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The investigation of regular and irregular patterns in nonlinear oscillators is an outstanding problem in
physics and in all natural sciences. In general, regularity is understood as tantamount to periodicity.
However, there is now a flurry of works proving the existence of ‘‘antiperiodicity’’, an unfamiliar type of
regularity. Here we report the experimental observation and numerical corroboration of antiperiodic
oscillations. In contrast to the isolated solutions presently known, we report infinite hierarchies of
antiperiodic waveforms that can be tuned continuously and that form wide spiral-shaped stability phases in
the control parameter plane. The waveform complexity increases towards the focal point common to all
spirals, a key hub interconnecting them all.

S
ince the realization that the century-old causal determinism of Boskovic and Laplace needed amendment
due to the discovery of deterministic chaos, much effort was devoted during the last few decades to study the
intricacies involving the interplay between regular and irregular oscillations produced by nonlinear sys-

tems. Traditionally, the emphasis has been in the study of the irregular chaotic oscillations. However, there is a
whole class of remarkably regular oscillations that has so far escaped attention, namely antiperiodic oscillations. A
quantity x(t) is said to evolve periodically when x(t 1 T) 5 x(t), where T is the period between repetitions. The less
familiar class of antiperiodic oscillations that we study here obeys the relation x(t 1 T) 5 2x(t). Clearly, every
antiperiodic pattern with antiperiod T is necessarily a periodic pattern with period 2T. Trivial examples of
antiperiodicity are the trigonometric solutions of the harmonic oscillator _x~y, _y~{x, which satisfy the text-
book identities sin(t 1 p) 5 2sin t, or cos(t 1 p) 5 2cos t, where p is the antiperiod and 2p is the period of the
oscillations. The system of differential equations defining these trivial solutions is linear and too simple to be
flexible enough for a number of applications: it generates only a single wave pattern and allows no changes to it
other than rather uninteresting amplitude and/or frequency changes.

Antiperiodicity is known in physics. For instance, Matsubara1,2 used this concept in the 1950s when calculating
expectation values of physical observables of a quantum field theory at finite temperature, in the requirement that
all bosonic and fermionic fields be periodic and antiperiodic, respectively. During the last two decades, antiper-
iodic problems were spotted and studied extensively in a number of fields. For example, for first-order ordinary
differential equations, the classic criterion of Massera3 for periodicity was extended for antiperiodic boundary
value problems by Y. Chen4,5. From antiperiodic boundary conditions, the interest shifted to the study of
antiperiodic oscillations. Antiperiodicity was investigated for the heat equation6, for second-order Duffing-like7

and pendulum-like8 oscillators, and several other systems9,10. Antiperiodic wavelets were discussed by T. Chen11.
Antiperiodic solutions for higher-order nonlinear ordinary differential equations are known but for a few specific
systems8,12. Smooth antiperiodic solutions are also known for quasi-linear partial differential equations13. These
works contain references to additional papers dealing with antiperiodic solutions discovered for a plethora of
nonlinear equations.

Results
So far, the knowledge accumulated about antiperiodic oscillations dealt substantially with providing existence
proofs of isolated solutions for low-order equations under specific conditions, or for higher-order equations with
somewhat contrived ad-hoc forms. Furthermore, the majority of flows studied involve driven (i.e. non-
autonomous) systems. All this means that the study of antiperiodicity is still in its infancy and only a few sparse
antiperiodic solutions are known for some particular equations.

Here, we report the experimental observation and numerical corroboration of apparently infinite sequences of
such elusive antiperiodic oscillations in an autonomous electronic circuit (Fig. 1). Our key discovery is that the
complexification of currents and voltages in the circuit occurs mediated by infinite families of self-sustained
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antiperiodic oscillations that can be tuned continuously as a function
of the physical reactances involved. Nowadays, periodic waveforms
are the rule in nonlinear systems while oscillators capable of support-
ing families of tunable antiperiodic waveforms with an unbounded
number of peaks within an oscillation are completely unheard of. We
detected tunable antiperiodicity while studying the complicated
mechanisms underlying the progressive wave pattern complexifica-
tion generated by the electronic circuit during period-doubling and
period-adding cascades of bifurcations.

