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The destructive effect of human stupidity: 

a revision of Cipolla's fundamental laws
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Class 1: From dynamical systems to complex systems

- Dynamical systems

- Bifurcations

- Logistic Map

- Chaotic attractors

- Synchronization

- Kuramoto Model

- Networks

Class 2: Univariate time series analysis

Class 3: Univariate time series analysis 

Class 4: Bivariate and Multivariate analysis



 Mid-1600s: Newtonian mechanics

 Isaac Newton: studied planetary orbits and 

solved analytically the “two-body” problem 

(earth-sun).

 Since then: a lot of effort for solving analytically 

the “three-body” problem (earth-sun-moon) –

Impossible.

The beginning of dynamical systems theory



he asked: “is the solar system stable for ever, or will planets 

eventually run away?”

 He developed a geometrical approach to solve the problem.

 Introduced the concept of “phase space”.

Late 1800s: Henri Poincare (French mathematician)

x
y

z

 Poincaré recurrence theorem: certain systems will, after a 

sufficiently long but finite time, return to a state very close to 

the initial state. 

 He also had the intuition of the possibility of chaos.

 Instead of asking “which are the exact positions of 

the planets (trajectories)?” 

 Search for structures that divide the phase 

space into regions where “trajectories” have 

quantitatively different behavior.



Deterministic system: the initial conditions fully determine 

the future state.  

Deterministic chaotic system: there is no randomness but 

the system can be, in the long term, unpredictable.

Poincare: “The evolution of a deterministic system can 

be aperiodic, unpredictable, and strongly depends on the 

initial conditions”.

A problem in time series analysis: How to determine the 

prediction horizon? How to estimate the uncertainty?



 Computes allowed to experiment with equations.

 Huge advance in the field of “Dynamical Systems”.

 1960s: Eduard Lorenz (American mathematician 

and meteorologist at MIT): simple model of 

convection rolls in the atmosphere.

 Most famous chaotic attractor.

1950s: First computer simulations

2D projection of 3D attractor



The present determines the future.

But

The approximate present does not approximately determine 

the future.

Lorentz describing deterministic chaos:

Continuous dynamical systems described by 3 or more 

ordinary differential equations.

Which system may be chaotic?

Problems in time series analysis: How to quantify chaos? 

How to distinguish chaos from noise?



Can we observe chaos experimentally?



 Robert May (Australian, 1936): population biology

 "Simple mathematical models with very 

complicated dynamics“, Nature (1976).

The 1970s

 Difference equations (“iterated maps”), in spite of being 

simple and deterministic, can exhibit: stable points, 

stable cycles, and apparently random fluctuations. 

)(1 tt xfx 

)1( )( xxrxf A classical example: The Logistic map

x(0,1), r(0,4)



The logistic map:
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The fixed point is the solution 

of: x = r x (1-x)  x = 1 – 1/r

)](1)[( )1( ixixrix 

r=2.8, Initial condition: x(1) = 0.2

Transient relaxation → long-term stability

Transient dynamics → oscillations

(regular or irregular)

x(0,1), r(0,4)



Bifurcation diagram: period-doubling (or subharmonic) 

route to chaos 
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M. Feigenbaum (American mathematician 

and physicist 1944-2019), using a small 

HP-65 calculator, discovered “hidden” 

order in the route to chaos: the scaling of 

the bifurcation points of the Logistic map.

Order within chaos (1975)

HP-65 calculator: the 

first magnetic card-

programmable 

handheld calculator
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A universal law

Feigenbaum demonstrated that the same behavior, with the 

same mathematical constant (=4.6692…), occurs for a wide 

class of functions.

 Very different systems (in chemistry, biology, physics, etc.) 

go to chaos in the same way, quantitatively.

)(1 tt xfx 
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(about 10 years later) With a modulated laser, keeping constant the 

modulation frequency and increasing modulation amplitude.

Problems in time series analysis: 

‒ How to identify an approaching 

bifurcation point (tipping point)?

‒ How to distinguish transient from 

non-transient behavior?

J. R. Tredicce et al, 

Phys. Rev. A 34, 2073 (1986).

Laser 

output 

intensity

Time

m (%)

Can we observe the period doubling route experimentally?



 Benoit B. Mandelbrot (Polish-born, 

French and American mathematician  

1924-2010): “self-similarity” and fractal 

objects: 

each part of the object is like the whole 

object but smaller.

