Polarization square-wave switching in orthogonally delay-coupled semiconductor lasers

Cristina Masoller
Group on Dinamica, Optica NoLineal & Lasers (http://donll.upc.edu/)
Universitat Politecnica de Catalunya, Terrassa, Barcelona, Spain
Cristina.masoller@upc.edu, www.fisica.edu.uy/~cris

Collaborators:
David Sukow, Washington and Lee University, USA
Tom Gavrielides, Air Force Research Laboratory, London, UK
Marc Sciamanna, Supelec, Metz, France
Marita Torre, Instituto de Física ‘Arroyo Seco’, UNCPB, Tandil, Argentina

Symposium on Time-Delayed Systems, ENOC 2011, Roma, Italy, July 27
Outline of the talk

- Motivation: brief overview of semiconductor lasers and time-delay effects
- Polarization rotation: self-feedback and mutual coupling configurations
- Results
- Conclusions

Symposium on Time-Delayed Systems, ENOC 2011, Roma, Italy, July 27
Semiconductor lasers

- Today are widely used in optical fiber communication systems
- Also used in: laser printers, scanners, CDs, DVDs, sensors, etc.
- Nonlinear devices.

Edge-Emitting laser (EEL):

Vertical-Cavity Surface-Emitting Lasers (VCSEL):

C. Masoller
Time delayed optical feedback & mutual coupling

Optical feedback

\[\tau = \frac{2L}{c} \]

Mutual coupling

\[\tau = \frac{L}{c} \]
Motivation: why is important to study time delayed effects in semiconductor lasers?

Practical applications:

- controlled optical feedback is commonly used to improve the laser performance (reduce the threshold, linewidth and intensity noise);
- synchronized laser arrays can give high output powers ($I = |E|^2$ and if the lasers are synchronized, $E_{\text{tot}} = \sum E_i$).

However, time-delayed feedback and coupling can induce instabilities that degrade the lasers’ performance.

But… these instabilities can also be exploited for novel applications, such as fast all-optical random number generators.

C. Masoller
Time delayed optical feedback: two configurations

Isotropic optical feedback:

Polarization-rotated optical feedback:

TE (x) is the natural lasing polarization of the solitary laser.

Why is interesting to study polarization-rotated feedback or coupling?

Because it can result in all-optical square-wave switching.
Isotropic optical feedback: The Lang-Kobayashi model

\[\frac{dE}{dt} = \frac{1}{2\tau_p} (1 + i\alpha)(N - 1)E + \eta E(t - \tau)e^{-i\omega_0\tau} + \sqrt{2\beta_{sp}} \xi(t) \]

\[\frac{dN}{dt} = \frac{1}{\tau_N} \left(\mu - N - N|E|^2 \right) \]

Model

Laser \[\xrightarrow{\tau} \] mirror

- Solitary laser
- \(|E|^2 \propto \) to the laser intensity
- \(N \propto \) the carrier density
- 4 parameters: \(\alpha, \tau_p, \tau_N, \mu\)

\(\eta\): feedback strength
\(\omega_0\tau\): feedback phase

(only one reflection in the external cavity)

spontaneous emission noise
Two new parameters represent the anisotropies between the two polarizations: γ_a and γ_p.

\[
\frac{dE_x}{dt} = \frac{1}{2\tau_p} (1 + i\alpha)(N - 1)E_x + \sqrt{2\beta_{sp}}\xi_x(t)
\]

\[
\frac{dE_y}{dt} = \frac{1}{2\tau_p} (1 + i\alpha)(N - 1 - \gamma_a)E_y + i\gamma_p E_y + \sqrt{2\beta_{sp}}\xi_y(t) + \eta E_x(t - \tau)e^{-i\omega_{\text{res}}\tau}
\]

\[
\frac{dN}{dt} = \frac{1}{\tau_N} \left[\mu - N - N\left(|E_x|^2 + |E_y|^2 \right) \right]
\]

Adapted from Hong et al, Elec. Lett. 36, 2019 (2000)
Dynamics under strong feedback: polarization square-wave switching

Simulations
$\tau = 10 \text{ ns}$

Periodicity: 2τ

Experimental observations (EELs)
Noisy and unstable SWs:

Influence of the laser current:

Increasing current

Optimal regularity for certain current value

Time traces taken under identical conditions

Sukow et al, submitted (2011)
Simulations based on the **spin-flip model** for VCSELs
(Martín-Regalado et al, JQE 1997)

