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Abstract The sensitivity of the precipitation response in
the South Atlantic convergence zone (SACZ) to sea
surface temperature (SST) anomaly is investigated by an
inter-model comparison study of ensembles of multi-
decadal integrations of two atmospheric general circu-
lation models (AGCMs)—version 1 of the NASA
Seasonal-to-Interannual Prediction Project (NSIPP-1)
model, and the NCAR community climate model
(CCM3) version 3.6.6. Despite the different physical
parameterizations, the two models consistently show an
SST-forced signal located mainly over the oceanic por-
tion of the SACZ. The signal has interannual-to-decadal
timescales, and consists of a shift and strengthening of
the SACZ toward anomalous warm waters. A potential
predictability analysis reveals that the maximum pre-
dictable variance is about 50% of the total SACZ vari-
ance over the ocean, but the signal attenuates rapidly
toward the South American continent. This result im-
plies that the land portion of the SACZ is primarily
dominated by the internal variability, thereby having a
limited potential predictability at seasonal timescales.

1 Introduction

Understanding of precipitation variability and predict-
ability has been a central focus in climate research.

Forced atmospheric variability due to anomalous sea
surface temperatures (SST) gives rise to the possibility of
seasonal climate forecasts to an otherwise chaotic system
(e.g., Koster et al. 2000; Rowell 1998). Identifying areas
of high potential predictability (‘‘potential’’ meaning
that the model is assumed perfect and the surface state
of the ocean is known in advance), is therefore of great
importance. Most of these areas are in the deep tropics,
where SST forcing contributes predominantly to the
low-frequency atmospheric variability, and the knowl-
edge of ocean conditions allows the prediction of pre-
cipitation anomalies at least a season in advance (e.g.,
Goddard et al. 2001). In the extratropics, where atmo-
spheric internal dynamics is the most important factor in
determining its variability, precipitation anomalies can-
not generally be predicted beyond the 1–2-week limit
determined by chaotic dynamics. Additional predict-
ability may come from atmospheric teleconnection pat-
terns induced by tropical SST anomalies (like the
Pacific-North American pattern). In the subtropics,
areas where forced variability could potentially domi-
nate are the subtropical convergence zones, such as the
South Atlantic convergence zone (SACZ) and the South
Pacific convergence zone. These are deep convective re-
gions where the atmosphere is thought to be sensitive to
changes in SST. In this work, we examine the variability
of precipitation in the SACZ on interannual-to-decadal
timescales.

The SACZ is a band of enhanced convective activity
with rainfall rates larger than 4 mm day�1 that has its
largest development during austral summer (January–
February–March, hereafter JFM). It extends from the
Amazon basin to the southeast subtropical and extra-
tropical Atlantic ocean in a northwest–southeast line
(Fig. 1a). The interannual variability of precipitation
during JFM is of comparable magnitude as the seasonal
mean with the maximum over the continent and
extending southeastward toward the ocean (Fig. 1b).

Barreiro et al. (2002) (hereafter BCS) have studied the
SST-forced variability of the SACZ during JFM in a
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five-member ensemble of AMIP-type simulations using
version 3.6.6 of the community climate model (CCM3)
developed at the National Center for Atmospheric Re-
search (NCAR). A forced variability in the SACZ was
detected with the aid of a signal-to-noise (S/N) optimi-
zation procedure. The signal varies on interannual-to-
decadal timescales and consists of a dipole in precipita-
tion with increased rainfall in the northern part of the
SACZ and decreased rainfall to its southwest when SST
anomalies are positive between the Equator and 30�S.
The forced response attenuates rapidly toward land,
where the SACZ variability was found to be dominated
by internal variability. Robertson et al. (2003) report a
similar atmospheric response to Atlantic SST anomalies.

Although the results of BCS show a limited potential
predictability over the land area, these results may be
sensitive to the physics of the model or to the ensemble
size, and a further comparison with other models’ out-
put is highly desirable. In this follow-up study, we report
on the reproducibility of the results found in BCS. We
compare a larger ensemble of SST-forced CCM3 runs to
an ensemble of similar runs made by version 1 of the
AGCM developed at the NASA Seasonal-to-Interan-
nual Prediction Project (NSIPP-1). Since both models
contain different physical parameterizations and land-
surface packages, we can test the robustness of the
atmospheric response to SST anomalies in the SACZ
found in BCS. We are particularly interested in the SST-
forced precipitation anomaly over the continental part
of the SACZ, because it is highly relevant to seasonal
climate forecasting in a densely populated area. We shall
re-examine the spatial structure of the predictable pre-
cipitation signal and quantify its strength during the
peak season of the SACZ in both models.

