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Outline

Class 1: From dynamical systems to complex systems
- Dynamical systems
- Bifurcations
- Logistic Map
- Chaotic attractors
- Synchronization
- Kuramoto Model
- Networks

Class 2: Univariate time series analysis

Class 3: Univariate time series analysis
Class 4: Bivariate and Multivariate analysis
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The beginning of dynamical systems theory

: : : d’x  dx
" Mid-1600s: Newtonian mechanics 7z +b—+ke=0

= |saac Newton: studied planetary orbits and
solved analytically the “two-body” problem
(earth-sun).

= Since then: a lot of effort for solving analytically
the “three-body” problem (earth-sun-moon) —
Impossible.
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Late 1800s: Henri Poincare (French mathematician)

= |nstead of asking “which are the exact positions of
the planets (trajectories)?”

he asked: “is the solar system stable for ever, or will planets
eventually run away?”

*= He developed a geometrical approach to solve the problem.

* |ntroduced the concept of “phase space”. L
= Search for structures that divide the phase y
space into regions where “trajectories” have X/

guantitatively different behavior.

= Poincaré recurrence theorem: certain systems will, after a
sufficiently long but finite time, return to a state very close to
the initial state.

= He also had the intuition of the possibility of chaos.
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Poincare: “The evolution of a deterministic system can
be aperiodic, unpredictable, and strongly depends on the

Initial conditions”.

prediction
fails out here

t=0
2 initial conditions,
almost indistinguishable

Deterministic system: the initial conditions fully determine

the future state.
Deterministic chaotic system: there is no randomness but

the system can be, in the long term, unpredictable.

A problem in time series analysis: How to determine the
prediction horizon? How to estimate the uncertainty?

[=1 horizon
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1950s: First computer simulations

= Computes allowed to experiment with equations.
= Huge advance in the field of “Dynamical Systems”.

= 1960s: Eduard Lorenz (American mathematician
and meteorologist at MIT): simple model of
convection rolls in the atmosphere.

Lorenz 63

dor o e 2D projection of C%P,attractor
— = —ox + oy, JE
dat , A
dy _I_ E oo k
— = —IZz1+TIT—Y, . |
dt ol
_.\-. — ol y - |r_.| = . 'w'Dnir;éfu—m‘,o— 50 z'cru T0 w0 350 400
dt FIG. 1. Chaotic time series x (¢} produced by Lorenz (1963) i
equations (11) with parameter values r=45.92, b=4.0, —_— —— -

o=16.0. ‘

= Most famous chaotic attractor.

M cristina.masoller@upc.edu Y @cristinamasoll1



Lorentz describing deterministic chaos:

The present determines the future.
But

The approximate present does not approximately determine
the future.

Which system may be chaotic?

Continuous dynamical systems described by 3 or more
ordinary differential equations.

Problems in time series analysis: How to quantify chaos?
How to distinguish chaos from noise?
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Can we observe chaos experimentally?

VOLUME 57, NUMBER 22 PHYSICAL REVIEW LETTEES | DECEMBER 1986

Evidence for Lorenz-Type Chaos in a Laser

C, O, Weisg and J. Brock'!

Physikalisch-Technische Bundesansalt, D-3300 Braunschwelg, Federal Republic of Germany
(Received 18 April 1586)

Laser power U, —

pulsing period ~1ps

optically pumped NHj; laser
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The 1970s

= Robert May (Australian, 1936): population biology
= "Simple mathematical models with very
complicated dynamics®, Nature (1976).

Xt+1 — f (Xt)

A classical example: The Logistic map f(X)=r x(1—X)
xe(0,1), re(0,4)

= Difference equations (“iterated maps”), in spite of being
simple and deterministic, can exhibit: stable points,
stable cycles, and apparently random fluctuations.
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The logistic map:

x(i +1) = r x(DN[1—x(i)]] x<€(0.1), re(0,4)

r=2.8

go.s/ww

r=2.8, Initial condition: x(1) = 0.2

' Transient relaxation — long-term stability

w2 0% The fixed point is the solution

o | =33 | Ofi x=rx(1-X)=x=1-1/
05

Transient dynamics — oscillations

% 10 20 30 40 o (regular or irregular)

1; “ e =35 T d L | |
S o5 % 05

r=3.9
% 10 20 30 40 50 % 1 0 0 0 %0
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x(i)

T

Bifurcation diagram: period-doubling (or subharmonic)
route to chaos
1-
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Order within chaos (1975)

M. Feigenbaum (American mathematician
and physicist 1944-2019), using a small
HP-65 calculator, discovered “hidden”
order in the route to chaos: the scaling of
the bifurcation points of the Logistic map.

i+1

0= Iimi =4.669201...