 Because of his access to IBM's 

computers, Mandelbrot was one of the 

first to use computer graphics to create 

and display fractal geometric images.

The late 1970s



How to estimate the dimension of a fractal? 

19

Abarbanel et al, Reviews of Modern Physics 65, 1331 (1993).

Box counting: number of occupied boxes scales as (1/)D

 




Examples

Fractal structure: each part of the object resembles the hole object.

D=0.63

1. Cantor set (introduced by German mathematician Georg Cantor in 1883)

2. Sierpiński triangle

D=1.58



Examples of fractal objects in nature

Broccoli D=2.66

Human lung D=2.97 Coastline of Ireland D=1.22



 The fractal concept is not an abstraction but a 

mathematical formulation of a well-known fact: 

movements of a stock or currency all look alike 

when a market chart is enlarged or reduced. 

 An observer cannot tell which of the data 

concern prices that change from week to week, 

day to day or hour to hour.

An in finance?

22

How Fractals Can Explain What's Wrong with Wall Street, 

B. B. Mandelbrot, Scientific American Sept. 2008



 Ilya Prigogine (Belgium, born in Moscow, Nobel 

Prize in Chemistry 1977).

 Studied chemical systems far from equilibrium.

 Discovered that the interplay of (external) input 

of energy and dissipation can lead to “self-

organized” patterns.

Spatial patterns: how “self-organization” emerges?



The 1990s: can two chaotic systems synchronize?

Coupled Lorenz systems



In mid-1600s Christiaan Huygens (Dutch 

mathematician) noticed that two pendulum 

clocks mounted on a common board 

synchronized and swayed in opposite directions 

(in-phase also possible).

In fact, the first observation of synchronization was done 

much earlier (mutual entrainment of two pendulum clocks)

(lots of videos in internet)



Can we observe the synchronization of two chaotic systems?



Different types of synchronization

 Complete: y(t) = x(t) (identical systems) 

 Phase:  the phases of the oscillations are synchronized, but 

the amplitudes are not.

 Lag: y(t+) = x(t)

 Generalized:   y(t) = F(x(t-)) (F and  can depend on the

coupling strength)

More problems of time series analysis: 

How to detect coupling, how to detect delay in the 

coupling, and how to quantify synchronization? 



Stochastic resonance: an optimal level of noise can, in some 

bistable systems, enhance the detection of a weak signal, 

improving the performance of the system.

Effect of noise in nonlinear systems? (late 80’ and 90’)

28

Bistable system Periodic signal Noise

x(t)

Time

Gammaitoni, Hanggi et al, 

Rev. Mod. Phys. 70, 223 (1998).



Can we observe the stochastic resonance phenomenon?

29

(using a bistable

laser that emits in 

two orthogonal 

polarizations)



An excitable system: a peculiar type of dynamical system

30

B. Lindner et al., Phys. Rep. 392, 321 (2004)

Response when a control 

parameter increases in time

M. Masoliver PhD thesis (2020)



Role of noise in excitable systems? 

31

Fitz Hugh–

Nagumo model

D=0: stable behavior

D



Coherence and stochastic resonance have been 

observed in excitable lasers

32

(varying the frequency of the signal)(varying the level of noise)



But what is “noise”? 
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A two-dimensional random walk or 

drunkard’s walk
(The Viking Press, New York,1955)

A problem in time series analysis: How to “find the signal”? 
(example: filter out noise, compress data).

Someone's noise is another one's signal
(example: for a climatologist “weather” is noise).

In social systems, a Brownian 

agent generalizes the concept 

of a Brownian particle: is an 

active particle that has internal 

states, can store energy, 

information, assets, and 

interacts with other agents and 

with the environment.



 In a model of opinion formation (Kuperman and Zanette, 2002),

opinions are affected by: 

- social imitation, occurring via majority rule; 

- fashion, expressed by an external modulation acting on all agents; 

- individual uncertainty, expressed by random noise. 

Stochastic resonance was observed because a optimal 

amount of noise leads to a strong amplification of the system’s 

response to the external modulation (fashion). 

 The phenomenon also occurs if one varies the system’s size 

keeping fixed amount of noise (Tessone and Toral, 2005): an 

optimal response is achieved for an optimal population size 

(“system size stochastic resonance”).

Stochastic resonance in social systems?

