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 Is the signal stationary? Transient chaos?

 Is the signal just noise? Signatures of nonlinearity? 

 Can we “reconstruct” the “effective” phase space of a system 

from observed data?

 Can the signal be predicted? Which is the prediction horizon?

 Is a system approaching a bifurcation point (“tipping point”)? 

 Are two (or more) systems (partially) synchronized?

 Are two (or more) systems interdependent? Causal 

interactions? Coupling delays?

 Can we forecast how failures in one system will propagate to 

other systems?

Relevant problems in time series analysis
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Methods of time series analysis are classified as:

 Univariate analysis

 Bivariate analysis

 Multivariate analysis



 Return maps

 Distribution of data values

 Autocorrelation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction, Lyapunov exponents, and fractal 

dimension

 Symbolic analysis 

 Information theory measure: entropy 

 Network representation of a time-series

 Spatio-temporal representation of a time-series

Univariate time series analysis
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X = {x1, x2, … xN}

 First step: plot the data. 

To begin with the analysis of a time series
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 Next: examine simple properties.



Return Map: plot of xi vs. xi+
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 Plot the distribution of data points 

(histogram).

 Next: examine simple properties

Mean (expected value of X, E[X])

Variance: 2 =Var (X) = E[(X-)2]

Skewness:

Kurtosis:

Coefficient of variation: Cv =  / ||

Analyze the distribution of data values
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S = E[Z3]

K = E[Z4]

)(tx
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Press WH et al. Numerical recipes: 

the art of scientific computing 

(Cambridge University Press)

 K<3: the distribution produces fewer 

and less extreme “outliers” than the 

normal distribution. Example: the 

uniform distribution.

 K=3: Normal Gaussian

 K>3: the tail approaches zero more 

slowly than a Gaussian, and therefore 

produces more outliers. Example: 

Laplace distribution.

Excess kurtosis: K-3



Example:  "fat tail" in the distribution of financial data 
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Systems displaying long tailed distributions? Controlled 

experiments are often difficult.
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Bonatto et al. Phys. Rev. Lett. 107, 053901 (2011)

Optical rogue wave if the 

pulse height is: I > I+ 8

Example: the intensity emitted by a chaotic laser
Intensity histograms for slightly 

different values of a control parameter



Application: counting the number of extreme values 

allows to distinguish different dynamical regimes
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Panozzo et al, Chaos 27, 114315 (2017)

(control parameter)

(c
o
n
tr

o
l 
p
a
ra

m
e
te

r)

Number of events (below -1.5) in log scale

Time



 The return map allows us to see 

if x(t) and x(t+) are “correlated”.

 But how to quantify?

 C(0)=1
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 For a stationary process (,  constant in time): C() = C(-)

 C()=0 indicates that x(t) and x(t+) are uncorrelated.

 C()>0 indicates persistence: large values tend to follow large 

ones, and small values tend to follow small ones, on average 

(more of the time than if the time series were uncorrelated).

 C()<0 indicates anti-persistence: large values tend to follow 

small ones and small values tend to follow large ones.

3. Autocorrelation function (ACF)



Examples of autocorrelation functions
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A. Witt and B. D. Malamud, Surv. Geophys. 34, 541 (2013).

Slow decay: 

long-range

correlations.

Rapid decay: 

short-range

correlations.
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Source: Wikipedia

Problem with the ACF: only detects linear correlations

x(t)

x
(t

+
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Application of variance and autocorrelation: 

quantification of coherence resonance
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Fitz Hugh–

Nagumo model

(excitable system)

Coefficient of variation 

of the distribution of 

inter-spike-intervals

Correlation time 

ACF

D

Pikovsky and Kurths PRL 1997

Log-log scale

R: dashed, c: solid



How does the autocorrelation function look like?
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Another application of variance and autocorrelation: 

“early warning signals” of critical transitions
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M. Scheffer et al., Nature 461, 53 (2009)

Far from bif. Close to bif.

 An increase in variance and 

autocorrelation can indicate an 

approaching “tipping point” or 

critical transition.



The crash of October 1987
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Evolution of the New 

York stock exchange 

index S&P500 from 

July 1985 to the end 

of October 1987 (557 

trading days).

One can observe 

well-defined 

oscillations before 

the bubble ends in 

the crash.
Sornette et al. J. de Physique I 6, 167 (1996).

Sornette, Physics Reports 378, 1 (2003).



 x = {x0, x1, … xN-1} is described as a superposition of waves.

 The DFT(x) is the set of complex numbers X={X0, X1, … XN-1}.

 The frequencies are fk= k/(N) with  = sampling time (time 

interval between xi and xi+1) and N = # of data points.

 Important property: the Fourier transform is linear. 

If X=DFT(x) and Y=DFT(y)  aXK+bYK = DFT(ax + by).

 Important property: If x is a real signal: XK = (XN-k)*

 The Fast Fourier Transform (FFT) algorithm applied to x returns 

the DFT, i.e., the set of complex numbers X = {X0, X1, … XN-1}. 