) .
g SR
mamy v oY

SRR

HP-65 calculator: the
first magnetic card-
programmable
handheld calculator
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A universal law

Feigenbaum demonstrated that the same behavior, with the
same mathematical constant (6=4.6692...), occurs for a wide
class of functions. X, = f(X)

= Very different systems (in chemistry, biology, physics, etc.)
go to chaos in the same way, quantitatively.
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Can we observe the period doubling route experimentally?

(about 10 years later) With a modulated laser, keeping constant the
modulation frequency and increasing modulation amplitude.

WWWWW Ipl &
(a) enl
AAARN Ll 1
Laser
output 5
intensity (e M lAIMI m (%) 2
} .
0 \
o 10 m (%)
Problems in time series analysis:
— How to identify an approaching
Time bifurcation point (tipping point)?
J. R. Tredicce et al, — How to distinguish transient from
Phys. Rev. A 34, 2073 (1986). non-transient behavior?
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The late 1970s

= Benoit B. Mandelbrot (Polish-born,
French and American mathematician
1924-2010): “self-similarity” and fractal
objects:

each part of the object is like the whole
object but smaller.

= Because of his access to IBM's
computers, Mandelbrot was one of the
first to use computer graphics to create
and display fractal geometric images.
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How to estimate the dimension of a fractal?

mpe
/" Phe AT [ 1
A ; L g}‘ SNEAY
PLis\Y AR Fleciy
' & 14 ' 2 [
r;: ki\\ fFl 2 \“: -E - { 3
) A :
/. d ! } allu
£ % ! u _r
hy :
\ : jﬂ - t%
e S ‘ &

Box counting: number of occupied boxes scales as (1/¢)®

Abarbanel et al, Reviews of Modern Physics 65, 1331 (1993).
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Examples

1. Cantor set (introduced by German mathematician Georg Cantor in 1883)
1 2 1 2 7
[:| - =

= 1
4 9 3 3 4

el ln'al

D=0.63

Fractal structure: each part of the object resembles the hole object.

2. Sierpinski triangle
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Examples of fractal objects in nature

Human lung D=2.97 Coastline of Ireland D=1.22
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An In finance?

= The fractal concept is not an abstraction but a
mathematical formulation of a well-known fact:
movements of a stock or currency all look alike
when a market chart is enlarged or reduced.

= An observer cannot tell which of the data
concern prices that change from week to week,
day to day or hour to hour.

How Fractals Can Explain What's Wrong with Wall Street,
B. B. Mandelbrot, Scientific American Sept. 2008
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Spatial patterns: how “self-organization” emerges?

= |lya Prigogine (Belgium, born in Moscow, Nobel
Prize in Chemistry 1977).

= Studied chemical systems far from equilibrium.

= Discovered that the interplay of (external) input
of energy and dissipation can lead to “self-

organized” patterns.
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The 1990s: can two chaotic systems synchronize?

VOLUME 64, NUMBER 8 PHYSICAL REVIEW LETTERS 19 FEBRUARY 1990

Synchronization in Chaotic Systems

Louis M. Pecora and Thomas L. Carroll

Code 6341, Naval Research Laboratory, Washington, D.C. 20375
(Received 20 December 1989)

Coupled Lorenz systems

(a) Lorenz system
same parameters

A
Y 02
Az —4
X —_— 10
1 107°
y 10_8 i i A A A i i
YI . 2 0 1 2 3 tf-tme 5 6 7 8 9
Z ’[ Z 2
1 2 10 ) AZ. " (b) Lorenz system

ditferent parameters

Drive Response

[ —> 0 ‘yz—yl‘—>0,

Zz—Zl‘—>0

time
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In fact, the first observation of synchronization was done
much earlier (mutual entrainment of two pendulum clocks)

In mid-1600s Christiaan Huygens (Dutch
mathematician) noticed that two pendulum
clocks mounted on a common board
synchronized and swayed in opposite directions
(in-phase also possible).