34

Kuperman and Zanette, Eur. Phys. J. B 26, 387 (2002).

Tessone and Toral, Physica A 351, 106 (2005).

Castellano et al, Rev. Mod. Phys. 81, 591 (2009).



Late 90s, early 2000s: synchronization of a large number 

of dynamical systems



Another example of synchronization: the opening of the 

London Millennium Bridge, June 10, 2000

Source: BBC

Crowd synchrony on the Millennium Bridge, 

Strogatz et al, Nature 438, 43 (2005)



Model of all-to-all coupled phase oscillators. 

K = coupling strength, i = stochastic term (noise) 

Describes the emergence of collective behavior

How to quantify?      

With the order parameter:
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The Kuramoto model (Japanese physicist, 1975)

r =0 incoherent state (oscillators scattered in the unit circle)

r =1 all oscillators are in phase (i=j  i,j)



Synchronization transition as the coupling strength increases

Strogatz, Nature 2001

Video: https://www.ted.com/talks/steven_strogatz_on_sync

https://www.ted.com/talks/steven_strogatz_on_sync


 Complicated systems (large sets of linear elements with 

linear interactions) are not complex.

 Complex systems: large number of elements, where the 

elements and/or their interactions are nonlinear.

 Main difference: in a complex system a “reductionist” 

approach does not work. 

 The “emergent behavior” in a complex system can not be 

predicted studying the behavior of the individual units.

2000s to present: from chaotic systems to complex systems 



Complexity science

S. Strogatz, Nature 2001

 Networks (or graphs) are used for mathematical modelling 

of complex systems.

 Emergent properties, not present in the individual elements.

 The challenge: to understand how 

the structure of the network and 

the dynamics of individual units 

determine the collective behavior.

 Applications

‒ Epidemics

‒ Rumor spreading

‒ Transport networks

‒ Financial, Economics

‒ Brain, physiology, etc.



Real-world example: international financial network

41

 The nodes 

represent major 

financial institutions 

 The links (directed 

and weighted) 

represent the 

strongest relations 

among them. 

 Node colors 

indicate different 

geographical areas: 

EU (red), North 

America (blue), 

other (green).

F. Schweitzer et al., Science 325, 422 (2009).
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Real-world example: transmission of Covid-19

Source: Alison Hill, The math behind epidemics, 

https://physicstoday.scitation.org/doi/10.1063/PT.3.4614

 Transmission network seeded 

by an unknown infected 

individual (blue) who 

attended a training course 

with other fitness instructors 

(purple). 

 The fitness instructors spread 

the infection to students in 

their classes (red), to family 

(yellow), and to coworkers 

(green).

Time series analysis problems: 

- how to “reconstruct” the 

network from observed data? -

- how to predict the existence 

or the absence of a link?



Star (K+1 nodes)

Kuramoto model in a complex network
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J. Zamora et al., Phys. Rev. Lett. 105, 264101 (2010). 

J. Gomez-Gardeñes et al., Phys. Rev. Lett. 106, 128701 (2011). 

I. Leyva et al, Phys. Rev. Lett. 108, 168702 (2012).

Fast oscillators have many 

links, slow oscillators only few.

Explosive (phase) synchronization has been observed in coupled lasers and 

in electronic circuits:
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Adjacency matrix: Aij = 1 if i and j 

are connected, else Aij = 0.

Order 

parameter



Networks of networks: interdependent networks

44
Source: Wikipedia

Can we predict the 

effect of a critical (or 

extreme) event in 

one network? 

Cascade of failures?



From dynamical systems to complex systems & data science

 Dynamical systems theory (bifurcations, low-dimensional 

attractors) allows to 

‒ uncover patterns and “order within chaos”, 

‒ uncover universal characteristics

 Synchronization emerges in interacting systems

 Complexity science: study “emergent” phenomena in large sets 

of nonlinear interacting units (tipping points, critical transitions).

 Time series analysis allows to characterize signals and to 

“obtain features” that encapsulate properties of the signals.

 Data science: feature selection, classification, forecasting.



Hands-on exercise 1: work with the logistic map
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Parameter r

x(i)

)](1)[( )1( ixixrix 

 Plot the 

bifurcation 

diagram

 Estimate 

=(r2-r1)/(r3-r2)

 Role of 

transient 

time?

 Continuous 

variation of r?
r2-r1 r3-r2


