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Abstract. The fact that the climate on the Earth is a highly
complex dynamical system is well-known. In the last few
decades great deal of effort has been focused on understand-
ing how climate phenomena in one geographical region af-
fects the climate of other regions. Complex networks are a5

powerful framework for identifying climate interdependen-
cies. To further exploit the knowledge of the links uncov-
ered via the network analysis (for, e.g., improvements in pre-
diction), a good understanding of the physical mechanisms
underlying these links is required. Here we focus on under-10

standing the role of atmospheric variability, and construct
climate networks representing internal and forced variabil-
ity using the output of an ensemble of AGCM runs. A main
strength of our work is that we construct the networks us-
ing MIOP (Mutual Information computed from ordinal pat-15

terns), which allows the separation of intraseasonal, intra-
annual and interannual time scales. This gives a further in-
sight to the analysis of climatological data. The connectivity
of these networks allows to assess the influence of two main
indices, NINO3.4 – one of the indices used to describe ENSO20

(El Niño - Southern oscillation) – and of the North Atlantic
Oscillation (NAO), by calculating the networks from time se-
ries where these indices were linearly removed. A main result
of our analysis is that the connectivity of the forced variabil-
ity network is heavily affected by “El Niño”: removing the25

NINO3.4 index yields a general loss of connectivity; even
teleconnections between regions far away from the equato-
rial Pacific ocean are lost, suggesting that these regions are
not directly linked, but rather, are indirectly interconnected
via El Niño, particularly at interannual time scales. On the30

contrary, on the internal variability network – independent of
sea surface temperature (SST) forcing – the links connect-
ing the Labrador sea with the rest of the world are found to
be significantly affected by NAO with a maximum at intra-

annual time scales. While the strongest non-local links found35

are those forced by the ocean, the presence of teleconnec-
tions due to internal atmospheric variability is also shown.

1 Introduction

The existence of long range teleconnections in climate is an40

established fact, as the atmosphere connects far away regions
through waves and advection of heat and momentum. This
long range coupling makes the complex network approach
(Albert and Barabási, 2002) of the Earth’s climate very at-
tractive (Tsonis et al., 2006, 2008; Donges et al., 2009b). Cli-45

mate networks are constructed by considering the Earth as a
regular grid of nodes and assigning links connecting two dif-
ferent nodes via an analysis of their similarity over a particu-
lar field. This approach has been used in the literature both on
local and on global scales and for analyzing climate phenom-50

ena considering both linear and nonlinear interdependencies.
For example, the network approach has been recently used

to analyze patterns of extreme monsoonal rainfall over South
Asia (Malik et al., 2012), to infer early warning indicators
for the Atlantic Meridional Overturning Circulation collapse55

(van der Mheen et al., 2013), to gain insight into the origin of
decadal climate variability (Tsonis and Swanson, 2012) and
to study El Niño phenomenon as an autonomous component
of the climate network (Gozolchiani et al., 2011).

Various methods for constructing climate networks have60

been proposed (computing information measures from tem-
perature or geopotential fields, from daily or monthly data,
etc.) and the reliability and robustness of the networks un-
covered have also been analyzed in terms of a critical com-
parison of the networks found with the various methods used65

(Paluš et al., 2011; Hlinka et al., 2013; Martin et al., 2013;
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Tirabassi and Masoller, 2013). A main conclusion of these
studies is that it is crucial to analyze the robustness of the
method used to quantify climate similarities because trends
and serial correlations in the time series, as well as time lags,70

can significantly affect the topology of the network obtained.
This paper is focused on understanding the atmospheric

variability by means of networks constructed from monthly
averaged surface air temperature (SAT) anomalies.

Atmospheric variability can be considered, to first order,75

as a superposition of an internal part due to intrinsic dynam-
ics, and an external part due to the variations of the bound-
ary conditions, primarily given by the sea surface temper-
ature (SST) forcing. These two components can be distin-
guished by using Atmospheric General Circulation Models80

(AGCMs) forced with prescribed historical SSTs (Straus and
Shukla, 2000; Barreiro et al., 2002; Molteni, 2003; Bracco et
al., 2004) – see also the accompanying paper (Arizmendi et
al., 2014) in this Special Issue.

The separation between internal and forced atmospheric85

variability is a standard procedure to study the impact of
the oceans to the atmosphere and has led to important
advances on our understanding of the dynamics involved.
James (1995) and Trenberth (1997) provide two excellent
summaries of the processes involved mainly based on the90

propagation of Rossby waves and the generation of tele-
connection patterns. Although there are some nonlinear sec-
ondary effects, the theory asserts that to first order the ob-
served propagation and establishment of teleconnection pat-
terns is linear.95

Separating forced from internal atmospheric variability is
also important because it can allow for improvements in cli-
mate prediction. In many geographical regions, the atmo-
sphere is strongly influenced by SST variations that force
persistent anomalies (Shukla, 1998). Because the evolution100

of the tropical oceans presents some predictability at time
scales longer than the atmosphere, prediction of atmospheric
variables beyond the chaotic time scale of 7-10 days is pos-
sible provided that the atmospheric dynamics is been forced
by the ocean (Shukla, 1998).105

The usual modeling strategy to study predictability con-
sists in forcing AGCMs with idealized or observed SST
anomalies. This allows investigating the response of the at-
mosphere to different boundary conditions and different ini-
tial conditions. If the time series of anomalies of a climatic110

field (e.g. SAT anomalies) is considered as a combination
of internal and forced variability, e.g. x= xfor +xint, the
output of several numerical experiments initialized differ-
ently but forced with the same boundary conditions (i.e. same
SST) can be used to separate the internal and forced variabil-115

ity. For each run i it results

xi = xifor +xiint = xfor +xiint

(as xfor does not depend on the initial conditions).
Averaging over N runs yields

x̄= xfor + (1/N)
∑
i

xiint.