Figure 1.2. Original
drawing of Christiaan
Huygens illustrating his
experiments with two
pendulum clocks placed on
a common support.

(lots of videos in internet)
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Can we observe the synchronization of two chaotic systems?

VOLUME 72, NUMBER 13

PHYSICAL REVIEW LETTERS

28 MARCH 1994

(a)

Experimental Synchronization of Chaotic Lasers

Rajarshi Roy and K. Scott Thornburg, Jr.
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332

(Received 30 August 1993)

We report the observation of synchronization of the chaotic intensity fluctuations of two Nd:YAG
lasers when one or both the lasers are driven chaotic by periodic modulation of their pump beams.
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Different types of synchronization

= Complete: y(t) =x(t) (identical systems)

= Phase: the phases of the oscillations are synchronized, but
the amplitudes are not.

" Lag: y(t+7) = X(t)
= Generalized: y(t) =F(x(t-7)) (F and r can depend on the
coupling strength)

More problems of time series analysis:

How to detect coupling, how to detect delay in the
coupling, and how to quantify synchronization?
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Effect of noise in nonlinear systems? (late 80’ and 90’)

Stochastic resonance: an optimal level of noise can, in some
bistable systems, enhance the detection of a weak signal,
Improving the performance of the system.

o (ai T 4 I ' I T T

0 |i \
Bistable system Periodic signal  Noise | ‘
2L |
.f(f):_vf(.r}‘FA(] COS(&)I+§D}+§(T) 2 '
a , b,
V{X) = —5 X +Z X

0.0 I 0f1 . 0.2 I 0.3 . 0?4 . 0.5
Time

Gammaitoni, Hanggi et al,

Rev. Mod. Phys. 70, 223 (1998).
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Can we observe the stochastic resonance phenomenon?

VOLUME 85, NUMBER 22 PHYSICAL REVIEW LETTERS 27 NOVEMBER 2000

Experimental Evidence of Binary Aperiodic Stochastic Resonance

Sylvain Barbay.! Giovanni Giacomelli.,"** and Francesco Marin®*
stituto Nazionale di Ottica Applicata, Largo E. Fermi 6, 50125 Firenze, Italy
’Dipartimento di Fisica, Universita di Firenze, and Laboratorio Europeo di Spettroscopia Nonlineare,
Largo E. Fermi 2, 50125 Firenze, Italy
3Istituto Nazionale di Fisica della Materia, unita di Firenze, Italy
(Received 14 March 2000)

(using a bistable
laser that emits in
two orthogonal

polarizations)
c @)
g’ 1 I 1 I L I 1
0 50 100 150 200
time (us)
()
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An excitable system: a peculiar type of dynamical system

excitable dynamics
input output

""" I_I_“ — —
Response when a control
parameter increases in time

time (s) time (s)

M. Masoliver PhD thesis (2020)

&) L
----- Q) - N +
Q J

B. Lindner et al., Phys. Rep. 392, 321 (2004)
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Role of noise in excitable systems?

VOLUME 78, NUMBER 5 PHYSICAL REVIEW LETTERS 3 FEBRUARY 1997

Coherence Resonancgq in a Noise-Driven Excitable System

Arkady S. Pikovsky* and Jirgen Kurths*
Max—Planck—Arbeitsgruppe “Nichtlineare Dynamik” an der Universitit Potsdam Am Neuen Palais 19, PF 601553, D-14415,

1.0 -
. 0.0
Fitz Hugh- _st ‘4. \{ L M
Nagumo model B ’
dx X’ )
> =X — —V, o8 :
d}; .\ r) -05
=X a : } | |
d}‘ 10 107 107 10°
D=0: stable behavior > \ | \!\ ‘\\ \ | /\
66.0 SOI.O 100.0
t
31
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Coherence and stochastic resonance have been
observed in excitable lasers

