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[1] A methodology is presented to linearly correct the
tendency of sea surface temperature (SST) anomalies in a
coupled model. Using an atmospheric general circulation
model (AGCM) coupled to a slab ocean as an example, we
demonstrate the effectiveness of the linear correction
methodology in improving the model’s skill predicting SST
in the tropical Atlantic Ocean during boreal spring. For this
particular coupled model, the correction mainly takes into
consideration the linear ocean dynamics absent in the slab
ocean, thereby improving the skill in the tropical south and
equatorial Atlantic. The corrected coupled model is further
shown to produce a skillful rainfall forecast in the
intertropical convergence zone (ITCZ) region during the
boreal spring. INDEX TERMS: 4215 Oceanography: General:

Climate and interannual variability (3309); 4263 Oceanography:

General: Ocean prediction; 3339 Meteorology and Atmospheric

Dynamics: Ocean/atmosphere interactions (0312, 4504).
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1. Introduction

[2] Systematic errors in coupled atmosphere-oceanmodels
are known to be one of the major obstacles to seasonal
climate prediction. Various techniques have been developed
to reduce these coupled model systematic errors. Yang
and Anderson [1999], for example, develop a method in
which the systematic initial tendency error of the model is
subtracted from the prognostic equations. Chen et al. [2000]
describe an approach to correct the bias of a coupled model
when the errors are linearly related to the model state. Here,
we propose a technique based on Linear Inverse Modeling
(LIM) [Penland and Sardeshmukh, 1995]. It assumes that
the systematic error in the tendency can be separated
linearly into a deterministic part that can be linearized
around the state vector and a random part that can be
parameterized as a white noise process. Therefore, the
tendency error of the coupled model is corrected by
adding a term that is linearly related to the state vector.
This methodology can be applied to any coupled model,
provided that the model’s deterministic physics obeys
approximately linear dynamics.
[3] To best illustrate how this technique works, in this

paper we show some results of a prediction study in the

tropical Atlantic sector using an AGCM coupled to a
slab ocean. By construction, the model has systematic
biases in its deterministic dynamics because the slab
ocean has no ocean dynamics. We show that the linear
correction procedure successfully corrects the model biases
in the regions where ocean dynamics are expected to be
important.
[4] In a recent study, Chang et al. [2003] (hereafter CSJ)

show that SST anomalies in the tropical north Atlantic
(TNA) can be predicted two seasons in advance using an
AGCM coupled to a slab ocean, owing to the combined
effect of the remote ENSO influence and local thermody-
namic air-sea feedbacks. But in the tropical south and
equatorial Atlantic, the simple coupled model revealed poor
skills and under-performed the persistence forecast. Here we
use CSJ’s results as a reference with the exception that the
prediction and verification period is expanded from 1959 to
2000. We focus on February–May, the peak months of the
gradient mode of variability in the tropical Atlantic [Chiang
et al., 2002], allowing us to investigate the importance of
ocean dynamics in its evolution.

2. Linear Tendency Correction Technique

[5] The general approach for correcting the tendency
error of a coupled model consists of introducing a term to
the prognostic equations, which is assumed to be linearly
related to the prognostic variables. The dynamical operator
governing the correction is derived based on LIM. Here we
illustrate the methodology by correcting the SST tendency
of an AGCM coupled to a slab ocean.
[6] The governing equation for the SST anomaly, T, is

given by @T
@t = Q, where Q is the net surface heat flux

anomaly divided by the heat capacity of the mixed layer
(variables denote ensemble mean quantities). We assume
the following: (i) the predicted Q can be separated addi-
tively into two parts: one that is related to the SST (QS(T)),
and a second part that is due to internal atmospheric
variability (QN) considered here as white noise; (ii) the
observed SST anomaly obeys a similar equation with
Q̂S(T̂) (the ‘‘hat’’ denotes observed quantities); and
(iii) the heat flux anomaly is linearly related to
the SST anomaly according to QS(T) = AT and Q̂S(T̂) =
ÂT̂, where A and Â are the linear operators (matrices) in
the model and observations, respectively. These matrices are
different because Â includes not only ocean-atmosphere
feedbacks, but also a contribution from ocean dynamics.
Our goal is to derive a matrix B, such that A + B
approximates Â as close as possible.
[7] To find B we first construct an equation for the

prediction error � = T̂ � T by taking the difference
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between the equations for observed and predicted SST.
This leads to

