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Abstract

We report a theoretical and experimental study of the scattering of an ultrasonic wave by a
vortical #ow. The #ow consists of a completely ,lled cylinder driven by the constant rotation of
the two end walls. The angular momentum generated by the disk rotation is concentrated in a
strong axial vortex. The scattering of an incident ultrasonic wave allow us to obtain information
about the #ow. The frequency of the incident wave is assumed to be high in comparison with
typical frequencies of the #ow. An integro-di4erential equation is obtained from the full Navier–
Stokes equations describing the interaction of the #ow and the ultrasonic wave. Using the Born
approximation we obtain a wave equation with source which can be numerically integrated or, in
some particular cases, be analytically solved. We numerically identify the regions of the vortical
#ow that contribute most to the scattered wave. The dependence of the scattered pressure on
the scattering angle is also studied. Finally, we compare the numerical results with experimental
data.
c© 2003 Elsevier B.V. All rights reserved.
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The problem of the #ow inside a cylinder with rotating end-walls has received a lot
of attention over the years (see for example Ref. [1] and references therein). In the
present paper, we analyze this system by means of ultrasound scattering. We restrict
our analysis to the case where the angular velocity of the two end walls is the same
and the lateral wall is at rest.
Ultrasound scattering by vortical #ow has been intensively studied theoretically, ex-

perimentally and numerically [2]. In particular, the scattering of sound waves by iso-
lated vortices has been extensively studied [3]. However, studies of vortices of ,nite
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length and non-vanishing boundary conditions are scarce. There are previous results
[4] that apply to simpli,ed situations where the vorticity is assumed to vanish at the
boundaries, typically isolated vortices. In such a case, a linear relation between the
scattered acoustic pressure and the vorticity ,eld can be obtained. In this contribution,
we consider a more realistic problem where this relation does not hold because the
velocity and vorticity do not vanish at the boundaries.
We consider an incompressible #ow with velocity u(x; t), vorticity !(x; t) and den-

sity �0. We are interested in the interaction of the #ow u(x; t) with an incident acoustic
plane wave with velocity vinc=v0 cos(k0 ·x−�0t) and the corresponding density �inc and
pressure pinc. We assume that the amplitude of the perturbation is small compared with
the typical velocity scale and the Mach number is also small, |v0|�|u|�c= �0=k0. The
typical frequency associated with u(x; t) is small compared with �0. We also assume
that the process is isentropic.
In the vortical region, the sound wave induces high-frequency vibrations that produce

sound. The full #ow can be decomposed as the sum of the #ow in the absence of
sound and the perturbation produced by the sound wave, U(x; t) = u + u′ and similar
decompositions for the density and the pressure.
The interaction of a #ow with an acoustic wave can be studied using the Navier–

Stokes equations for a compressible medium [4]. Assuming that the incident wave has
high frequency and low intensity, it is possible to derive a wave equation with source
for the scattered pressure p′

12

c
92p′

9t2 −∇2p′ = �0∇ · ((u · ∇)u)−∇�′ · 9u9t +S(u; u′); (1)

where

S(u; u′) = �0[∇2(u · vinc)− vinc · ∇2u + u · ∇2vinc]: (2)

The ,rst term at the r.h.s. of Eq. (1) represents the generation of sound by the velocity
,eld in the absence of any incident wave. The typical frequency of the two ,rst terms
is much smaller than that of the incident wave. We focus our attention in the last term
representing the interaction of sound and #ow.
Since the scattered pressure is small in comparison with the incident pressure, we

solve the integro-di4erential equation using the Born approximation, obtaining

p′ = pinc + G ∗S(u; vinc); (3)

where G ∗ S(u; vinc) is the convolution product of the free Green function, G(x −
x′; t − t′) = [1=(4�|x − x′|)]�(t − t′ − |x − x′|=c), with the source, s′ = S(u; vinc),
where the perturbation has been substituted by the incident wave and the low-frequency
contributions have been neglected. The scattered pressure p′ at a point x and time t
obtained from Eq. (3) is

p′ = pinc +
∫
V
d3x′

s′

4�|x− x′| ; (4)

where s′ is evaluated at a point x′ and time tret= t−|x−x′|=c and V is the integration
volume. Given an arbitrary velocity ,eld, the last equation can be discretized and
integrated obtaining the scattered pressure.
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Fig. 1. Maxima of the scattered pressure vs. the scattering angle for di4erent velocity ,elds. (a) RV
(solid line), MRV (dashed line) and (b) NS, Re = 2550. The parameter values are: R0 = 0:2, R=H = 2,
�0 = 80 kHz; � = 100 Hz; Nr = N� = Nz = 100.