Additionally, we will attempt to quantify the poten-
tial predictability of the SACZ region. Identifying a
forced response does not necessarily translate into high
predictability, because the strength of the signal may be
weak compared to the strength of the noise. Therefore, it
is very important to address the issue of whether the
forced response is likely to dominate the dynamics or
not. This can be accomplished by defining a potential
predictability measure as the ratio of the signal variance
over the total variance. We further calculate the modes
of precipitation associated with internal variability. In
this way, we can compare not only the ratio of forced
versus total variability, but also the spatial structure of
internal variability in the two models. Our results show

that the precipitation in the SACZ region is largely
dominated by internal variability, and that the leading
modes of simulated internal variability have structures
similar to that of the leading mode of variability ob-
served in the region (e.g., Robertson and Mechoso
2000).

The paper is organized as follows. In Sect. 2, we de-
scribe the data sets used, and compare the climatology
and RMS deviation of the simulated SACZ with those
of observations. In Sect. 3, we give a brief summary of
the methodology used to extract a forced response in the
models. In Sect. 4, we compare the variability in the
SACZ region simulated by both AGCMs. In particular,
we re-examine the findings of BCS, and compare the
structure of the internal variability in the SACZ region
in both models. In Sect. 5, we discuss the models’ po-
tential predictability for the precipitation. Finally, in
Sect. 6, we summarize the major findings.

2 Data sets

The observational data set used in the study is that given
by the Global Precipitation Climatology project (GPCP,
Huffman et al. 1997), which is on a global 2.5�·2.5� grid
and spans the time period 1979–2000.

We used the output of two AGCMs: the CCM3,
which is a spectral model with T42 horizontal resolu-
tion (roughly 2.8�·2.8�) and 19 vertical levels (Kiehl
et al. 1998), and the NSIPP-1 model, which is a finite
difference model with a resolution of 2.5�·2� with 17
levels in the vertical described in Bacmeister et al.
(2000). The output of NSIPP-1 was regridded to a
2.5�·2.5�-grid to compare better with observations and
with CCM3 output. Data for the NSIPP-1 model was
obtained via the website http://nsipp.gsfc.nasa.gov/
main.html. All analyses in this study are based on JFM
seasonal averages. Statistical significance is computed
using a two-sided Student’s t test, assuming no year-to-
year persistence.

A complete description of the models can be found in
the references given. Here, we give a short description of
the convective parameterization and land-surface
schemes used in the models. The deep convective
parameterization schemes used in both models are based
on variants of the Arakawa–Schubert (AS) mass-flux
scheme (Arakawa and Schubert (1974)). The CCM3 uses
the scheme developed by Zhang and McFarlane (1995)

Fig. 1 a JFM precipitation
climatology and b RMS
deviation for observations
(GPCP) during the period
1979–1994. Contour interval is
2 mm day�1 for climatology,
and 0.5 mm day�1 for RMS
deviation. The dashed box
marks the SACZ region
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to account mainly for the effects of deep convection, and
the scheme of Hack (1994) to deal with shallow and mid-
level convection. The Zhang–McFarlane scheme as-
sumes that the effects of convection are to relax the
convective available potential energy (CAPE) towards a
specified threshold value with a specified timescale.
Quasi-equilibrium states develop when large-scale pro-
cesses act to persistently increase local CAPE. The
NSIPP-1 model uses the Relaxed-Arakawa-Schubert
(RAS) scheme for penetrative convection originating in
the boundary layer (Moorthy and Suarez 1992). The
main difference between RAS and AS is that the state is
‘‘relaxed’’ toward equilibrium rather than requiring the
final state to be balanced.

The land-surface model used in CCM3 is the NCAR
LSM1.0, which is a one-dimensional model of energy,
momentum, water and CO2 exchange between the
atmosphere and land. The model accounts for ecological
differences among vegetation types, hydraulic and ther-
mal differences among soil types, and allows for multiple
surface types within a grid cell (Bonan 1998). The LSM
used in NSIPP is a soil-vegetation-atmosphere transfer
scheme called MOSAIC (Koster and Suarez 1996).
MOSAIC subdivides each grid square into tiles of a
single vegetation type and calculates separately one-
dimensional energy and water balances over each tile
with strong stomatal control over transpiration rates.