@�

@t
¼ Â�þ BTþ z; ð1Þ

where z is white noise. Since the initial prediction error is
zero, evaluating (1) at t = 0 states that the initial tendency
of the prediction error is linearly related to the initial
temperature (T(0)), and the operator that links the two
quantities is the undetermined linear ocean dynamics. In
reality, B also represents systematic errors in the atmo-
spheric fluxes of the model and the use of a constant
mixed layer. We assume that these are smaller, so that B
mainly represents the missing ocean dynamics. Integrating
(1) between zero and a small lead time t, and multiplying
the result by T(0) allows to calculate B as the coefficient
matrix of a multivariate linear regression

B ¼ 1

t
� tð ÞT 0ð Þt
� �

T 0ð ÞT 0ð Þt
� ��1

: ð2Þ

Once B is determined, we incorporate it into the model as
a linear correction. Thus, in a linear framework

@T

@t
¼ ATþ BTþQN ’ ÂTþQN: ð3Þ

Matrix B is generally non-diagonal, and thus the correction
introduced in the slab ocean is non-local. That is, changes
of SST in one location due to BT depend on SST
anomalies in other locations. This property is essential to
represent dynamical ocean processes, which can affect
remote areas through advection or wave propagation.

3. Model and Present Application

[8] We used (as CSJ) the CCM3 AGCM developed at
NCAR coupled to a slab ocean with annual mean mixed
layer depth taken from Levitus [1994]. The CCM3 has T42
horizontal resolution and 19 vertical levels [Kiehl et al.,
1998]. To assure a correct simulation of the annual cycle of
SST, the slab ocean uses a ‘‘Q-flux’’ correction that
accounts for the missing climatological ocean dynamics.
[9] CSJ performed two sets of prediction experiments.

They initialized the coupled model with global (PGIC
experiment) and Atlantic-only (30�S–60�N, PAIC experi-
ment) observed December SST and integrated forward for
9 months. A 10-member ensemble was constructed for
each case using different initial atmospheric conditions
derived from the NCEP reanalysis dataset. To test the
correction technique we repeated the 10-member ensemble
of predictions initialized with global SST but with the term
BT in the equation of the slab ocean. This new experiment,
hereafter called CPGIC, was carried out only for the period
1981 to 2000, because of concern over data quality in the
southern hemisphere prior to 1981 when satellite-derived
SST was not available.
[10] Calculating B involves choosing t and finding

the inverse of the December SST covariance matrix (see

equation (2)). This matrix is singular because we only have
20 years of data, and the degree of the singularity increases
with the spatial domain considered. To avoid spurious
numerical errors, it is necessary to invert the matrix in a
truncated state vector space and limit the spatial domain to a
manageable size. This prompts us to choose carefully the
region to correct. We decided to focus on the equatorial
and tropical south Atlantic (ETSA) region, where ocean
dynamics are expected to be most important and the
standard coupled model of CSJ shows the lowest skill.
The results shown below are based on the correction applied
to an ETSA region defined by (50�W–20�E, 20�S–5�N),
which contains 167 spatial points.
[11] We truncated the SST in terms of Empirical

Orthogonal Functions (EOFs) of the December observed
SST. We then found the best B in the parameter space
of EOFs and t as follows. Assuming SST obeys (3), the
SST at time t, T(t), can be predicted from the initial
condition T(0) as