As depicted in Fig. 1, our circuit involves two active elements, a
nonlinear resistor R and a negative conductance G. It descends from
a circuit considered by Chua and Lin14 and Stoupoulos et al.15. Our
implementation contains a slight variation introduced to account for
saturation effects of the real operational amplifier used in G. All
phenomena observed with our modified circuit can be also observed
in a circuit with ideal elements. For more details about the circuit, see
Methods, below.

Figure 2 presents typical experimental signals obtained for the
voltage v1(t) on the capacitor C1 as a function of the resistance R1

while maintaining all other parameters constant. From this figure we
recognize the characteristic signature of antiperiodic oscillations,
namely

v1 tð Þ~{v1 tzT=2ð Þ ð1Þ

where T/2 is the antiperiod and T is the period of the oscillation.
From Fig. 2 it is easy to recognize that an antiperiodic function with
antiperiod T is necessarily a periodic function with period 2T.
Identical antiperiodicity is detected in measurements of v2, i1, or i2

(not shown). For all variables, we could follow the signal up to quite
large number of spikes.

Figure 3 shows for v1, v2, i1, i2 the first few of an infinite sequence
of antiperiodic oscillations. Such patterns were obtained from

numerical integration when varying two parameters (given in the
leftmost column) simultaneously. These oscillations have an odd
number of spikes. Furthermore, the amplitude of the temporal evo-
lutions of v2 (in the second column from the left) labeled s0, s2, is
slightly smaller than the ones labeled s1 and s3. The same is true for i2

in the rightmost column.
To understand how antiperiodic patterns depend on R1 and R2 we

performed an additional numerical experiment, studying the vari-
ation of the number of peaks systematically on a 2400 3 2400 5 5.76
3 106 rectangular grid of equally spaced parameter points. The cir-
cuit equations were integrated with a standard fourth-order Runge-
Kutta algorithm with fixed time-step h 5 1026 s, starting computa-
tions always from a fixed initial condition v1 5 8 V, v2 5 25 V, i1 5

21 mA, i2 5 3 mA. The first 80 3 105 integration steps were dis-
carded as transient. The chaotic/periodic/antiperiodic nature of solu-
tions was determined and recorded in so-called isospike diagrams16:
after the transient we integrated for an additional 80 3 105 time-steps
and recorded extrema (maxima and minima) of a given variable of
interest, up to 800 extrema, counting the number of peaks and check-
ing whether for repetitions. Such high-resolution computations are
numerically very demanding and, therefore, were performed on a
SGI Altix cluster of 1536 high-performance processors running dur-
ing a period of several weeks to compute many stability diagrams,
three of them presented in Fig. 4.

Figure 4 shows stability diagrams indicating how the number of
peaks within one period of v2(t) self-organize in control space. As
indicated by the colorbars, a palette of 17 colors is used to represent
the number of peaks in one period of the oscillations. Patterns with
more than 17 peaks are plotted by recycling the 17 basic colors
modulo 17, namely assigning to them a color-index given by the
remainder of the integer division of the number of peaks by 17.
Multiples of 17 are given the index 17. Black represents ‘‘chaos’’
(i.e. lack of numerically detectable periodicity/antiperiodicity), white
and gold colors mark constant (i.e. non-oscillatory) solutions, if any,
having respectively non-zero or zero amplitudes of the variable
under consideration.

The stability diagrams in Fig. 4 show that self-sustained non-
chaotic (i.e. periodic or antiperiodic) oscillations manifest them-
selves by forming a main spiral phase converging to a focal hub
and paving the control space with a multitude of colors. The colors
indicate how the number of peaks increases and where exactly do
they change along the spiral. From Fig. 4 one also sees that the
number of peaks in v2(t) increases steadily by 2 after every turn
towards the focal hub. Furthermore, while the period seems to accu-
mulate to a definite limiting value, the number of peaks grows appar-
ently without bound. From Fig. 4 it is also possible to recognize the
presence of several additional secondary spirals sandwiched between
every turn of the main spiral. From additional magnifications (not

Figure 1 | Schematic representation of the circuit used to measure the
antiperiodic oscillations. This circuit is governed by the differential

equations C1dv1/dt 5 i1 2 iR(v1), C2dv2/dt 5 2i1 2 i2 2 iG(v2), L1di1/dt 5

v2 2 v1 2 i1R1, L2 di2/dt 5 v2 2 i2R2. The v-i characteristics of iR(v1) and

iG(v2) are odd-symmetric functions given in the text.