If N is large enough, the second term will be small as each
model run will have a different value. Thus, to the first order120

x̄≈ xfor.
In other words, each time series xi can be separated into a

part that changes from run to run, xiint, and a part that does
not depend on the initial conditions (is forced by the bound-
ary conditions only and is the same for all runs), xfor ≈ x̄.125

This method allows to construct two types of networks,
those in which the links represent similarities in internal at-
mospheric variability (referred as internal variability net-
work), and those in which the links represent similarities
in forced atmospheric variability (the forced variability net-130

work).
The connectivity of these networks allows to assess the in-

fluence of two main phenomena: El Niño – characterized by
the NINO3.4 index – , and the North Atlantic Oscillation –
characterized by the NAO index. This was done by calculat-135

ing the networks from time series where either the NINO3.4
index or the NAO index was linearly removed.

The forced variability networks is found to be intimately
related to El Niño phenomenon and that linearly removing its
evolution yields a breakdown of the long range teleconnec-140

tions of the climate network, particularly at interannual time
scales. A similar result is observed for the internal variability
network in the Northern Hemisphere when NAO is removed,
with maximum effect at intra-annual time scales.

The paper is organized as follows. In Section 2 the method145

used for constructing climate networks is shown. The data
and the model employed as well as the NINO3.4 and NAO
indices are discussed in Section 3. Section 4 presents the
results. Here the internal and forced variability networks,
and the effects of NAO and El Niño are analyzed. Section150

5 presents a summary and the conclusions.

2 Methods for network construction

2.1 Measure of statistical interdependence

The Mutual information (MI) is computed from the proba-
bility density functions (PDFs) that characterize two time se-155

ries in two nodes, pi and pj , as well as their joint probability
function, pij (Cover and Thomas, 2006; Amigó, 2010; Paluš,
2007):

Mij =
∑
m,n

pij(m,n) log
pij(m,n)

pi(m)pj(n)
.

Mij is a symmetric measure (Mij =Mji) of the degree of
statistical interdependence of the time series in nodes i and160

j; if they are independent: pij(m,n) = pi(m)pj(n) and thus
Mij = 0.
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Fig. 1. An example of three ordinal patterns in the time series of the
NINO 3.4 index (monthly averaged). Green triangles: intraseasonal
pattern, blue squares: intra-annual pattern and red circles: interan-
nual pattern. The possible patterns for D = 3 are shown in the inset.
In this example, the intraseasonal pattern corresponds to an ”e”, the
intra-annual, to an ”a” and the interannual, to a ”b”.

In this paper the PDFs pi, pj and pij are computed in two
ways: by histograms of values (this case will be referred to
as MIH) and by using a symbolic transformation, in terms165

of probabilities of ordinal patterns (this case will be referred
to as MIOP) (Amigó, 2010; Pompe and Runge, 2011; Bandt
and Pompe, 2002; Barreiro et al., 2011).

The ordinal patterns are calculated from time series by
comparing the value of a given data point relative to its neigh-170

bors (Fig. 1). When a value (v2) is higher than the previous
one (v1) and lower than the next one (v3) (v1 < v2 < v3), the
ordinal transformation gives pattern “a” (see inset in Fig. 1);
when v1 > v2 > v3, it gives pattern “f”, and so forth. Con-
sidering patterns of length D, then there are D! possible pat-175

terns.
A significant advantage of MIOP for climate data analysis

over other methods is that the ordinal transformation allows
selecting the time scale of the analysis, not only by consid-
ering shorter or longer patterns, but also, by comparing data180

points in the time series which are not consecutive but sepa-
rated by a time interval.

This symbolic transformation keeps the information about
correlations present in a time series at the selected time scale,
but does not keep information about the absolute values185

of the data points. Therefore, the mutual information com-
puted from ordinal patterns (MIOP) can be expected to pro-
vide complementary information with respect to the standard
method of computing the mutual information (MIH) with
montly-averaged data and zero-lag regressions, adequate for190

many geographical regions of Earth. However, there are

some exceptions, and the analysis of lagged responses could
be an interesting extension of the present study that is left for
future work.

Monthly data in the period January 1948 - December 2006195

is analyzed. Due to the short length of the time series (708
data points), in order to compute the probabilities of the pat-
terns with good statistics we have considered ordinal patterns
of length three. Since for D = 3 there are six possible pat-
terns, for the sake of consistency, the MIH is computed using200

histograms with 6 equi-sized bins.
We varied the time scale of the MIOP analysis by con-

structing the patterns in three ways (see Fig. 1): 1) by com-
paring temperature anomalies in three consecutive months
(constructing patterns with three consecutive data points),205

2) by comparing anomalies in three equally spaced months
that cover a one-year period (by taking one data point ev-
ery four points) and 3) by comparing anomalies in the same
month of three consecutive years (by taking one data point
every twelve points). The MIOP computed in these ways210

is referred to as intraseasonal, intra-annual and interannual
respectively. While constructing the patterns with one data
point per season (i.e., every three points) could seem more
useful –as seasons cover three months– we decided to use
3 data points per year because seasons are not well defined215

worldwide (for example, in the tropics), but the seasonal cy-
cle is.

2.2 Definition of links

To construct the network, a link between nodes i and j is de-
fined if Mij is above an appropriate threshold, which is cal-220

culated in terms of surrogate shuffled data as in Deza et al.
(2013), where the data are shuffled before we calculate the
histograms or the ordinal patterns. When defining the sig-
nificance criterion for the links in climate networks there is
always a degree of arbitrariness. As we have shown in our225

previous work, the distribution of MI values computed from
surrogate data is approximately Gaussian (see Fig. 1 of Deza
et al. (2013)). Therefore, here we use a significance criterium
computed in terms of the mean, µ, and the standard deviation,
σ, of the distribution of MI values computed from surrogate230

data, and accept links whose MI value, computed from the
original data, is above µ+ 3σ.

While this is the simplest approach, it has well-known
drawbacks (see, e.g. Schreiber and Schmitz (1996); Paluš
(2007)), and the use of block surrogates and/or quantile235

thresholds as significance criterion will provide a valuable
and computationally not too demanding improvement to the
method used here.