The integration volume is a cylinder of radius R and height H with the top and bot-
tom walls rotating at angular velocity �. It is convenient to use cylindrical coordinates
r; �; z with the origin at the center of the bottom wall. We have chosen for the dis-
cretization a cylindrical grid with elementary spacings, �r , ��, and �z and Nr×N�×Nz
elements.
Three di4erent velocity ,elds have been used. The ,rst velocity ,eld correspond to

a Rankine vortex (RV) with an abrupt cut-o4 in the boundary, de,ned by

u�(r) =




�r r6R0;

�R20=r R0¡r¡R;

0 r¿R;

(5)

where R0 is the length of the core and ur = uz = 0. By modifying only the azimuthal
velocity in the irrotational region we obtain the modi,ed Rankine vortex (MRV)

u�(r) =
�R20

R2 − R20
(R2=r − r); R0¡r¡R: (6)

The last one correspond to a numerical three-dimensional solution of the Navier–
Stokes equation at moderate Reynolds number [5].
In Fig. 1, we plot the maxima of the scattered pressure vs. the scattering angle

for the three velocity ,elds mentioned. We observe that the curves are similar. As a
consequence, this angular dependence is robust against variations of the velocity ,eld.
From the analytical expression of the scattered pressure we observe that in the special
cases of forward (�=0) or back scattering (�=�), due to the symmetry of the source
term (see Eqs. (2)–(4)) the scattered pressure must be zero. In addition, it is easy to
see that the relation pmax(�) = pmax(2�− �) holds. However, note that a naive use of
the formulae obtained by Lund and Rojas [4] for an isolated vortex does not verify
these relations.
It is interesting to calculate the regions of the #ow that contribute most to the

scattered pressure. After ,xating the observation point, the scattered pressure receives
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Fig. 2. Spatial dependence of the temporal average of the squared pressure, p2
cont(r), (solid lines) and

azimuthal velocity, u� (dashed lines). Both magnitudes have been averaged over the scattering angle.
(a) MRV and (b) NS. The parameter values are the same as in Fig. 1.

contributions from all the points in the domain at the di4erent times considered. First,
we make a temporal average of the squared pressure and next we average in the
azimuthal and longitudinal coordinates obtaining p2

cont(r). In Fig. 2, we plot p2
cont(r) for

the velocity ,elds considered. We note that in all the cases, the regions that contribute
most are the regions where there are strong variations in the azimuthal velocity and
axial vorticity.
The experimental apparatus, a cylindrical vessel ,lled with water, is similar to the

one used by Dernoncourt et al. [6]. Two dc-motors are used to drive smooth disks of
radius R = 9:9 cm at a constant rotation rate. The rotation frequency, frot = �=(2�),
varied from 200 to 770 rpm, is controlled by two secondary dc-motors. The Reynolds
number, Re = �R2L=$, where $ is the viscosity of the #uid, ranges from 2 × 105 to
8×105. The emitter and receiver piezoelectric transducers, made in our laboratory, are
located in a plane perpendicular to the rotation axis. We have chosen transducer with
a central frequency at 340 kHz in order to obtain a central wave length around 4 cm.
This fact minimizes the bubble in#uences and allow the use of the Born approximation.
We work in an impulsional mode to detect the scatter signal of the vortex under
better conditions. The experimental results are obtained for three di4erent scattering
angles (�=4; �=2, and 3�=4). Since the amplitude of the scattered signal of vortex is
very small (near level noise), we must amplify it with an ENI (A) power ampli,er
(20 KHz–10 MHz) and digitalize it using an HP 54600B − 100 MHz oscilloscope.
Fig. 3 shows the temporal signal of the scattered sound for di4erent scattering angles.
We observe here the main trends obtained in the numerical calculations. Indeed, in
Fig. 3(a) (� = �) the signal detected is essentially noise, while for � = �=2 (b) and
�= �=4 (c) the amplitude increases according to Fig. 1.
Summarizing, we have obtained the theoretical angular dependence of the scattered

pressure and have identi,ed the regions that contribute most to it. The experimental
results agree qualitatively with the numerical results. Further work is in progress to
make a more quantitative comparison between experiments and theory.
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Fig. 3. Time windows of the experimental scattered sound signal, Re = 7:0 × 105. (a) � = �, (b) � = �=2
and (c) � = �=4.
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