Figure 2 | Experimental recordings of v1(t) (volts per ms) illustrating the successive complexification of antiperiodic wave patterns in the oscillator in
Fig. 1, obtained when fixing L1 5 9.8 mH, L2 5 23.7 mH, R2 5 155 V, and increasing R1 5 2143 V (3 peaks), 2175 V (5 peaks), 2224 V (7 peaks), 2288
V (9 peaks), 2298 V (11 peaks), 2313 V (13 peaks). Note differences in time scales.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1958 | DOI: 10.1038/srep01958 2



shown here) it is possible to recognize unambiguously an apparently
unbounded hierarchy of such secondary spirals, that get thinner and
thinner as one approaches more and more the focal hub. This hier-
archical organization of spirals is similar to the one found recently in
other physical oscillators17.

In Fig. 4(b) one sees that the edges, or legs, composing the main
spiral display a certain angularity that becomes smoother and
smoother near the hub, as it is clear from Fig. 4(c). This non-
uniformity has to do, we believe, with the high-dimensionality of
the parameter hypersurface defined by the flow: although motivated
by experiments15, the parameters which were held fixed simply do
not produce an optimal section of the hypersurface so as to reflect
more regular and symmetric spirals. An optimization of all para-
meters involved would consume enormous amount of time and,
therefore, was not attempted. It is important to mention, however,

that in addition to the R2 3 R1 control parameter plane, we also
observed antiperiodic oscillations to induce similar spirals in other
control planes, e.g. C1 3 R1 and C1 3 C2. Since resistances are easier
to control experimentally than capacitances we preferred to focus
here on the R2 3 R1 plane. Antiperiodic patterns evolve continuously
when parameters are suitably tuned along spirals. Furthermore, not
only the period and the number of peaks but also the amplitude of the
oscillations vary regularly when spiraling towards the hub.

Discussion
What is the mechanism responsible for the regular addition of peaks
observed along the spiral? We find that such complexification occurs
through continuous deformations of the wave patterns, analogously
as described recently for a CO2 laser with feedback18 a system that,
however, does not show antiperiodicity and has no spirals in its

Figure 3 | Sequences of antiperiodic waveforms displaying the complexification of v1, v2, i1, i2 when two parameters are suitably tuned. Voltages are

measured in V, currents in mA, Ri in V and T in ms. The time scales, parameters, and periods in the leftmost column apply to all panels in the same row.

Labels si refer to the four parameter points marked by white dots in Fig. 4(a) and corresponds to turning points along the spiral phase shown in that figure.

Figure 4 | (a) The spiral phase of self-sustained antiperiodic oscillations. Colors denote the number of peaks within one period of v2(t). Black denotes

chaos, i.e. lack of numerically detectable repetitions. (b) Magnification of the box in (a) illustrating turning points with high odd-number of spikes (given

by the numbers). Note the strong compression of the spiral phase embedded in the wide black background of chaos. (c) Magnification of the box in (b)

showing the monotonous convergence towards the focal hub, the accumulation point approached when cycling the spiral anti-clockwisely, where

periodic oscillations should have an infinite number of peaks within one period. Each individual panel displays the analysis of 2400 3 2400 5 5.76 3 106

parameter points. The resistances R1 and R2 are measured in V.
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control space. For antiperiodicity to subsist indefinitely along the
spirals as patterns get more and more complicated, it is necessary
that wave pattern deformations occur in pairs, simultaneously. While
odd-spiked antiperiodic oscillations were observed along the spiral,
not all odd-spiked oscillations lead to antiperiodic oscillations. For
instance, the wide one-spike phase seen on the top right corner of
Fig. 4(a) is characterized by periodic oscillations (not by antiperio-
dicity). The same is true for the infinite peak-doubling cascades k 3
2m issuing from a region of oscillations with k peaks.