The models were run in the same experimental set-
tings, forced with monthly global-observed SST as
boundary conditions (commonly called GOGA-type of
integrations, e.g., Chang et al. (2000)), and a nine-
member ensemble was constructed for each model. The
CCM3 integrations span the period 1950–1994, and
were forced with the reconstructed SST of Smith et al.
(1996). The NSIPP-1 integrations span the period 1930–
2000, and the imposed SST (all with the same spatial
resolution) were given by the Hadley Centre SST data
set during 1930–1948, GISST 2.2 (Rayner et al. 1996)

during 1949–1981, and Reynolds Optimal Interpolation
SST v1.0 during 1982–2000 (Reynolds and Smith 1994).
As the three data sets have different climatologies, we
calculated anomalies by removing the corresponding
climatology in each of the periods. This procedure
should not affect the results because we will not analyze
interdecadal variability. The use of observed SST as a
surface boundary condition for an AGCM implies an
infinite heat capacity of the ocean. Some limitations of
this approach have been noted, particularly in the ex-
tratropics (Saravanan 1998).

The modeled austral summer climatology of precipi-
tation is shown in Fig. 2a, c. Both models simulate the
mean position and magnitude of the SACZ well, al-
though several differences with the observed SACZ can
be noted. The connection of the SACZ with the Amazon
convective region, apparent in the observations, is cap-
tured well in the CCM3 model, but is less clear in the
NSIPP-1 model. Modeled precipitation also shows the
separation between the rainfall bands associated with
the SACZ and the intertropical convergence zone
(ITCZ). However, contrary to observations, models tend
to locate the ITCZ’s axis south of the equator, and
overestimate rainfall next to the coast of Brazil at about
15�S, resulting in the undersizing of the south Atlantic
dry zone. On the other hand, the simulated SACZ does
not extend as far southeastward as the one observed. In
observations, there is a clear discontinuity of the SACZ
band near the coastline which hints the continental and
oceanic parts of the SACZ do not vary as an integrated
structure. This feature is also revealed well in the
NSIPP-1 model, but is less obvious in the CCM3 model.
The maximum precipitation in both models is over land,
comparing well with observations, but they tend to
overestimate rainfall intensity. The secondary precipi-
tation maximum in the Andes at about (65�W–20�S) in
the CCM3 is a bias of the model and has been previously
noted (Hack et al. 1998).

Fig. 2 JFM precipitation
climatology and RMS deviation
during the period 1979–1994
for: a, b CCM3 model; c, d
NSIPP-1 model. Contour
interval is 2 mm day�1 for
climatology (left), and
0.5 mm day�1 for RMS
deviation (right). The dashed
boxes mark the SACZ region

Barreiro et al.: Simulated precipitation response to SST forcing and potential predictability 107



The CCM3 model captures the interannual variabil-
ity of the SACZ with the maximum over the continent
and extending southeastward over the ocean (Fig. 2b).
The NSIPP-1 model, on the other hand, underestimates
the precipitation variability over the continent and
shows maximum variance over the oceanic portion of
the SACZ (Fig. 2d). The origin of the underestimation
of precipitation variance over land is uncertain, but is
likely to depend on the parameterization of land-surface
processes and their interaction with the atmosphere.

The SACZ has been shown to have large intrasea-
sonal variations linked to the propagation of mid-lat-
itude disturbances into the region (Liebmann et al.
1999), and to the Madden-Julian Oscillation (Paegle
et al. 2000). Therefore, a good representation of the
seasonal mean and its interannual variability depends,
in part, on the correct simulation of these shorter
timescale phenomena. Some of the differences between
the simulated and the observed SACZ noted above
may come from a deficient representation of these
processes. Hence, a comparison of simulated intra-
seasonal variability in the CCM3 and NSIPP-1 with
observations is desirable. Such an effort, however,
represents a significant research project by its own and
will not be the focus of this study. This study aims at
understanding the mechanisms through which a local
SST anomaly can force a precipitation response in the
SACZ region on interannual timescales. We are mainly
interested in the forced atmospheric response to the
interannually varying SST, and this response can be
considered to be separated from the intraseasonal
variability, which comes from internal dynamics. Other
authors have suggested that interannual and intrasea-
sonal variability may be connected through the con-
cept of weather regimes (e.g., Robertson et al. 2000).
By intercomparing between different models, we expect
the findings to be meaningful also in the real atmo-
sphere even though the simulated and observed cli-
mates are not identical.