2.3 Network representation

To represent the network we plot the area-weighted connec-240

tivity (AWC) of the nodes, which is the fraction of the total
area of Earth to which each node is connected, that is



4 :

-3 -2 -1 0 1 2 3
NINO3.4 anomalies [C]

-2

-1

0

1

2

Te
m

pe
ra

tu
re

 a
no

m
al

ie
s [

C
]

Fig. 2. Graphical representation of the linear index-removal proce-
dure. The SAT anomalies are compared at zero lag with the index
(in this case NINO3.4 SST anomalies) and a linear regression is
performed (in red).

AWCi =

∑N
j Aij cos(λj)∑N

j cos(λj)
,

where λi is the latitude of node i and Aij = 1 if nodes i and
j are connected and zero otherwise (Tsonis et al., 2008). It
is of particular interest to identify significant weak links, as245

the strongest links are usually of shorter spatial range. In all
the AWC maps presented in Sec. 4, the color scale has been
set from zero to a fix value (0.4), and any node with stronger
connectivity is shown with the color code of 0.4. This allows
to visualize more clearly the weakest part of the accepted250

significant links. It also allows for a direct comparison of all
the AWC maps.

In Sec. 4 the significant connections of some selected geo-
graphical regions (represented by individual network nodes)
are explored. In these connectivity maps the value of the in-255

terdependency measure (MIH or MIOP) will be displayed
using a color scale which is also fixed, from zero up to 0.3;
MI values larger than this will be shown using the same color
code as 0.3.

3 Data sets and model used260

3.1 Climate indices

A climate index describes the state and changes of a particu-
lar region of the ocean or the atmosphere. Indices can be de-
termined from monitoring station or reanalysis data, or iden-
tified by means of Empirical Orthogonal Functions (EOF)265

analysis. In the latter case, they result in the principal com-

ponent (PC) related to an EOF (generally the leading mode)
over a chosen area, calculated for a predetermined variable
(e.g. temperature or pressure). As explained below, the av-
erage of SST on the NINO3.4 area has been used for calcu-270

lating the NINO3.4 index, and the leading PC over the north
Atlantic region has been used to calculate NAO. The indices
have been linearly detrended.

3.1.1 NINO 3.4

The NINO 3.4 index (Trenberth, 1997) was calculated as the275

average of SST anomalies in the equatorial Pacific bounded
by latitudes 5S−5N and by longitudes 120W−170W using
the SST data used by the model as a boudary condition for
all the runs. The index so obtained has been compared with
the monthly index from NOAA (2013), updated monthly, ob-280

taining an excellent agreement. As this index is based on SST
– a boundary condition for the AGCM – this phenomenon is
to be expected to affect mainly the forced part of the atmo-
spheric variability.

3.1.2 NAO285

The North Atlantic Oscillation (NAO) has been shown to be
mainly an atmospheric phenomenon only weakly forced by
the ocean (Hurrel, 1995). The NAO index is calculated as the
leading EOF of surface pressure over the north Atlantic re-
gion (20N−80N and 90W−40E) for each model run. Com-290

parison among indices from different model runs and be-
tween these and the observed NAO index from NCEP/NCAR
reanalysis data yielded different time series modulating es-
sentially the same spatial pattern. The NAO properties have
been studied elsewhere (see Lind et al. (2005) and references295

therein), but for our purposes it is enough to assume that
these series have the same power spectra as low frequency
noise.

3.2 Model used

In this study the AGCM from the International Centre for300

Theoretical Physics (ICTP AGCM) has been used. It con-
sists of a full atmospheric model with simplified physics
and an horizontal resolution of T30 (3.75◦ × 3.75◦, which
gives N = 608 grid points or network nodes) with eight ver-
tical levels (Molteni, 2003). The model is forced with his-305

torical global sea surface temperatures (ERSSTv.2) (Smith
and Reynolds, 2004). In order to separate forced from inter-
nal atmospheric variability nine runs using the same bound-
ary (SSTs) conditions but slightly different initial conditions
were performed.310

In our experiment design SST is taken as a boundary con-
dition and it is not changed by the atmospheric flow. In the
real world there is a two-way interaction between the ocean
and the atmosphere. This limitation is especially important
in the extratropics where the SST evolution strongly depends315

on the atmospheric forcing (Frankignoul and Hasselmann,
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Fig. 3. Maps of AWC constructed from reanalysis NCEP/NCAR data. The statistical interdependencies are quantified via (a) MIH, (b) MIOP
intraseasonal, (c) intra-annual, and (d) interannual time scales (see Sec. 2.1 for details). The color scale is the same for all panels and for all
the following AWC maps.

1977; Barsugli and Battisti, 1998). However, current under-
standing indicates that the atmosphere is most sensitive to
SST anomalies in the tropics and thus the forced atmospheric
variability will be related to the evolution of the tropical320

oceans (Trenberth et al., 1998). This model setup allows, as
explained in the Introduction, to separate the forced and in-
ternal components of the atmospheric variability. While an
ensemble of only nine model runs might seem insufficient
for a robust estimation of the forced response, as it could be325

contaminated by noise due to the relatively small ensemble
size, it will be shown that the results found here are consistent
with well known climate phenomena, indicating that, at least
at the “first order” description of the network via AWC, nine
model runs are enough to separate forced and internal vari-330

ability. This is consistent with previous works that show than
an ensemble of about 10 runs is enough to separate internal
and forced variability in most places (e.g. Barreiro (2009);
Barreiro and Dı́az (2011); Pohlmann and Latif (2005); Sea-

ger et al (2010)). More sophisticated methods for identifying335

the forced variability despite the small-ensemble noise con-
tamination are discussed in Allen and Smith (1997); Venzke
et al. (1999); Barreiro et al. (2002, 2005); Ting et al. (2009).

Monthly averaged air surface temperature (SAT) in the pe-
riod January 1948 - December 2006 was analyzed. This re-340

sults in a total of 708 data points per node. For each node,
the time series were linearly detrended and the anomalies of
these series were computed by subtracting the long term av-
erage to each monthly data point.