T tð Þ ¼ e AþBð ÞtT 0ð Þ: ð4Þ

We calculated A from a 100-year control run of the CCM3/
slab ocean model applying LIM. Matrix B, in turn, is
calculated following (2) for several pairs of EOF truncation
and t values. The SST prediction error of the PAIC
experiment is used to avoid possible remote influences from
the tropical Pacific. Next we use (4) to predict SST. We
choose t and EOF truncation such that this linear prediction
is best optimized according to the following two measures
of prediction skill in the ETSA region: the normalized error
variance of predicted SST, and the correlation skill during
April-May-June. These criteria lead to an EOF truncation
number of four (82% of total variance), and a lead time of
one month, t = 1. The resulting matrix B is non-diagonal.
Moreover, the leading normal mode has largest weight in
the cold tongue and equatorial regions, and is similar to the
SST pattern of the zonal mode, which has been largely
attributed to ocean dynamics [Zebiak, 1993]. These results
were found using the prediction error from 1959 to 2000.
Using a jackknifing procedure, where estimates of the
correction matrix B were calculated leaving out the years
for validation did not significantly change the indices of
prediction skill and led to the same choice of parameters.
After several sensitivity tests, we concluded that the
characteristics of matrix B are robust, and decided to
calculate it using all available years. The ‘‘a posteriori’’
result that the best B is found for the smallest possible value
of t is satisfying, because (2) was derived in the limit of
very small t. Since B is calculated using the prediction error
at t = 1, the predicted January SST from the standard model
is used. Thus, the corrected predictions, strictly speaking,
can be considered to start in January, because one needs
both December and January to construct B. Note, however,
that we focus on the months of February to May, which are
not used for training the model. Moreover, we show below
that the effect of the correction is not just a one-month shift
in the prediction skill of the model, but the corrected model
performs consistently better than the standard one.
[12] The next section compares CPGIC with PGIC from

1981 to 2000. The skill of the models is obtained
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by validating the ensemble mean against observations,
focusing on SST and precipitation. We use the data set of
Smith et al. [1996] for SST, and the Xie-Arkin data set for
precipitation.

4. Results

[13] Figure 1 shows the standard deviation of SST for
PGIC, CPGIC and observations in the equatorial region. The
correction enhances the SST variance along the equator with
the right seasonality, peaking in June like the observations,
although it is not able to capture the full amplitude. The
prediction experiments begin to differ at the end of the boreal
spring season, hinting at the importance of ocean dynamics
in this period. Variability is also enhanced along the Angolan
coast in the CPGIC experiment.
[14] We considered February–March (FM) and April–

May (AM) as the growing and decaying phases of the
gradient mode, respectively. The SST correlation skill of
PGIC and CPGIC during FM and AM is shown in Figure 2.
In the TNA the experiments show very similar skill. In the
ETSA, on the other hand, CPGIC is clearly superior to
PGIC. This is particularly true during AM when CPGIC
shows large areas with correlations larger than 0.45
(95% significance level) which are absent in PGIC. The
higher skill of CPGIC in the ETSA also holds into the
following season (not shown).
[15] To further compare the predictions we constructed an

index to characterize the gradient mode. This so-called
gradient index is defined as the SST difference between
the regions defined by (50�–20�W, 4�–14�N) and (35�–
5�W, 4�–14�S). Figure 2e compares the correlation between
the predicted and observed gradient index against the skill
of the persistence forecast. Both experiments beat persis-
tence after February. The standard prediction (PGIC), how-
ever, shows a correlation skill of about r = 0.44 from
February to July that is just below the 95% significance
level. The corrected prediction (CPGIC), on the other
hand, is able to predict the gradient index up to July with
a peak correlation value of r ’ 0.75 during April–May
(99% significant). CPGIC also has smaller root mean square
(RMS) error (Figure 2f). The higher skill in predicting
the SST gradient improves the predicted equatorial wind
stress, particularly the meridional component (ty). The
correlation between predicted and NCEP reanalysis ty
averaged over (50�–10�W, 5�S–5�N) peaks in late spring
with a correlation of 0.61 (0.44) and 0.56 (0.39) in CPGIC
(PGIC) during April and May, respectively. These anoma-

lous cross-equatorial winds change the location of moisture
convergence shifting the ITCZ toward warm waters, a
characteristic of the gradient mode [Chiang et al., 2002].
To describe this shift we constructed a rainfall index as the
difference between anomalies in the centers of action of the
leading EOF of precipitation in the tropical Atlantic from
February to May. As for SST and ty, the correlation between
predicted and observed rainfall indices is largest in late
spring with values of 0.64 (0.23) and 0.71 (0.44) in CPGIC
(PGIC) during April and May, respectively. Figure 3 shows
the rainfall correlation maps in the period 1982–2000.
During FM the experiments have similar skill, with CPGIC
showing larger correlations overall. In AM, the corrected
experiment predicts the variability of the Atlantic ITCZ
across the whole basin with significant skill. PGIC, on the
other hand, shows some skill in predicting rainfall variations
associated with the ITCZ mainly north of the equator, and in
northeastern Brazil. The better prediction of SST, ty and
rainfall suggests that CPGIC captures the dynamics of the
gradient mode very well.
[16] We next looked at the covariability of rainfall and

