. Wang, D. Adalsteinsson, D. McMillen, J.
Hasty, C.R. Cantor, T.C. Elston, J.J. Collins, Nature 439,
856 (2006)

16. G.M. Suel, J. Garcia-Ojalvo, L.M. Liberman, M.B.
Elowitz, Nature 440, 545 (2006)

17. R. Guimera, L.A.N. Amaral, Nature 433, 895 (2005)
18. S.C. Manrubia, A.S. Mikhailov, D.H. Zanette, Emergence

of Dynamical Order. Synchronization Phenomena in
Complex Systems (World Scientific, Singapore, 2004)

19. A.E. Motter, C. Zhou, J. Kurths, Phys. Rev. E 71, 016116
(2005)

20. M. Chavez, D.U. Hwang, A. Amann, H.G.E. Hentschel, S.
Boccaletti, Phys. Rev. Lett. 94, 218701 (2005)

21. C.S. Zhou, J. Kurths, Phys. Rev. Lett. 96, 164102 (2006)
22. T. Nishikawa, A.E. Motter, Y.C. Lai et al., Phys. Rev.

Lett. 91, 014101 (2003)
23. F.M. Atay, J. Jost, A. Wende, Phys. Rev. Lett. 92, 144101

(2004)
24. R.M. May, Nature 261, 459 (1976)
25. The logistic map captures two key effects in population dy-

namics: (i) grow (the reproduction of a population will in-
crease at a rate proportional to the present population size
when the population size is small) and (ii) starvation (the
growth rate will decrease at a rate proportional to the value
obtained by taking the “carrying capacity” of the environ-
ment less the population size). The Logistic Map displays,
depending on a parameter (which represents the combined
rate for reproduction and starvation), either population ex-
tinction, stable population, periodic or chaotic oscillations

26. C. Masoller, A.C. Mart́ı, Phys. Rev. Lett. 94, 134102
(2005)

27. A.C. Mart́ı, M. Ponce, C. Masoller, Physica A 371, 104
(2006)

28. M.E.J. Newman, D.J. Watts, Phys. Rev. E 60, 7332
(1999); M.E.J. Newman, D.J. Watts, Phys. Lett. A 263,
341 (1999)

29. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)
30. M.G. Rosenblum, A.G. Pikovsky, Phys. Rev. Lett. 92,

114102 (2004)
31. O.V. Popovych, V. Krachkovskyi, P.A. Tass, Int. J. Bif.

Chaos 17, 2517 (2007)
32. E. Klein, N. Gross, M. Rosenbluh, W. Kinzel, L.

Khaykovich, I. Kanter, Phys. Rev. E 76, 066214 (2006)
33. I.B. Schwartz, L.B. Shaw, Phys. Rev. E 75, 046207 (2007)
34. T. Omi, S. Shinomoto, Phys. Rev. E 77, 046214 (2008)
35. A.C. Mart́ı, M. Ponce, C. Masoller, Phys. Rev. E 72,

066217 (2005)
36. X. Gong, S. Guan, X. Wang, C.-H. Lai, Phys. Rev. E 77,

056212 (2008)
37. R. Morgado, M. Ciesla, L. Longa, F.A. Oliveira, Europhys.

Lett. 79, 10002 (2007)
38. S. Kim, S.H. Park, C.S. Ryu, Phys. Rev. Lett. 79, 2911

(1997)
39. A. Roxin, N. Brunel, D. Hansel, Phys. Rev. Lett. 94,

238103 (2005)
40. P.G. Lind, A. Nunes, J.A.C. Gallas, Physica A 371, 100

(2006)
41. R.L. Viana, C. Grebogi, S.E. de S. Pinto, S.R. Lopes, A.M.

Batista, J. Kurths, Physica D 206, 94 (2005)
42. E. Ullner, A. Zaikin, E.I. Volkov, J. Garcia-Ojalvo, Phys.

Rev. Lett. 99, 148103 (2007)
43. S. Jalan, J. Jost, F.M. Atay, Chaos 16, 033124 (2006)
44. C. Masoller, A.C. Mart́ı, D.H. Zanette, Physica A 325,

186 (2003)
45. C.M. Gonzalez, C. Masoller, C. Torrent, J. Garcia-Ojalvo,

Europhys. Lett. 79, 64003 (2007)
46. J.R. Sanchez, R. Lopez-Ruiz, Physica A 355, 633 (2005)
47. O.A. Rosso, H.A. Larrondo, M.T. Martin, A. Plastino,

M.A. Fuentes, Phys. Rev. Lett. 99, 154102 (2007)