The influence of NINO3,4 or NAO indices was assessed345

by computing time series were one of these indices was lin-
early removed from the original time series respectively. This
was done in three steps: 1) calculate the indices, as explained
above; 2) perform a zero-lag regression of the time series of
each node with respect to the time series of the index (see350

Fig. 2). 3) substract the linear regression from the original
data.
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Fig. 4. Maps of AWC obtained from single model run. The statistical interdependencies are quantified via (a) MIH, (b) MIOP intraseasonal,
(c) intra-annual and (d) interannual (see Sec. 2.1 for details). Comparing panel (a) with Fig. 3(a) and panel (d) with Fig. 3(b) we observe that
the main features of the maps are the same, providing a visual validation of the model.

In the following section it is shown that this procedure ef-
fectively removes the linear contribution of the given index
in the evolution of each node (Rodwell et al., 1999; Barreiro,355

2009). However, this simple approach for assesing the influ-
ence of an index could be improved in two ways: on one
hand, nonlinear methods for calculating the index could be
considered (see e.g. Gámez et al. (2004)), on the other hand,
lagged regressions could be considered.360

To validate the model (see Section 4.1) we considered re-
analysis data from NCEP/NCAR (Kalnay, et al., 1996) in the
same time period (1948-2006). Since NCEP/NCAR reanaly-
sis data is given on a 2.5◦ × 2.5◦ grid, for easier comparison
it was resampled using bilinear interpolation of the gridded365

data to fit the grid of the ICTP-AGCM data. The detrended
and normalized anomalies were computed as stated with the
model data.

4 Results

4.1 Model Validation370

While the ICTP-AGCM model has been used extensively in
the literature (see, e.g. Bracco et al. (2004); Kucharski et
al. (2005); Molteni (2003); Barreiro (2009) and references
therein), the model has not yet been validated in the context
of climate networks. Therefore, the first step of our study is to375

validate the model by comparing the networks obtained from
one model run with the networks obtained from reanalysis
data (Deza et al., 2013).

This can be done by comparing Fig. 3 with Fig. 4. Figure
3(a) displays the AWC map computed from reanalysis data380

using MIH as interdependency measure; Fig. 4(a) displays
the AWC map computed from one model run, also using
MIH. Clearly, the model is able to capture the same overall
pattern of global connectivity with a maximum in the cen-
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Fig. 5. Maps of AWC computed from averaged time series, and thus containing information only of the forced component of atmospheric
variability. The quantifiers of statistical similarity are as in Fig. 4: (a) MIH, (b) MIOP intraseasonal, (c) intra-annual and (d) interannual. It
can be noticed that in the shorter time scale the tropical area, especially the Pacific ocean has a weak influence, and it grows stronger with
increasing time scale. The fact that the maps in panels (a) and (d) are similar suggests that most of the links uncovered by the MIH, panel
(a), actually reflect interdependencies in the longer time scale and thus, are seen in panel (d).

tral tropical Pacific, relative maxima in the tropical Atlantic385

and Indian oceans and over Alaska, Labrador Sea and the
Southern ocean. Differences are mainly in the magnitude of
the AWC, with the model underestimating the connectivity
in most places. Similar observation applies to the compari-
son between panels b, c and d on Fig. 3 and the correspond-390

ing panel on Fig. 4 where the network was built by using the
MIOP as interdependency measure.

Fig. 4, panel (a) shows the AWC using MIH and thus, re-
veals global interdependencies, of all the time series; panels
(b)-(d) show the AWC using MIOP in intraseasonal, intra-395

annual and interannual time scale respectively. Clearly, the
connectivity increases as the time scale increases, in good
agreement with the results found in Deza et al. (2013) using
reanalysis data. Many other features of the AWC maps are
also qualitatively well reproduced by the model.400

While the networks obtained from AGCM and reanalysis
data, when visualized via the AWC, look qualitatively very
similar, quantitative differences are seen, for example, with
respect to the spatial extent of the structures. These differ-
ences might be relevant, especially if more sophisticated net-405

work measures were to be used. Nevertheless, the good qual-
itative agreement between networks constructed from model
and reanalysis data, lets us focus on using model output to
distinguish the networks associated with intrinsic and forced
atmospheric variability.410

4.2 AWC maps

4.2.1 Forced variability

The AWC maps presented in Fig. 4 for one run of the model,
contain information of both forced and internal variability.
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Fig. 6. Maps of AWC of the forced component of the network when the index ENSO3.4 is removed from the time series (for the description
of the index and for the removal procedure, see Section 3.2). The statistical interdependencies are quantified as in Fig. 4: (a) MIH, MIOP (b)
intraseasonal, (c) intra-annual and (d) interannual. A comparison with Fig. 5 allows assessing the influence of El Niño phenomenon over the
network connectivity.

To analyze forced variability only, we have constructed the415

network from averaged time series (over nine model runs),
as explained in the Introduction.

The results are presented in Fig. 5. Panel (a) displays the
AWC map when the MIH is used to quantify statistical in-
terdependencies. Here, connectivity is higher in the tropics420

and on the Pacific, Indian and Atlantic basins than in the rest
of the world. It is worth noting that while tropical connectiv-
ity is relatively symmetrical about the equator for Pacific and
Indian oceans, the north Atlantic is significantly more con-
nected than in the south of the equator. Panels 5(b-d) show425

that the connectivity of the forced variability increases with
the time scale. At intraseasonal time scales connectivity is
very low compared with the connectivity from Fig. 5(a). If
we increase the time scale to intra-annual – as in panel 5(c) –
all the tropical area becomes more connected than the extra-430

tropics, indicating a better longitudinal energy and momen-

tum exchange. Forced by the tropical Pacific SST anoma-
lies a long range strong teleconnection is found in Alaska
(Ropelewski and Halpert, 1987). For interannual timescales
(three years) which is within the period of the El Niño events435

(from 2 to 7 years) many very connected areas, especially
in the tropics but also in the extratropics are found. The pres-
ence of highly connected spots is observed in the extratropics
especially in the Pacific basin but also in the Indian and At-
lantic oceans. Comparing these three maps with that in panel440

5(a) which, as explained before, was computed via MIH and
thus contains information from all the time series, it can be
inferred that most of the connections seen in Fig. 5(a) occur
at long time scales, because they are clear only in Fig. 5(d),
and are weak or not seen in Figs. 5(b), (c).445