4. Discrete Fourier Transform 
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Examples
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The sum of 

the first four 

terms of the 

Fourier 

series (with 

specific 

phases) 

gives almost 

a square 

wave.

The sum of 

many terms 

of the 

Fourier 

series (with 

specific 

phases) 

gives a 

triangular 

signal.

X=DFT(x)



The DFT are complex numbers that contain information of 

the amplitude and phases of the waves in the Fourier series 

Time

Intensity vs. time

Time
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Source: Prof. R. 

Trebino lectures, 

Georgia Tech, USA



The PSD is the set of real numbers that give the “strength” of 

each frequency component:

PSD(x)= {|X0|
2, |X1|

2, …} 

Power spectral density (PSD)
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H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press (2004)
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Example: Fourier analysis of a time series with oscillations 

with different time-scales

M. Sciamanna (PhD Thesis 2004).

Langley et al, Opt. Lett. 19, 2137 (1994).

Power spectral density

x(t) vs. time
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Spectrogram: variation of the PSD with time (or with a 

control parameter)

H. Kantz and T. Schreiber, Nonlinear Time Series 

Analysis, Cambridge University Press (2004).

M. Duque, J. Tiana (UPC 2022)

Spectrogram of voice data Spectrogram of a chaotic laser

The spectrogram resolves both time and frequency information, but with limited 

resolution t, f (when, in time, a given frequency will occur? which is the precise 

value of the frequency at a given time?).



x PSD

Short

pulse

Medium-

length

pulse

Long

pulse

(This is the 

essence of the 

Uncertainty 

Principle of 

Quantum 

Mechanics)

w

w

w

t

t

t

The shorter a pulse, the broader the power spectrum

∆𝒕  n ≳ 0.3

Source: Prof. R. Trebino

lectures, Georgia Tech, USA



 Wiener-Khinchin theorem: if x is stationary, PSD(x) is 

the Fourier transform of the autocorrelation function, 

ACF C().

 Long-range temporal correlations: power-law decay of 

the PSD.

 The Fourier transform is designed for ‘circular’ time 

series (i.e. the last and first values in the time series 

‘follow’ one another). When |xN-x1| is large (non-

stationary time series) a more precise estimation of the 

PSD is obtained after “detrending” and “windowing”.

Power spectral density and autocorrelation function
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Example

Original Post-processed

Witt and Malamoud, Surv. Geophys. 34, 541 (2013).



The FFT is often used for “de-noising” a time series

28

In this example noise is added 

to a signal given by a sum of 

two sine waves. 

In the Fourier domain, 

dominant peaks may be 

selected and the noise filtered.

The de-noised signal is 

obtained by inverse Fourier 

transforming the two dominant 

peaks.

x

x

Brunton and Kutz, Data-Driven Science and Engineering, Cambridge University Press 2019 



 Return maps

 Distribution of data values

 Autocorrelation and Fourier analysis

 Stochastic models and surrogates

 Attractor reconstruction, Lyap. exponents, fractal dimension

 Symbolic analysis 

 Information theory measure: entropy 

 Network representation of a time-series

 Spatio-temporal representation of a time-series

Univariate time series analysis
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Is a time series generated by a stochastic process?

Is it generated by a nonlinear process? 

Is my model good for my data?



 We have one real time series. 

 Generate a set of “surrogate” time 

series that are “similar“ to the 

original and consistent with the 

null hypothesis (NH) that we 

want to test. 

 Measure an statistical property: 

“d” in the original series and “s(i)” 

in the surrogate time series.

 Is “d” consistent with the 

distribution of “s(i)” values? 

− No! we reject the NH.

− Yes! we “fail to reject” the NH. 

Null hypothesis testing: the method of surrogate data

M. Small, Applied Nonlinear Time 

Series Analysis (World Scientific, 2005)



p value
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Warning: the p-value only measures the compatibility of an 

observation with a hypothesis, not the truth of the hypothesis.

Altman and Krzywinski, Interpreting P values. Nature Methods 14, 213 (2017).



 As all linear systems are time-reversible, time-irreversibility 

indicates nonlinearity.

 Necessary but not sufficient condition (some nonlinear 

systems are time-reversible).

 Surrogates needed that preserve main properties of a time 

series (e.g., distribution of values, Fourier spectrum).

Example: the process that generates a time series is nonlinear?

32



Iterative amplitude adjusted Fourier transform 

(IAAFT) surrogates

33

T. Schreiber and A. Schmitz, Physica D 142, 346 (2000). 

R. Silini PhD Thesis, UPC 2022

Real data      Surrogate data      



G. Lancaster et al., Physics Reports 748, 1 (2018).

Example of surrogate test for nonlinearity

34

A: Rossler with 

a = 0.165, b = 0.2 

and c = 10

B: High-order (linear) autoregressive process

A proper surrogate test detects nonlinearity in 

A (reject NH) but not in B (fail to reject NH).