VOLUME 84. NUMBER 15 PHYSICAL REVIEW LETTERS 10 ApriL 2000 VOLUME 88, NUMBER 4 PHYSICAL REVIEW LETTERS 28 JANUARY 2002
Experimental Evidence of Coherence Resonance in an Optical System Experimental Evidence of Stochastic Resonance in an Excitable Optical System
Giovanni Giacomelli Francesco Marino, Massimo Giudici,* Stéphane Barland,” and Salvador Balle
Istitute Nazionale di Ottica, Largo E. Fermi 6, 50125 Firenze, Italy Department de Fisica Interdisciplinar;, Instituto Mediterrdneo de Estudios Avanzados (CSIC-UIB),
C/ Miguel Marqués 21, E-07190 Esporles, Spain
Massimo Giudici and Salvador Balle (Received 1 August 2001: published 10 January 2002)

Departamento de Fisica Interdisciplinar; Instituto Mediterraneo de Estudios Avanzados (CSIC-UIB),
07071 Palma de Mallorca, Spain

Jorge R. Tredicce
Institut Non-Linéaire de Nice, UMR 6618 Centre National de la Recherche Scientifigue-Université de Nice Sophia-Antipolis.,
06560 Falbonne. France

a
©
) ) ) ) a
20
W
0]
e
b 2
e
@}
—-—
- - - o
N
(A
c

t Time (us)
(varying the level of noise) (varying the frequency of the signal)
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But what is “noise”?

Someone's noise is another one's signal
(example: for a climatologist “weather” is noise).

A problem in time series analysis: How to “find the signal”?
(example: filter out noise, compress data).

In social systems, a Brownian
agent generalizes the concept
of a Brownian particle: is an
active particle that has internal
states, can store energy,
iInformation, assets, and
Interacts with other agents and

X with the environment.
A two-dimensional random walk or
drunkard’s walk
(The Viking Press, New York,1955)
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Stochastic resonance in social systems?

= |n a model of opinion formation (Kuperman and Zanette, 2002),
opinions are affected by:

- social imitation, occurring via majority rule;

- fashion, expressed by an external modulation acting on all agents;
- Individual uncertainty, expressed by random noise.

Stochastic resonance was observed because a optimal

amount of noise leads to a strong amplification of the system’s
response to the external modulation (fashion).

*= The phenomenon also occurs if one varies the system’s size
keeping fixed amount of noise (Tessone and Toral, 2005): an
optimal response is achieved for an optimal population size
(“system size stochastic resonance”).

Kuperman and Zanette, Eur. Phys. J. B 26, 387 (2002).
Tessone and Toral, Physica A 351, 106 (2005).
Castellano et al, Rev. Mod. Phys. 81, 591 (2009).
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Late 90s, early 2000s: synchronization of a large number
of dynamical systems

Figure 1| Fireflies, fireflies burning bright. In the forests of the night,
certain species of firefly flash in perfect synchrony — here Pteroptyx
malaccae in a mangrove apple tree in Malaysia. Kaka ef al.* and
Mancoff et al.’ show that the same principle can be applied to
oscillators at the nanoscale.
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Another example of synchronization: the opening of the
London Millennium Bridge, June 10, 2000

7

Source: BBC

Crowd synchrony on the Millennium Bridge,
Strogatz et al, Nature 438, 43 (2005)
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The Kuramoto model (Japanese physicist, 1975)

Model of all-to-all coupled phase oscillators.

N
46 _, +%Zsin(ej _0)+&, i=1.N
=1

dt

K = coupling strength, & = stochastic term (noise)

Describes the emergence of collective behavior
How to quantify? N

. iy _ 1 10
With the order parameter; |f€" = ﬁZe

j=1

r =0 incoherent state (oscillators scattered in the unit circle)
r =1 all oscillators are in phase (0;=6; V 1))
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Synchronization transition as the coupling strength increases

0

Strogatz, Nature 2001
Video: https://www.ted.com/talks/steven strogatz on sync
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https://www.ted.com/talks/steven_strogatz_on_sync

2000s to present: from chaotic systems to complex systems

= Complicated systems (large sets of linear elements with
linear interactions) are not complex.

= Complex systems: large number of elements, where the
elements and/or their interactions are nonlinear.

= Main difference: in a complex system a “reductionist”
approach does not work.

= The “emergent behavior”’ in a complex system can not be
predicted studying the behavior of the individual units.
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Complexity science

Networks (or graphs) are used for mathematical modelling
of complex systems.

Emergent properties, not present in the individual elements.

The challenge: to understand how
the structure of the network and
the dynamics of individual units
determine the collective behavior.