Figure 6 represents the same maps as Figure 5 but after
removing the NINO3.4 index, as explained in Sec. 3.2. Pan-
els 5(a) and 6(a) show large differences. It is clear that the
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Fig. 7. Maps of averaged AWC, revealing the internal variability network (see text for details). The statistical interdependencies are quantified
as in Fig. 4 (a) MIH, MIOP (b) intraseasonal, (c) intra-annual and (d) interannual. It can be noticed that in this network the time scale showing
more connectivity is the intra-annual time scale. This is consistent with the shorter memory of the atmosphere compared with the ocean.

signal of El Niño in the tropical Pacific was successfully re-
moved, and moreover, the connection hotspots in the extra-450

tropics were also removed, indicating that they were mainly
forced by El Niño. However, a few small well-connected ar-
eas remain over the equatorial Pacific, indicating that a linear
regression is not sufficient to fully eliminate the ENSO effect
on the network connectivity.455

The Caribbean and north Atlantic are the largest regions
that maintain a similar AWC even after Niño has been re-
moved. Note, however, that the instantaneous regression does
not completely remove the ENSO signal if there is a lag in
the response. This is so in the tropical north Atlantic (Chang460

et al., 2000), where El Niño affects sea surface temperature
through heat flux changes that, given the ocean’s heat ca-
pacity, take a few months to induce an anomaly. Thus, this
might be a reason for the still large connectivity observed in
the Caribbean in Fig. 6(a).465

Other areas, like over China and central Asia, which are
weakly connected to the El Niño phenomenon show the same
connectivity in Figs. 5 and 6. The fact that areas not related
to ENSO do not change when removing the index hints that
the statistical test used to fix the network density is robust470

and allows to compare maps with and without the index.
Panel 6(b) is very similar to panel 5(b) except on the ab-

sence of a connected (dark blue) area on the Pacific ocean,
suggesting that the influence of El Niño at these time scales
is very low and restricted to the tropical Pacific. At intra-475

annual time scales, panel 6(c) shows the disappearance of
many links from the corresponding Fig. 5(c). This suggests
that at this time scale, even if El Niño signal is not as strong
as on interannual scales, it is already connecting far away
tropical and extratropical areas as Alaska (Chiang and So-480

bel, 2002). Thus, removing El Niño signal affects very heav-
ily the connectivity of the network. For longer time scales –
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Fig. 8. Maps of averaged AWC, revealing the internal variability network when the NAO index is removed from the time series (see Section
3.2) for details). The statistical interdependencies are quantified as in Fig. 4 (a) MIH, MIOP (b) intraseasonal, (c) intra-annual and (d)
interannual. It can be noticed that in this network the time scale showing more connectivity is the intra-annual time scale. This is consistent
with the shorter memory of the atmosphere compared with the ocean.

shown in panel 6(d) – the scenario is similar as for 6(a) with
only a remnant of connectivity in the tropical region.

4.2.2 Internal variability485

Figure 7 shows AWC maps of internal variability, computed
by averaging the nine AWC maps obtained from the individ-
ual model runs, where in each time series, the forced signal
(the average of the nine runs) was removed as explained in
the Introduction. Contrary to the forced variability case pre-490

sented before, in this case the most connected areas are on
the extratropics. This is consistent with results of previous
figures and indicates that in the tropics the ocean forces the
largest portion of atmospheric variability. As the tropical at-
mosphere cannot sustain horizontal gradients generated by495

SST anomalies, it induces vertical movements of air, convec-

tion and release of latent heat, thus giving rise to atmospheric
circulation anomalies.

In the extratropics internal atmospheric variability is larger
leading to stronger connections. The larger connectivity in500

the northern hemisphere suggests that the large landmasses
affect atmospheric variability, which is consistent with our
current understanding of storm track dynamics and low fre-
quency transients (James, 1995).

The most connected spot on Fig. 7(a) is over the Labrador505

sea. The rest of the highly connected areas (in green) are
present mostly in the northern hemisphere. In the southern
hemisphere connectivity is largest over the Southern ocean.
Investigation over this well connected area near Antar-
tica –only found using MIH to quantify interdependencies–510

showed that in this area histograms have a higher skewness
than in the rest of the nodes, an effect that has also been re-
ported and discussed in Hlinka et al. (2012). This effect is
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Fig. 9. Connectivity map of a node in central Pacific (indicated with X). Panels (a) and (b) are computed from forced time series (averaging
over nine model realizations); panels (c) and (d) are computed also from forced time series, but with ENSO3.4 linearly removed and thus
not containing –to the first order– contributions due to El Niño . In (a), (c) interdependencies are quantified via MIH; in (b), (d) via MIOP
interannual time scale.

found on the internal-plus-forced AWC map of Fig. 4(a) and
using reanalysis data as shown in panel Fig. 3(a). When con-515

sidering other measures to quantify interdependencies, such
as Pearson cross correlation or MIOP, the AWC maps do not
show high connectivity in this region (Deza et al., 2013).

With respect to the AWC maps computed by using MIOP,
in contrast to the forced case, the intraseasonal, intra-annual520

and interannual maps are very similar to each other. This is
a sign of “multiscale variability”. i.e. variability distributed
over many time scales. Internal variability cycles are less
well defined, with spectra similar to “red” noise. It can be
seen that the most connected AWC map is the intra-annual525

one, stronger than both the intraseasonal and the interannual,
consistent with the fact that atmospheric anomalies are less
persistent than oceanic ones (Hasselmann, 1976; Barsugli
and Battisti, 1998).

The fact that the most connected area in Fig. 7(a) is over530

the Labrador sea, suggests that it is related to NAO. In order
to verify this, we have removed NAO from the time series us-
ing the same procedure as with NINO3,4, explained above.
The results are shown in Fig. 8. Here, indeed the Labrador
connected area dissapears in all the pannels while the con-535

nectivity unrelated to NAO (i.e over southern hemisphere or
China) remains almost unchanged.