3 Detection of forced response

The methodology to extract a forced response is based
on the so-called S/N optimization method used in BCS.
This method is described in detail by Venzke et al.
(1999). The basic assumption of the technique is that the
time evolution of a model can be divided additively into
two parts: an internal part (or noise), and an external
part due to imposed boundary condition forcing (forced
signal). In the models, the land surface interacts freely
with the atmosphere. Thus, the internal part includes
internal atmospheric variability as well as variability of
the land surface and its effects on the atmosphere. The
external part is due to SST forcing alone. The analysis
decomposes the variability into a set of optimals
according to the ratio of the S/N variance. In BCS, the
first two optimals with maximum S/N variance ratio
were considered as the forced signals. Here, we proceed

in a slightly different manner, which is perhaps more
accurate and physically more sound: we first construct a
total forced signal by summing up all the optimals that
have an S/N-ratio larger than unity. The dominant
forced pattern is then calculated as the first empirical
orthogonal function (EOF) of the total signal variance.
This method is preferred because the optimization
method does not assure ‘‘a priori’’ that the first optimal
is the pattern that explains the most signal variance.
Theoretically, it may happen that the first optimal is a
pattern that seldom occurs (then a small signal vari-
ance), but it is a pattern that is nearly orthogonal to the
noise, thus giving a large S/N-ratio. By constructing the
total signal variance and then performing an EOF
analysis, we assure that the pattern is the one that ex-
plains most of the signal variance. The analysis below
indicates that the first EOF of the total signal and the
first optimal are in fact very similar in both spatial and
temporal structures. The time series are highly corre-
lated with a correlation coefficient r larger than 0.95 for
the datasets we have considered.

Since the constructed signal is by definition common
to all ensemble members, one can construct the noise
part of the model evolution by subtracting the signal
from each ensemble member. The spatial structure of the
dominant internal mode can then be found by per-
forming an EOF analysis on the noise variance. Here, we
perform the EOF analysis over the concatenated noise
parts of all ensemble members to enhance statistical
significance. In sum, the S/N optimization technique
adopted here allows for a better separation of signal and
noise in a systematic way.

By comparing the relative strength of the signal (rs
2)

and of the noise (rn
2) variance, one can also obtain an

estimate of potential predictability. To do so, we define a
potential predictability measure PP as the ratio between
signal variance and total variance, i.e., PP=rs

2/
(rs

2+rn
2)=rs

2/rt
2, where rt

2 is the total variance. PP varies
between 0 and 1, and the larger the value the more
potentially predictable is the region. Note that the PP
measure calculated here does not consider variability on
intraseasonal timescales. The consideration of intrasea-
sonal variability would increase the noise variance, but
not likely the forced variance, therefore decreasing the
value of PP.

Several approaches have been developed to measure
potential predictability using an ensemble of climate
simulations. Some approaches define a coherence in-
dex which ‘‘reflects the ability of the SST to guide the
time sequencing of precipitation anomalies’’ (Koster
et al. 2000), whereas others are based on ‘‘Analysis of
Variance’’ (ANOVA) methods (e.g., Rowell 1998).
Estimates of potential predictability have usually been
of global extent, and have not focused on the SACZ
region. Moreover, while ANOVA is a useful indicator
of SST influence, it does not take into account cor-
relations between grid points, and thus may lead to
the erroneous conclusion that there are no SST effects.
The measure of potential predictability used here
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explicitly accounts for correlation between neighboring
points, because it is constructed to represent the total
signal as the sum of optimal structures calculated in
the SACZ region. A weakness of the technique to
estimate PP is that the construction of rs

2, as men-
tioned above, depends on the truncation of the opti-
mals. In this work, we used S/N-ratio larger than
unity as a criteria for truncation. This choice of
truncation is somewhat arbitrary and does not give a
measure of the bias in the estimation of the total
signal. This methodology of truncation may lead to an
under or overestimation of the true signal. Thus, there
is no obvious way to calculate the statistical signifi-
cance of PP. To partially address this issue, we
compare PP with the ANOVA estimate of potential
predictability in which the significance level can be
computed. We used a 1-way ANOVA model and
calculated the adjusted coefficient of determination
(see von Storch and Zwiers 1999).