SST prediction errors during March-April-May [Goddard
and Mason, 2002], using a joint singular value decomposi-
tion (SVD) analysis. Rainfall prediction errors are defined
as the difference between the predicted rainfall and the
simulated rainfall when observed SST is imposed as a
boundary condition for the CCM3 (GOGA runs). The
SST error is defined as the predicted SST minus the
observed SST. The analysis is performed from 1982 to

Figure 1. Standard deviation of SST in the region (30�W–
5�E, 5�S–5�N) for observations (solid line), PGIC (dashed-
dotted line), and CPGIC (dashed line). The standard
deviation in the experiments is calculated over the
concatenated 10 ensemble members.

Figure 2. SST correlation skill of PGIC and CPGIC for
Feb–Mar (upper panels), and Apr–May (middle panels).
Shaded contours are 0.3, 0.45, 0.6 and 0.75. The boxes in
(d) indicate the regions used to construct the gradient index.
(e) Correlation between predicted and observed gradient
index for PGIC (dashed-dotted line), and CPGIC (dashed
line). Persistence forecast is shown as a solid line. The
horizontal line denotes the 95% significance level. (f) RMS
error of the gradient index for PGIC (dashed-dotted line)
and CPGIC (dashed line).
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1994, the common period shared by the prediction runs and
the GOGA integrations.
[17] The leading SVD of covarying prediction errors for

PGIC is shown in Figures 4a and 4b (61% of squared
covariance). The associated time series are correlated at r =
0.95, but show no correlation with SST outside the tropical
Atlantic. Thus, errors in the predicted rainfall are, to first
order, dependent on the local SST, and consist of a shift of
the ITCZ driven by a large cross-equatorial gradient. Since
the standard model lacks ocean dynamics, it tends to
exaggerate the importance of feedbacks between the SST
and surface heat fluxes, thus favoring SST evolution with
dipole-like characteristics. The leading SVD of prediction
errors for CPGIC explains 71% of the squared covariance
and the time series are correlated at r = 0.84. The error in the
predicted rainfall no longer shows a dipole pattern, and the
covarying SST error has an SST gradient confined west of
20�W (Figures 4c and 4d). This suggests that ocean
dynamics tend to oppose the thermodynamic feedback,
reducing the SST errors in the equatorial and cold tongue
regions. The time series associated with the SVD are
correlated (95% significant) with simultaneous SST predic-
tion errors in the tropical Pacific. Also, the symmetric
rainfall pattern of Figure 4d is reminiscent of the direct
ENSO influence on the Atlantic ITCZ through an anoma-
lous Walker circulation [Chiang et al., 2002], further
suggesting that first order rainfall errors in CPGIC involve
not only local processes, but also remote influences.

5. Summary

[18] This study presents a new general technique to
correct the tendency of SST anomalies of a coupled model.
Here, we applied the approach to a system consisting of an
AGCM coupled to a slab ocean designed to predict tropical
Atlantic SST during boreal spring. In this case, the tech-
nique introduces a statistical correction to the slab ocean
that parameterizes the heat transport due to anomalous
linear ocean dynamics. Results indicate that the correction
is successful in improving the prediction in the ETSA, and
points to the importance of ocean dynamics in the prediction
of tropical Atlantic SST.

[19] The experiments further suggest that the role of
ocean dynamics (correction) during boreal spring is that
of weakening the thermodynamic air-sea coupling between
SST and heat flux in the equatorial region. The effect is
strongest toward the end of the spring season, and seems to
be important for the decay of the gradient mode. This is
consistent with previous studies of the role of ocean
dynamics in regulating the SSTs associated with the
gradient mode of variability [Chiang et al., 2002]. Barreiro
et al. [2004] further investigate the dynamics included in the
correction.
[20] As a consequence of the improved SST prediction,

particularly the cross-equatorial gradient, the corrected
coupled model shows high skill in predicting rainfall
anomalies in the ITCZ region during spring across the
Atlantic basin. This offers an encouraging perspective for
seasonal climate prediction in the tropical Atlantic sector
during boreal spring using a one-tier prediction system.
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