4.3 Node connectivity maps

AWC maps provide information of the connectivity of the
geographical regions, but no information about the nature –540

spatial range or distribution– of the links. It is expected that
nearby points behave similarly and this leads to high values
of correlation between nearby places (Radebach et al., 2013;
Donges et al., 2009a). The distance over which the climate
variables are well connected is related with the Rossby radius545
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Fig. 10. As Fig. 9 but considering a node near Alaska (indicated with X). Comparing with Fig. 9 one can notice that the teleconnection
between this region and the Pacific in due mainly to El Niño.

of deformation (RRD) (James, 1995), which is the distance
that a particle or wave travels before being significantly af-
fected by the Earth’s rotation. Also, in the tropics, this prox-
imity effect can be greatly enhanced as there the information
is propagated very fast longitudinally. Here we are interested550

in unveiling the presence of teleconnections, that is, connec-
tions between regions separated more than the RRD.

The following plots display the connections of a node, in-
dicated with “X”. Figures display MIH in the left column and
MIOP in the right column. The time scale of the MIOP maps555

is interannual for the forced variability network and intra-
annual for the internal variability network, following above
results. As explained in Sec. 2.3, since we are interested in
unveiling weak but long range significant links, we have sat-
urated the color scale for nearby links. In this way we are able560

to see the weak links with good resolution, loosing informa-
tion for the stronger links (stronger than 0.3 on the arbitrary
scale of MI, where the highest links have values of 1 or 2 on

the same scale, as shown in Deza et al. (2013)) which will be
all represented with the same color.565

4.3.1 Forced variability

Figure 9 shows the connections of a point in the central Pa-
cific ocean in the forced variability network. It is clear from
the comparison of the maps in the first row that most links
are interannual links.570

Panels 9(c) and 9(d) display the same node connectivity
maps as on 9(a) and 9(b) respectively, however, in this case
the NINO3.4 index has been removed from the time series
and thus (to first order) they do not contain links due to El
Niño phenomenon. The differences between panels 9(a) and575

9(c) and between 9(b) and 9(d) are evident. First, after elim-
inating the effects of El Niño the tropical and extratropical
teleconnection patterns associated to the spot in the Pacific
disappear independently of the methodology used to quan-
tify interdependencies (MIH or MIOP): the connectivity be-580
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Fig. 11. As Fig. 9 but of a node near New Zealand (indicated with X). In panels (b) and (d) the MIOP is adjusted to interannual time scale.
Compare with Figs 9 and 10.

comes restricted to the tropical Pacific basin. Even inside
this region the connectivity is greatly decreased as seen by
a much smaller red spot of links over 0.3, although the re-
maining connections indicate that, either a linear regression
is not enough to fully remove the influence of El Niño, or585

the ENSO dynamics is not fully represented by the NINO3.4
index.

According to panels (a) and (b) of Fig. 9, Alaska is an area
well connected to the equatorial Pacific ocean. To further in-
vestigate, Fig. 10 shows global connections to a point nearby590

Alaska. It can be seen in panels 10(a) and 10(b) that it indeed
presents connections to the equatorial Pacific ocean with a
maximum close to the dateline.

Furthermore, connections to the southern Pacific ocean,
Central Africa, Indian ocean and even the Drake passage are595

found. These connections are stronger in panel (b) especially
those linking Alaska with the Indian and southern Atlantic
ocean and Drake Passage. If we remove NINO3.4 we find
a dramatic change in the maps. Connections become almost

local and all the north - south teleconnections are lost; only600

connections probably associated with an imperfect removal
of the El Niño signal remain. This indicates that there are no
direct teleconnections between Alaska and (for example) the
Drake Passage, but both are strongly connected to El Niño.
As these networks are constructed using symmetrical mea-605

sures of dependency, calculated directly from the data, they
are unable to distinguish between a direct connection and an
indirect one.

Figure 11 is as Figs. 9 and 10, but for a node in the
southern hemisphere extratropics. We chose southern New610

Zealand because it shows a relatively high forced density
[seen in Fig. 5 (a,b)] and it is connected to the selected point
over the tropical Pacific of Fig. 9 (a,b). Panel 11(a) shows
connectivity between the chosen point and the Pacific and
Indian oceans, as well as wave patterns (probably a Rossby615

wavetrain) along the extratropics. Figure 11(b) adds infor-
mation to 11(a) showing that these teleconnections are of
interannual type. If we remove NINO3.4 (panels 11(c) and
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Fig. 12. Maps of internal variability showing the connectivity of a node in the Labrador Sea (indicated with X). Panel (a), (b) correspond
to the original internal time series as in Fig. 7; in panels (c), (d) the NAO was linearly removed and thus the links do not contain –to the
first order– contributions due to the North Atlantic Oscillation. In (a), (c) interdependencies are quantified via MIH; in (b), (d) via MIOP
intra-annual time scale.

11(d)) not surprisingly the links to the tropical Pacific disap-
pear, but also some of the connectivity to the Indian ocean620

suggesting that part of the links with the Indian ocean are
indirect. Nevertheless, the extra-tropical wavetrain remains,
and Fig. 11(d) suggests that the wave train may be forced by
the Indian ocean at interannual time scales. As in the previous
figure, some weak north-south teleconnections are found, but625

they disappear if we remove NINO3.4 index, indicating again
an indirect connection between the extratropics through the
Pacific ocean.

4.3.2 Internal variability

Figure 12 displays the internal variability connections of a630

node over the most connected area of Fig. 7. The average
of the resulting nine different connectivity maps is shown.
In the left column the connectivity computed using MIH is
displayed, while in the right column, the intra-annual scale

is shown, using MIOP. This time scale shows the strongest635

response for internal variability. In Fig. 12(a) the original in-
ternal variability connections are shown, revealing telecon-
nections extending over the northern hemisphere, especially
over Scandinavia, Mediterranean Europe, east coast of North
America and tropical north Atlantic. Figure 12(a) also shows640

connections to eastern China and the Aleutian islands. The
pattern shown in Fig. 12(b) mainly corresponds to the known
influence of the North Atlantic Oscillation. This is further
substantiated in panels (c) and (d) of the same figure, where
the NAO influence is removed and the connections of the645

Labrador sea, particularly in the northern Atlantic basin, are
strongly weakened.