4 Forced and internal precipitation variability

Analyses of models’ output were performed over their
respective time periods, that is, 1950–1994 for CCM3
and 1930–2000 for NSIPP-1. We consider a longer per-
iod for the NSIPP-1 model to use all the available data,
and also because it overlaps the observational period.
The use of NSIPP-1 data in the common period 1950–
1994 does not change the main results of the study. Also,
to isolate the SACZ from other features like the ITCZ
with stronger variability, we performed the S/N opti-
mization method in the region (60–10�W, 50–15�S) (box
in Fig. 2, hereafter called the SACZ region). Analysis
based on a larger area including the ITCZ and Amazon
convection does not change the findings significantly,
but makes it more difficult to isolate the variability in the
SACZ region.

4.1 Forced signal

We applied the procedure described in Sect. 3 to the
precipitation fields in the SACZ region. There is a
striking similarity in structure and amplitude between
the forced signals found in the CCM3 and NSIPP-1
models (Fig. 3a, b). The signals consist of a northwest–
southeast-oriented dipole in precipitation anomalies
mainly located off the coast of Brazil, as was found in
BCS. The northern lobe of the dipole is stronger than
the southern lobe, indicating a northward shift of the
SACZ as well as a strengthening of rainfall in that re-
gion. The time series associated with the signals in the
different models are shown in Fig. 3c. Both show in-
terannual-to-decadal timescales and are correlated with
r=0.77 over the common period 1950–1994, which is
significant at the 99% level. Regression of the vertical
velocity field at 500 mb in the NSIPP-1 model mimics
the precipitation anomalies with anomalous ascent in
areas of increased precipitation and descent over areas
with negative precipitation anomalies (not shown). For
the CCM3, vertical velocity fields were not available.

Regression of models’ SST forcing onto correspond-
ing time series reveal that the enhanced precipitation is
located over warm SST anomaly with a maximum of
roughly 0.45�C at about 20�S (see Fig. 4a, b). Also, the
SST maps show that the warm SST anomalies tend to be
accompanied by negative SST anomalies south of 30�S
and north of the equator. The cross-equatorial SST
gradient is consistent with the weakening and southward
shift of the ITCZ seen in Fig. 3a, b. Regression of
1,000 mb winds shows a cyclonic eddy located over the
same region off the coast of Brazil in both models, as
well as northerly flow coming from the equatorial region
into the SACZ (Fig. 4a, b). At upper levels, the anomaly
shows anticyclonic circulation, consistent with a Gill-
type baroclinic response (Gill 1980). Therefore, despite
the different physical parameterizations, both GCMs

Fig. 3 Dominant forced signal
of precipitation in the: a CCM3
model, and b NSIPP-1 model,
shown as homogeneous
regression maps. Contour
interval is 0.2 mm day�1, and
shaded areas indicate
significance at the 95% level
using a two-sided t-test. The
dashed box marks the region
used to construct the
precipitation index shown in
Fig. 8. c Normalized time series
of forced signal for CCM3
(solid line) and NSIPP-1 (dashed
line)
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present a forced response of the atmosphere very similar
to local SST anomalies. The response pattern also agrees
well with results of Robertson et al. (2003). Anomalies
have larger amplitudes in the CCM3 in part because the
regression for NSIPP-1 encompasses the period 1930–
1960 in which the signal was relatively weak (see also
Sect. 5). We suggest the following mechanism to explain
the forced signal: a positive SST anomaly forces the
atmosphere, generating a low-level hydrostatic cyclonic
eddy next to the coast of South America. A northerly
flow coming from equatorial regions, probably as a re-
sponse to the tendency of having warmer SST anomalies
to the south of the equator, is also present, which brings
the enhanced moisture to the area. This anomalous

circulation creates a convergence in the northern part of
the SACZ, causing an increase in precipitation. Com-
pensating subsidence forms to its southwestern flank and
creates a negative precipitation anomaly, which may be
further reinforced by the low-moisture southerly flow.