Applications

— Epidemics

— Rumor spreading

— Transport networks

— Financial, Economics
— Brain, physiology, etc.
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Real-world example: international financial network

) Generali  jtsubishi UFJ
Sumitomo 0

The nodes Royal Bank Scotland 0/ e @ Llovds TSB

i - HBOS
represent major _ . @
financial institutions Gen.Electric@y /J/ |\ otia. | Ametica Prudential Fin.

Scotia

Bear/Stearns

The links (directed  yesa-sanpacio @
and weighted) Ues g
represent the Aberdeen @ Soc |Generale @

Goldman Sachs

@ NG

o Santander

Morgan Stanley‘v\

strongest relations y S ool @ Commerzbank
Mediobanca
among them RSP Unicredito
Node colors @ o<
. . . Sumitomomitsui () ("} HSBC ¥ Citigroup
indicate different . : Key Corp S
. Friends Provident 0 P Morgan o Barclays

geographlcal areas. Fidelity Mng.o Cr.Suissefg- @ Chase BNP Paribas
EU (red), North ‘

( ) IF1 0Nomura

America (blue),
other (green).

Deutsche Bank Wellington Mng.

Franklin Res. Merrill Lynch

F. Schweitzer et al., Science 325, 422 (2009).
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Real-world example: transmission of Covid-19

e = Transmission network seeded
. o0 o O.O by an unknown infected
o o o iIndividual (blue) who
O.9 ° © ooo.o°o.. attended a training course
N with other fitness instructors
,0 e 060" %o (purple).
° .O o P '.' % = The fitness instructors spread
o @0 g ¢ o the infection to students in
® .' :'0 g o @O their classes (red), to family
o '. S-S o o ® © ( ), and to coworkers
" Jfeo e o0 (green).
O
..Oo o @ OO Time series analysis problems:
@

o - how to “reconstruct” the
? -
Source: Alison Hill, The math behind epidemics, network from observed data”

https://physicstoday.scitation.org/doi/10.1063/PT.3.4614 - how to predict the existence
or the absence of a link?
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Kuramoto model in a complex network

Adjacency matrix: A; = 1 if i and |
are connected, else A; = 0.

N
9f=a)!‘|‘/\z s IH(HI_HI)
=1

N
N _ — Fast oscillators have man
Order :i Zelej w; =K —Z'Aﬁj : . y
i links, slow oscillators only few.
parameter N 73
1 Random _Scale free . Star (K+1 nodes)
(Klf-1)
08 - 08t 08} K=10
orward —=— Forward —m 1/
06 | Bgckwarg e 0.6 | Backward —— 0.6 — b J.) A
= 9 9
04 - 04 0.4 9 9
02 0.2} 0.2
'uuummum"'"'““"”"""""""mI ............
0 - ' : - 0 : : : : 0 | , ., , Foward —&—
0.2 0.4 0.6 0.8 1 15 0.8 1 1.2 1.4 16 1.8 05 (K1) 11 14 17 2 23 26
A (a)  (K+T) A

Explosive (phase) synchronization ha

in electronic circuits:

s been observed in coupled lasers and
J. Zamora et al., Phys. Rev. Lett. 105, 264101 (2010).

J. Gomez-Gardenes et al., Phys. Rev. Lett. 106, 128701 (2011).
l. Leyva et al, Phys. Rev. Lett. 108, 168702 (2012).

M cristina.masoller@upc.edu Y @cristinamasoll1



Networks of networks: interdependent networks

Can we predict the
effect of a critical (or
extreme) event in
one network?

Cascade of failures?

Source: Wikipedia
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\
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From dynamical systems to complex systems & data science

= Dynamical systems theory (bifurcations, low-dimensional
attractors) allows to

— uncover patterns and “order within chaos’,
— uncover universal characteristics
= Synchronization emerges in interacting systems

= Complexity science: study “emergent” phenomena in large sets
of nonlinear interacting units (tipping points, critical transitions).

= Time series analysis allows to characterize signhals and to
“obtain features” that encapsulate properties of the signals.

= Data science: feature selection, classification, forecasting.
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Hands-on exercise 1: work with the logistic map
X(1+1) =r x(1)[1—x(1)]

Plot the
bifurcation
diagram
Estimate
0=(r-r)/(r5-r)
Role of
transient
time?
Continuous
variation of r?

x(i) |

Ir-Iq

Parameter r
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