Thus far our description was based on counting the number of
peaks in the voltage v2(t). What happens when other variables are
used to count peaks? Do the peaks of all four variables evolve in
unison? Additional numerical work (not presented here) shows that,
although each variable produces parameter sub-divisions, phases,
having their own idiosyncrasies, the picture described for v2(t)
remains basically unchanged. Changes in the number of peaks
may, or not, require a complete turn along the spiral. Furthermore,
the precise location where changes occur may vary slightly, depend-
ing on the variable considered. An attempt to uncover the system-
atics behind all possible changes would only make sense after solving
the aforementioned parameter optimization problem. This optim-
ization, of course, is not needed for our present purpose of re-
porting the discovery of infinite families of the elusive antiperiodic
oscillations.

In what sort of systems can one expect to find antiperiodicity? The
dissipative flow governing our circuit can be written compactly as dx/
dt 5 f(x), where x 5 (v1, v2, i1, i2), and the four components of f(x) are
given explicitly in the caption of Fig. 1. From these components we
recognize that the flow is odd-symmetric, namely that f(2x) 5

2f(x). We have also observed similar antiperiodicity scenarios in
another circuit, containing two diodes as a nonlinear resistance,
and in a few flows constructed ad-hoc to display this symmetry.
This makes us believe that antiperiodicity should be present for a
whole class of nonlinear oscillators having such symmetry. Thus,
odd-symmetry of the flow seems to be a key ingredient for the onset
of antiperiodic oscillations although, as already mentioned, not every
regular oscillation with odd-number of peaks in odd-symmetric
flows is necessarily antiperiodic. General mathematical conditions
concerning periodicity are known19. It would be nice to extend them
to take antiperiodicity into account, something that does not seem
to be completely trivial to do. For a given set of parameters, the ability
to predict whether oscillations will be antiperiodic or periodic
seems to be a quite hard mathematical problem that needs to be
investigated.

In conclusion, we presented experimental and numerical evidence
of the existence of infinite families of tunable antiperiodic oscillations
in a real-life physical oscillator and extended what is presently known
about such remarkably interesting oscillations. We believe tunable
families of antiperiodic oscillations to be a generic feature for an
extended class of oscillators. Antiperiodicity remains unexplored in
nonlinear dynamics, is potentially interesting for applications and
certainly deserves further study.

Methods
The active nonlinear elements R and G of the circuit in Fig. 1 are represented by the
following odd symmetric v-i characteristics

iR v1ð Þ~Gcv1z Ga{Gbð Þ v1zE1p

�� ��{ v1{E1p

�� ��� ��
2

z Gb{Gcð Þ v1zE2p

�� ��{ v1{E2p

�� ��� ��
2,

iG v2ð Þ~Gbbv2z Gaa{Gbbð Þ v2zEbj j{ v2{Ebj jð Þ=2:

Here, parameters are functions of the electronic components. So, Eb depends of the
output voltage swing, Vsat, of the operational amplifier, and of its input voltage, Vcc.
The slopes Ga and Gb also depend on the non-zero forward voltage Vc of the diodes,
modeled here as an ideal diode and a battery. Unless otherwise stated, we follow
previous works14,15 and fix L1 5 9.8 mH, L2 5 20.6 mH, C2 5 2C1 5 12 nF, E1p 5

2.5 V, E2p 5 11 V, Eb 5 7.5 V, Ga 5 20.7 mS, Gb 5 20.5 mS, Gc 5 3.35 mS, Gaa 5

20.5 mS, and Gbb 5 0.5 mS.
Our circuit uses fast commuting 1N4148 diodes and TL084 operational amplifiers.