Figure 5a, b shows the regression of the net heat flux
into the ocean for both AGCMs. Heat-flux anomalies
are generally stronger in the CCM3 model. Moreover,
model responses differ in the SACZ region. At about
(20�S, 35�W), the CCM3 presents a net heat-flux
anomaly into the ocean coexisting with positive SST
anomalies, suggesting a local positive air–sea feedback,
which is not present in NSIPP-1 model. On the other
hand, both models tend to suggest a positive feedback

Fig. 5 Regression of heat fluxes
onto the time series of the
forced response in the CCM3
(left) and NSIPP-1 (right)
models. a, b net heat flux into
the ocean; c, d downward solar
radiation; e, f latent heat flux.
Units are in W m�2. Shaded
areas as in Fig. 3. The boxes in
(a), (b) mark the SACZ region

Fig. 4 Regression of 1,000 mb winds and SST anomalies onto
the time series of the forced response in the a CCM3, and
bNSIPP-1. Contour interval for the SST is 0.1 K. Shaded areas

indicate SST anomalies significant at the 95% level. Only wind
vectors, where the wind speed anomaly is significant at the 90%
level, are plotted
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between heat fluxes and SST off the coast of Brazil at
about 10�S (also found in BCS). There, the heat fluxes
tend to maintain and shift the SST anomalies north-
ward.

To investigate further we separated the net heat flux
into four components: short-wave and long-wave radi-
ation, and latent and sensible heat fluxes. In both
models, the net heat flux (Nhflx) is approximately given
by the difference between the downward solar radiation
(Sw) and the latent heat flux (Lhflx), i.e., Nhflx . Sw �
Lhflx. The NSIPP-1 model shows a negative anomaly of
downward solar radiation at the same place of increased
precipitation, suggesting that the presence of clouds
shadows the surface, reducing the incoming energy and
acting as a negative feedback (see Fig. 5d). To both sides
of the negative anomaly, there are areas with increased
solar radiation probably as a consequence of compen-
sating subsidence which inhibits cloud formation. The
CCM3 shows similar behavior in short-wave radiation
except for a region of positive anomaly next to the coast
of Brazil which indicates positive feedback (see Fig. 5c).
The regression maps of the latent heat flux reveal that
both models show negative anomaly next to the coast of
Brazil at about 10�S. In the CCM3, however, the
anomaly extends further south to 20�S contributing to
the solar radiation anomaly to create the region of po-
sitive feedback in the SACZ region mentioned above
(see Fig. 5e, f). The origin of these model differences is
expected to be related to the different parameterizations
of convection, of boundary layer processes, and of
cloud–radiation interaction. Sensitivity experiments are
needed to further investigate this result. East of 20�W,
between 20–30�S both models show that latent heat flux
tends to damp the SST anomalies. We further decom-
posed the latent heat-flux anomalies linearly into a
component due to changes in the wind speed and a
component due to changes in the air–sea gradient of
specific humidity (see for example, Saravanan and
Chang (2000)). We found that wind speed changes
dominate the latent heat-flux anomaly in the region of
positive feedback near the coast of Brazil. On the other
hand, east of 20�W changes in the air–sea gradient of
specific humidity dominates and damps the SST anom-
alies. This latter result is in agreement with Sterl and
Hazeleger (2003), who found that while wind-induced
latent heat flux helps creating the SST anomaly, changes
in the air–sea gradient of specific humidity damp it.

4.2 Internal variability

In this section, we calculate the modes of precipitation
associated with the interannual internal variability. The
leading modes of precipitation in each model are found
by performing an EOF analysis on the concatenated
noise part variances, as described in Sect. 3. We consider
only the first EOF of the noise for each model (hereafter
called noise-EOF1) because it largely explains most of
the noise variance in each model. Figure 6a, b shows the
patterns of the noise-EOF1 for each model as a regres-
sion over a larger area. They explain 25 and 32% of total
noise variance in the CCM3 and NSIPP-1 models,
respectively. The structures of the noise-EOF1 in both
models are similar, mainly showing an enhanced SACZ
accompanied by decreased precipitation to its southwest
as a consequence of compensating subsidence. There is
also decreased precipitation in the ITCZ. Compared
with the forced responses, the noise patterns show much
larger weight over the land. One notable difference be-
tween the noise structures is that, in the CCM3 the
maximum variance is over the continent, while in the
NSIPP-1 the maximum is mainly located over the oce-
anic part of the SACZ. This difference in structure
mimics differences in maps of RMS deviation (Fig. 2b,
d). The surface wind anomaly accompanying the noise-
EOF1 consists of an isolated eddy-like cyclonic structure
located at . (35�W, 27�S) with a half-wavelength of
about 40� in both longitude and latitude (not shown).
Overall, the patterns shown in Fig. 6 have the same
characteristics as the pattern of vertical velocity associ-
ated with the leading mode of interannual variability
observed in the SACZ region found in Robertson and
Mechoso (2000). They also found that this mode is lar-
gely due to internal variability of the atmosphere, which
agrees with our findings, and that its associated time
series contains a periodic component of 15–17 years.
The time series of the noise-EOF1s, however, have very
large intra-ensemble variability, showing almost no sig-
nificant correlation between time series of different
ensemble members (as expected for noise). Thus, it
suggests that the leading noise patterns have no pre-
ferred timescale. The EOF technique used in Robertson
and Mechoso (2000) is not designed to separate forced
from internal variability, but to maximize explained
variance. Thus, largely due to internal variability, their
mode will likely also include a contribution from forced