: 15

5 Summary and conclusions

The monthly variability of the surface air temperature field
has been decomposed into a part forced by the ocean tem-650

perature, and another due to internal atmospheric variabil-
ity. This has been performed using an ensemble of nine
AGCM runs forced with the same SST data, and starting
from slightly different initial conditions. The model data
was firstly validated by observing a qualitative agreement655

between the networks constructed from one model run and
those constructed from reanalysis data. Afterwards, climate
networks were constructed from model data, for the forced
and for the internal variability components, using Mutual In-
formation to assess the interdependencies between the time660

series. Ordinal patterns have been used in order to sepa-
rate and determine the strength of the links at different time
scales.

While the main conclusions of our analysis (the connectiv-
ity of the forced variability network is heavily affected by El665

Niño, whereas that of the internal variability network is sig-
nificantly affected by the NAO) are not new, new information
has been uncovered as ordinal analysis allows to study these
phenomena on different time scales. This has revealed that
most of the links detected in the forced variability proceed670

from long time scales, while the contributions of intra-annual
time scales to the internal variability are the most important.
This work also opens the possibility of studying how various
network measures, such as the average path length, assorta-
tivity, clustering coefficient, betweeness, etc. depend on the675

time scale considered for quantifying statistical interdepen-
dencies.

Another conclusion of this work is that forced and inter-
nal atmospheric variability are characterized by very differ-
ent networks. Because the separation of internal and forced680

variability done here requires averaging over several model
runs, the networks obtained here could not have been ob-
tained from observational/reanalysis data only. It is shown
that the forced variability is stronger in the tropics, while the
internal variability peaks in the mid latitudes. The network685

of forced variability has the strongest connections at interan-
nual time scales. Long range teleconnections from the trop-
ics to the extratropics and even from different hemispheres
in the forced network were observed and explained by the
influence of El Niño. On the other hand, the network of in-690

ternal atmospheric variability has the strongest connections
in the extratropics, and it was found that connections to the
Labrador sea are heavily affected by the North Atlantic Os-
cillation.

This study is focused on the lowest levels of the atmo-695

sphere. A complementary analysis is performed in the com-
panion paper by Arizmendi et al. (2014), devoted to the study
of the evolution of the upper atmosphere during the 20th cen-
tury and aiming at distinguishing the oceanically forced com-
ponent from the atmospheric internal variability on different700

time scales. The methodology proposed here for distinguish-

ing links in spatial range (short and long), time scale (in-
traseasonal, intra-annual and interannual) and type of vari-
ability (forced vs. internal) is a novel approach for the study
of climate networks that provides new insight into the clima-705

tological meaning of the links found and their connection to
physical phenomena.
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Amigó J.M.: Topological permutation entropy, Springer Berlin Hei-
delberg, 2010.

Arizmendi F., Martı́ A., and Barreiro M.: Evolution of atmospheric725

connectivity in the 20th century, submitted to Nonlin. Processes
Geophys., 2014.

Bandt C., and Pompe B.: Permutation entropy: A natural com-
plexity measure for time series, Phys. Rev. Lett., 88, 174102,
doi:10.1103/PhysRevLett.88.174102, 2002.730

Barreiro M., Chang P., and Saravanan R.: Variability of the
South Atlantic Convergence Zone as simulated by an atmo-
spheric general circulation model, J. Climate, 15, 745–763,
doi:10.1175/1520-0442(2002)015¡0745:VOTSAC¿2.0.CO;2,
2002.735

Barreiro M., Chang P., Ji L., Saravanan R., and Giannini A.: Dy-
namical Elements of Predicting Boreal Spring Tropical Atlantic
Sea-Surface Temperatures, Dynam. Atmos. Oceans, 39(1), 69–
85, doi:10.1016/j.dynatmoce.2004.10.013, 2005.

Barreiro M.: Influence of ENSO and the South Atlantic Ocean on740

climate predictability over Southeastern South America, Clim.
Dyn., 35(7), 1493-1508, doi:10.1007/s00382-009-0666-9, 2009.

Barreiro M., and Dı́az N.: Land-atmosphere coupling in El Niño
influence over South America, Atmos. Sci. Lett., 12(4), 351–355,
doi: 10.1002/asl.348, 2011.745

Barreiro M., Martı́ A.C., and Masoller C.: Inferring long memory
processes in the climate network via ordinal pattern analysis,
Chaos, 21, 013101, doi:10.1063/1.3545273, 2011.

Barsugli J.J., and Battisti D.S.: The Basic Effects of
Atmosphere–Ocean Thermal Coupling on Midlatitude Vari-750

ability, J. Atmos. Sci., 55(4), 477–493, doi:10.1175/1520-
0469(1998)055¡0477:TBEOAO¿2.0.CO;2,1998.

Bracco A., Kucharski F., Kallummal R., and Molteni F.: Inter-
nal variability, external forcing and climate trends in multi-
decadal AGCM ensembles, Clim. Dyn., 23(6), 659–678,755

doi:10.1007/s00382-004-0465-2, 2004.



16 :

Chang P., Saravanan R., Ji L., and Hegerl G.C.: The effect of
local sea surface temperatures on atmospheric circulation over
the tropical Atlantic sector, J. Climate, 13(13), 2195–2216,
doi:10.1175/1520-0442(2000)013¡2195:TEOLSS¿2.0.CO;2,760

2000.
Chiang J.C.H., and Sobel A.H.: Tropical tropospheric temperature

variations caused by ENSO and their influence on the remote
tropical climate, J. Climate, 15, 2616–2631, doi:10.1175/1520-
0442(2002)015¡2616:TTTVCB¿2.0.CO;2, 2002.765

Cover T.M., and Thomas J.A.: Elements of information theory, John
Wiley & Sons, 2006.

Deza J.I., Barreiro M., and Masoller C.: Inferring interdependencies
in climate networks constructed at interannual, intra–season and
longer time scales, Eur. Phys. J. Spec. Top., 222(2), 511–523,770

doi:10.1140/epjst/e2013-01856-5, 2013.
Donges J.F., Zou Y., Marwan N., and Kurths J.: Complex networks

in climate dynamics, Eur. Phys. J. Spec. Top., 174(1), 157–179,
doi:10.1140/epjst/e2009-01098-2, 2009.