Influence of the injection current:

Increasing μ

Sukow et al, submitted (2011)
Isotropic coupling

\[\tau = \frac{L}{c} \]

Polarization-rotated coupling

TE (x) is the natural lasing polarization of the solitary lasers.
Model: isotropic mutual coupling

identical lasers

Laser 1

\[
\frac{dE_1}{dt} = \frac{1}{2\tau_p} (1 + i\alpha)(N_1 - 1)E_1 + \eta E_2(t - \tau)e^{-i\omega_0\tau} + \sqrt{2\beta_{sp}} \xi_1(t)
\]

\[
\frac{dN_1}{dt} = \frac{1}{\tau_N} \left[\mu - N_1 - N_1|E_1|^2 \right]
\]

Laser 2

\[
\frac{dE_2}{dt} = \frac{1}{2\tau_p} (1 + i\alpha)(N_2 - 1)E_2 + \eta E_1(t - \tau)e^{-i\omega_0\tau} + \sqrt{2\beta_{sp}} \xi_2(t)
\]

\[
\frac{dN_2}{dt} = \frac{1}{\tau_N} \left[\mu - N_2 - N_2|E_2|^2 \right]
\]
Model for polarization-rotated coupling

Laser 1

Polarization selector & rotator

Polarization selector & rotator

Laser 2

\[\frac{dE_{1,x}}{dt} = \frac{1}{2 \tau_p} \left(1 + i \alpha \right) (N_1 - 1) E_{1,x} + \sqrt{2 \beta_{sp}} \xi_{1,x}(t)\]

\[\frac{dE_{1,y}}{dt} = \frac{1}{2 \tau_p} \left(1 + i \alpha \right) (N_1 - 1 - \gamma_a) E_{1,y} + i \gamma_p E_{1,y} + \sqrt{2 \beta_{sp}} \xi_{1,y}(t) + \eta E_{2,x}(t - \tau) e^{-i \omega_0 \tau}\]

\[\frac{dN_1}{dt} = \frac{1}{\tau_N} \left[\mu - N_1 - N_1 \left(|E_{1,x}|^2 + |E_{1,y}|^2 \right) \right]\]

And vice-versa for laser 2

C. Masoller
Experimental observations (EELs)

Sukow et al, PRE 81, 025206R (2010)
Numerical simulations (EELs)

Polarization square-wave switching is a transient dynamics:

Stationary state: master-slave unidirectional coupling, Laser 2 → Laser 1

C. Masoller Masoller et al, accepted in PRA
Transient vs stationary square-wave switching

However, by including in the model nonlinear gain saturation (self and cross saturation coefficients), in narrow parameter regions, regular square-wave switching becomes a numerically stable dynamics.

\[g_{x,i} = \frac{N_i}{1 + \epsilon_{xx} I_{x,i} + \epsilon_{xy} I_{y,i}} \]
\[g_{y,i} = \frac{N_i}{1 + \epsilon_{yx} I_{x,i} + \epsilon_{yy} I_{y,i}} \]

symmetrical switching:

Masoller et al, accepted in PRA
Multi-stability in the form of various types of coexisting waveforms

Nonsymmetrical switching

Nonsymmetrical pulses

Nonsymmetrical oscillations
For increasing coupling strength

Multistability of coexisting solutions

Time traces of the x-intensity of one laser

Masoller et al, accepted in PRA
Numerical simulations with VCSELs

The square waves are only a transient dynamics:

\[X \to Y: \]

\[Y \to X: \]

The average transient time is almost unaffected by the noise strength:

And increases with the coupling parameters:

Torre et al, submitted (2011)
Summary and future work

- We studied all-optical polarization square-wave switching in semiconductor lasers.

- We considered polarization-rotated time-delayed optical feedback and mutual coupling.

- We considered two types of semiconductor lasers: edge-emitting lasers (EELs) and vertical-cavity lasers (VCSELs).

- In EELs: good agreement between experimental observations and numerical simulations (when the model includes gain saturation terms).

- In VCSELs: good agreement between simulations and experiments in the feedback scheme, no experiments available so far on the mutual coupling scheme.

- Future work: analysis of the relationship between the average duration of the transient time and the stability of the x- and y- polarizations of the solitary lasers.

THANK YOU FOR YOUR ATTENTION