Fig. 6 Dominant mode of
internal variability for
precipitation (noise-EOFs) in a
CCM3, and b NSIPP-1 models.
Contour interval is
0.2 mm day�1
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variability, which may explain the significant periodic
component in the associated time series.

5 Potential predictability analysis

The previous sections have focused on the spatial and
temporal characteristics of the forced and internal var-
iability of the precipitation in the SACZ region. In this
section, we investigate the issue of how predictable the
precipitation is, and where the predictable region lies,
assuming that SST is known in advance. This is done by
using the potential predictability measure PP defined in
Sect. 3. Furthermore, the map of the PP index is con-
trasted with the estimation of potential predictability
given by a 1-way ANOVA model.

Figure 7a, b shows the potential predictability mea-
sure PP for each model. Overall, both models agree in
that the variance of the predictable signal explains less
than 10% of the total variance over the continent, and
that it is significantly larger over the oceanic portion of
the SACZ, mainly to the north of the SACZ’s climato-
logical axis. However, the potential predictability in the
CCM3 model is larger than in the NSIPP-1 model in
spite of the fact that the forced signals in both models
are of about the same amplitude (see Fig. 3). This is also
true when considering the NSIPP-1 output during the
period 1950–1994, although PP increases. The reason is
related to the structure of the noise in the models. In
CCM3, the noise-EOF1 has the largest variability over
the land and not so strong over the ocean. In the NSIPP-
1 model, on the other hand, the noise-EOF1 has the
largest loading over the oceanic part of the SACZ thus
hindering the forced response.

Estimates of potential predictability given by ANO-
VA are very consistent with those of the PP index
(Fig. 7c, d). They also tend to agree with the results of
Rowell (1998) and of Koster et al. (2000) despite the

slightly different season considered. Nevertheless,
ANOVA estimates are larger for both models, particu-
larly for the NSIPP-1, showing that PP gives a conser-
vative estimate of the potential predictability.

Figure 7 indicates that over the ocean the predictable
variance has a maximum value of about of 60% of total
variability, but the mean over the ocean is considerably
smaller than that. This suggests that the variability in the
SACZ region is dominated by the internal atmospheric
variability (and land-surface variability) in agreement
with previous estimates of BCS and with results of
Robertson and Mechoso (2000). The signal variance
accounts for a relatively large portion of the total vari-
ance only in the positive lobe of the forced precipitation
dipole pattern, and the maximum is shifted further away
from the coast, compared with Fig. 3a, b. The reason is
the extension of the noise variance into the oceanic re-
gion weakening the PPnext to the coast (see also Fig. 6).

The results above suggest that the ocean surface is a
source of potential predictability to the oceanic portion
of the SACZ. Also, they indicate that it is in that region,
that the forced signal shown in Fig. 3 is likely to be an
important player in the dynamics. These results, how-
ever, are derived based on ensembles of model simula-
tions and do not directly address the issue of how skillful
these models are in simulating/predicting rainfall ob-
served in the region on interannual timescales. To ad-
dress this issue, we constructed a precipitation index as
an average over the area shown in Fig. 7b. The choice of
the area is based on the criterion that the forced variance
must explain at least 30% of the total variance in both
models. The southern limit is defined by the axis of the
forced precipitation dipole (see Fig. 3b). Also, note that
the area follows the shape of the positive lobe in the
precipitation dipole and that it contains the region of
maximum amplitude.