Donges J. F., Zou Y., Marwan N., and Kurths J.: The backbone775

of the climate network, EPL, 87, 48007, doi:10.1209/0295-
5075/87/48007, 2009.

Frankignoul C., and Hasselmann K.: Stochastic climate mod-
els, Part II Application to sea-surface temperature anoma-
lies and thermocline variability, Tellus, 29(4), 289–305, doi:780

10.1111/j.2153-3490.1977.tb00740.x, 1977.
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Paluš M., Hartman D., Hlinka J., and Vejmelka M.: Discerning con-

nectivity from dynamics in climate networks, Nonlinear Proc.
Geoph., 18(5), 751–763, doi:10.5194/npg-18-751-2011, 2011.

Pohlmann H., and Latif M.: Atlantic versus Indo-Pacific influence835

on Atlantic-European climate, Geophys. Res. Lett., 32(5), 05707,
doi:10.1029/2004GL021316, 2005.

Pompe B., and Runge J.: Momentary information transfer as a
coupling measure of time series, Phys. Rev. E, 83(5), 051122,
doi:10.1103/PhysRevE.83.051122, 2011.840

Radebach A., Donner R.V., Runge J., Donges J.F., and Kurths
J.: Disentangling different types of El Niño episodes by evolv-
ing climate network analysis, Phys. Rev. E, 88, 052807,
doi:10.1103/PhysRevE.88.052807, 2013.

Rodwell M.J., Rowell D.P., and Folland C.K.: Oceanic forcing of845

the wintertime North Atlantic Oscillation and European climate,
Nature, 398, 320–323, doi:10.1038/18648, 1999.

Ropelewski C.F., and Halpert M.S.: North American precipitation
and temperature patterns associated with the El Niño–Southern
Oscillation (ENSO), Mon. Wea. Rev., 114, 2352–2362,850

doi:10.1175/1520-0493(1986)114¡2352:NAPATP¿2.0.CO;2,
1986.

Seager R., Naik N., Baethgen W., Robertson A., Kushnir Y., Naka-
mura J., and Jurburg S.: Tropical Oceanic Causes of Interan-
nual to Multidecadal Precipitation Variability in Southeast South855

America over the Past Century, J. Climate, 23, 5517–5539,
doi:10.1175/2010JCLI3578.1, 2010.

Schreiber T., and Schmitz A.: Improved Surrogate Data
for Nonlinearity Tests, Phys. Rev. Lett., 77(4), 635–638,
doi:10.1103/PhysRevLett.77.635, 1996.860

Shukla J.: Predictability in the midst of chaos: a scien-
tific basis for climate forecasting, Science, 282, 728-731,
doi:10.1126/science.282.5389.728, 1998.

Smith T.M., and Reynolds R.W.: Improved extended reconstruc-
tion of SST (1854–1997), J. Climate, 17(12), 2466–2477,865

doi:10.1175/1520-0442(2004)017¡2466:IEROS¿2.0.CO;2,
2004.

Straus D.M., and Shukla J.: Distinguishing between the SST-forced
variability and internal variability in mid latitudes: analysis of
observations and GCM simulations, Quart. J. Roy. Meteor. Soc.,870

126, 2323–2350, doi:10.1002/qj.49712656716, 2000.
Ting M., Kushnir Y., Seager R., and Li C.: Forced and internal

twentieth-century SST Trends in the North Atlantic, J. Climate,
22(6), 1469–1481, doi:10.1175/2008JCLI2561.1, 2009.



: 17

Tirabassi G., and Masoller C.: On the effects of lag-times in875

networks constructed from similarities of monthly fluctua-
tions of climate fields, EPL, 102, 59003, doi:10.1209/0295-
5075/102/59003, 2013.

Trenberth K.E.: The Definition of El Niño, Bull. Amer.
Meteor. Soc., 78, 2771–2777, doi:10.1175/1520-880

0477(1997)078¡2771:TDOENO¿2.0.CO;2, 1997.
Trenberth K.E., Branstator G.W., Karoly D., Kumar A., Lau N.C.,

and Ropelewski C.: Progress during TOGA in understanding
and modeling global teleconnections associated with tropical sea
surface temperatures, J. Geophys. Res.: Oceans (1978–2012),885

103(C7), 14291–14324, doi:10.1029/97JC01444, 1998.
Tsonis A.A., Swanson K.L., and Roebber P.J.: What do networks

have to do with climate?, Bull. Amer. Meteor. Soc., 87(5), 585–
595, doi:10.1175/BAMS-87-5-585, 2006.

Tsonis A.A., and Swanson K.L.: On the origins of decadal climate890

variability: a network perspective, Nonlin. Processes Geophys.,
19, 559–568, doi:10.5194/npg-19-559-2012, 2012.

Tsonis A.A., and Swanson K.L., and Wang G.: On the role of atmo-
spheric teleconnections in climate, J. Climate, 21, 2990–3001,
doi:10.1175/2007JCLI1907.1, 2008.895

van der Mheen M., Dijkstra H.A., Gozolchiani A., den Toom
M., Feng Q.Y., Kurths J., and Hernandez Garcia E.: Inter-
action network based early warning indicators for the At-
lantic MOC collapse, Geophys. Res. Lett., 40, 2714–2719,
doi:10.1002/grl.50515, 2013.900

Venzke S., Allen M.R., Sutton R.T., and Rowell D.P.: The atmo-
spheric response over the North Atlantic to decadal changes
in sea surface temperature, J. Climate, 12(8), 2562–2584,
doi:10.1175/1520-0442(1999)012¡2562:TAROTN¿2.0.CO;2,
1999.905

Zheng Y., Waliser D.E., Stern W.F., and Jones C.: The role of
coupled sea surface temperatures in the simulation of the trop-
ical intraseasonal oscillation, J. Climate, 17(21), 4109–4134,
doi:10.1175/JCLI3202.1, 2004.