The chip of the op-amps consists of four amplifiers such that the circuit could be
easily mounted on a board and the nonlinear resistances R and G implemented using
nearly identical operational amplifiers. The 1N4148 has a maximum recovery time of
4 ns and is usually employed in high-frequency applications. The input voltage of the
operational amplifier was maintained constant along the experiment at Vcc 5 15.0 6

0.6 V. The other relevant parameters are Vc 5 0.65 6 0.06 V and Vsat 5 12.7 6 0.9 V.

1. Matsubara, T. A new approach to quantum-statistical mechanics. Prog. Theor.
Phys. 14, 351–378 (1955).

2. Coleman, P. Many Body Physics (Cambridge University Press, Cambridge, 2013).
3. Massera, J. L. The existence of periodic solutions of systems of differential

equations. Duke J. Math. 17, 457–475 (1950).
4. Chen, Y. Q. On Massera’s theorem for antiperiodic solution. Adv. Math. Sci. Appl.

9, 125–128 (1999).
5. Liu, B. An antiperiodic LaSalle oscillation theorem for a class of functional

differential equations. J. Comp. Appl. Math. 223, 1081–1086 (2009).
6. Okochi, H. On the existence of anti-periodic solutions to a nonlinear evolution

equation associated with odd subdifferential operators. J. Func. Anal. 91, 246–258
(1990).

7. Pu, H. & Yang, J. Existence of antiperiodic solutions with symmetry for some
high-order ordinary differential equations. Bound. Val. Prob. 108 (2012), and
references therein.

8. Chen, T., Liu, W. & Yang, C. Antiperiodic solutions for Liénard-type differential
equation with p-Laplacian operator. Bound. Val. Prob. 194824 (2010), and
references therein.

9. Girardi, M. & Matzeu, M. Existence of periodic solutions for some second order
Hamiltonian systems. Rend. Lincei Mat. Appl. 18, 1–9 (2007).

10. Cheng, Y., Cong, F. & Hua, H. Antiperiodic solutions for nonlinear evolution
equations. Adv. Diff. Eq. 165, (2012), and references therein.

11. Chen, H. L. Antiperiodic wavelets. J. Comp. Math. 14, 32–39 (1996).
12. Chen, T. & Liu, W. Antiperiodic solutions for higher-order Liénard type

differential equation with p-Laplacian operator. Bull. Korean Math. Soc. 49,
455–563 (2012), and references therein.

13. Nakao, M. & Okochi, H. Antiperiodic solution for ttt 2 (s(ux))x 2 uxxt 5 f(x, t).
J. Math. Anal. Appl. 197, 796–809 (1996).

14. Chua, L. & Lin, G. N. Canonical realization of Chua’s circuit family. IEEE Trans.
Circ. Syst. 37, 885–902 (1990).

15. Stoupoulos, I. N., Miliou, A. N., Valaristos, A. P., Kyprianidis, I. M. &
Anagnostopoulos, A. N. Crisis induced intermittency in a fourth-order
autonomous electric circuit. Chaos Sol. Frac. 33, 1256–1262 (2007), and
references therein.
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Antiperiodic oscillations. Sci. Rep. 3, 1958; DOI:10.1038/srep01958 (2013).

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1958 | DOI: 10.1038/srep01958 4

http://creativecommons.org/licenses/by-nc-nd/3.0

	Title
	Figure 1 Schematic representation of the circuit used to measure the antiperiodic oscillations.
	Figure 2 Experimental recordings of v1(t) (volts per ms) illustrating the successive complexification of antiperiodic wave patterns in the oscillator in Fig. 1, obtained when fixing L1 = 9.8&emsp14;mH, L2 = 23.7&emsp14;mH, R2 = 155 &OHgr;, and increasing R1 = 2143 &OHgr; (3 peaks), 2175 &OHgr; (5 peaks), 2224 &OHgr; (7 peaks), 2288 &OHgr; (9 peaks), 2298 &OHgr; (11 peaks), 2313 &OHgr; (13 peaks).
	Figure 3 Sequences of antiperiodic waveforms displaying the complexification of v1, v2, i1, i2 when two parameters are suitably tuned.
	Figure 4 
	References