Figure 8 shows the index for the observational data
set (dashed line) together with the time series of the

Fig. 7 Estimates of potential
predictability given by the PP
index for a CCM3 and b
NSIPP-1 models; and given by
ANOVA for c CCM3 and d
NSIPP-1 models. For ANOVA
estimates, contours larger than
0.1 are significant at the 99%
level. The dashed box in (b)
marks the region used to
construct the precipitation
index shown in Fig. 8
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forced response for the NSIPP-1 model (solid line, same
as in Fig. 3c). The shaded region denotes the dispersion
of the precipitation index calculated for the ensemble
members. As expected, due to the relatively large noise
variance in the region, the index shows large intra-
ensemble dispersion. Note that the dispersion interval
almost always contains the time series of the forced re-
sponse. The index for the observations also generally lies
within the dispersion of the ensemble members, sug-
gesting that the model simulates well the precipitation
variability in the region. Moreover, the precipitation
index that was observed shows a correlation of 0.45 with
the time series of the forced response during the period
1980–2000, which is significant at the 95% level. These
results suggest that the forced response of the precipi-
tation to SST anomalies is present not only in the
models, but also in the real world. However, this also
suggests that the forced signal is weak and its manifes-
tation is confined to oceanic regions away from the coast
where the internal variability is relatively weak com-
pared to that over the land region.

6 Summary and discussion

The output of two state of the art AGCMs is analyzed
using a technique devised for separating signal from noise
under the assumption of additivity. The models include
different physical packages for convective parameteriza-
tions, soil moisture feedbacks and land representations
that led to different overall interannual precipitation
variability in the SACZ region (Fig. 2b, d). Nevertheless,
the models consistently show a very similar forced pre-
cipitation signal mainly in the oceanic part of the SACZ,
which does not extend very much into the continent. The
signal has interannual-to-decadal timescales and consists
of a shift and strengthening of the SACZ towards anom-
alously warm waters present over most of the South
Atlantic basin between 0 and 30�S. Our results, together
with those of Robertson et al. (2003), suggest that the
pattern of atmospheric response in the SACZ region to
Atlantic SST anomalies is very robust.

In the SACZ region, the behavior of the heat fluxes
associated with the forced response is somewhat differ-
ent in the models. While in the NSIPP-1 heat fluxes tend
to damp the SST anomalies, in the CCM3 there is a
region next to the coast of Brazil where positive heat-
flux anomalies coexist with warm SST anomalies, thus
indicating the existence of a positive air–sea feedback.
On the other hand, both models suggest the existence of
a region of positive feedback off the coast of Brazil at
about 10�S.

How important is the signal compared to the back-
ground noise? A potential predictability analysis per-
formed for the two GCMs indicates that the SACZ
region is largely dominated by internal variability. The
forced component is present only over the ocean where it
explains a maximum of about 50% of total variability.
Accordingly, over the continent we expect the noise-
EOF1 to be the dominant player. The manifestation of
the forced signal is seen further away from the coast
than Fig. 3a, b tends to suggest, due to the extension of
large internal variability into the ocean. An analysis on
the observational rainfall record suggests that the signal
also exists in the real atmosphere.

The leadingmode of internal variability on interannual
timescales (noise-EOF1) shows an enhanced SACZ
accompanied by decreased rainfall over southern Brazil,
Uruguay and northern Argentina (or vice versa). This
structure is very similar to the leading pattern of observed
vertical velocity found byRobertson andMechoso (2000)
in the SACZ region on interannual timescales, reinforcing
the conclusion that the SACZ is dominated by internal
variability. Interestingly, a similar pattern was also found
in observations as the leading mode of variability on
intraseasonal timescales (Paegle et al. 2000).

In summary, results show that the continental part of
the SACZ has very limited predictability associated with
SST variations. Accordingly, the best hope for predic-
tion beyond the 1–2-weeks limit imposed by the chaotic
atmospheric dynamics may rely on the foreknowledge of
the land surface moisture state (Koster et al. 2000). The
coastal region may still have some predictability asso-
ciated to SST anomalies. Rainfall over southern Brazil
and Uruguay might also have added predictability by
means of the moisture flux associated with the South
American Low-Level Jet (Marengo et al. 2004). These
issues need to be addressed using regional high-resolu-
tion models with improved land physics and convective
parameterizations. Finally, models suggest that there is
substantial oceanic forcing of the atmosphere in the
subtropics (Fig. 7), an area where atmosphere–ocean
coupling has not been explored much (in contrast to
equatorial regions) and that deserves future attention.
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Fig. 8 Time series of forced response in NSIPP-1 model (solid line)
and time series of the precipitation index in the observations
(dashed line). Shading shows the dispersion of the index for
precipitation calculated for all NSIPP-1 ensemble members (see
text).
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