 Return maps

 Distribution of data values

 Autocorrelation and Fourier analysis

 Surrogates

 Attractor reconstruction, Lyapunov exponents, and fractal 

dimension

 Symbolic analysis 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

Methods of univariate time series analysis
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 Real systems are in general high-dimensional and we can 

only measure a few (hopefully relevant) variables.

 Models are complex and have many parameters.

 Reconstructing the phase space allows to compare models 

and experiments and to understand the effect of parameters.

36

Why we want to “reconstruct” the phase space of a 

system from an observed (scalar) time series?



Example: 2D representation of an attractor from a 

scalar time series

37

Experiments Simulations

C. Masoller et al. Opt. Comm. 157, 115 (1998)



Example: 2D representation of a human ECG signal

38

H. Kantz and T. Schreiber, 

Cambridge University Press 2003



Attractor reconstruction using delay coordinates 

(“Takens” method)

39

Problem: how to chose the embedding parameters 

(lag , dimension d)?

Bradley and Kantz, CHAOS 25, 097610 (2015)



  is chosen such that x(t) and x(t+) are uncorrelated

the first zero of ACF C() (or where |C()| is minimum).

What if there is no zero or no minimum?

 d is often estimated with the false nearest neighbors 

technique that examines how close points in phase space 

remain close as the dimension is increased. 

 Complicated technique, “practical” approach: try different d

values.

How to chose the lag  and the dimension d ?

40

After reconstructing the attractor, we can characterize the 

attractor calculating the Lyapunov exponents and the fractal 

dimension.



 A stable fixed point has negative s (since perturbations in 

any direction die out)

 An attracting limit cycle has one zero  and negative s

 A chaotic attractor as at least one positive .

41

G. Datseris and U. Parlitz, Nonlinear dynamics: a concise introduction 

interlaced with code, Springer (2022).

Lyapunov exponents: measure how fast neighboring 

trajectories diverge.



 Initial distance

 Final distance

 Local exponential grow

 The rate of grow averaged over the attractor gives max

Steps to compute the maximum Lyapunov Exponent

42

A very popular method for detecting 

chaos in experimental time series.



A word of warning on the interpretation of the maximum 

Lyapunov exponent! 
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 The algorithm returns  in the fastest expansion direction.

 The algorithm always returns a positive number!

 This is a problem when computing the LE of noisy data.

Every time series analysis algorithm returns a number. 

But is it useful? 

Significance testing (with appropriate surrogates) is needed.

F. Mitschke and M. Damming, Chaos vs. noise in experimental data, 

Int. J. Bif. Chaos 3, 693 (1993)



 Another very popular method for detecting chaos 

in real-world data.

Grassberger-Procaccia correlation dimension

44

 Fractal dimension (box counting dimension):

 Problem: for time-series analysis, D0 does not distinguish 

between frequently and unfrequently visited boxes.

 Correlation dimension: count the number of data points 

with distance between them < [P. Grassberger and I. 

Procaccia, Physica D 9, 189 (1983)].

 Other definitions are based on Information Theory.



1. Plot the time series.

2. Plot the return map using different lags.

3. Plot the distribution of data values, calculate , , S, and K. 

4. Calculate the ACF.

5. Calculate the PSD.

6. Compare with the ACF & PSD of Gaussian white noise.

Hands-on exercise 2: Linear analysis of a time series

45

Use your own data or download Niño index 3.4 from 
https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data

https://www.esrl.noaa.gov/psd/gcos_wgsp/Timeseries/Data/nino34.long.anom.data


 Return maps

 Distribution of data values

 Autocorrelation and Fourier analysis

 Surrogates

 Attractor reconstruction, Lyapunov exponents, and fractal 

dimension

 Symbolic analysis 

 Information theory measures: entropy and complexity

 Network representation of a time-series

 Spatio-temporal representation of a time-series

Methods of univariate time series analysis
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 Use a “rule” to transform {x1, x2, x3, …}  {s1, s2, …} 

Example: if xi > xth  si = 0; else si =1

 Symbols are taken from an “alphabet” of possible symbols.

 Then consider “blocks” of D symbols (“patterns” or “words”).

 All the possible words form the “dictionary”.

 Then analyze the “language” of the sequence of words

- the probabilities of the words,

- missing/forbidden words, 

- transition probabilities, 

- information measures (entropy, complexity, etc.)

Sequence of data points  sequence of symbols

47



 if xi > xth  si = 0; else si =1

transforms a time series into a sequence of 0s and 1s, e.g., 

{011100001011111…}

 Considering “blocks” of D letters gives the sequence of 

words. Example, with D=3:

{011   100    001    011   111 …}

 The number of words (patterns) grows as 2D

 More thresholds allow for more letters in the “alphabet” 

(and more words in the dictionary). Example: 

if xi > xth1  si = 0; 

else if xi < xth2  si =2; 

else (xth2 <x i < xth1)  si =1. 

Threshold rule: “partition” of the phase space

48
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Advantages and drawbacks of symbolic analysis

Advantages: 

1) No need to “reconstruct” the attractor.

2) Different ways to process the data and/or different rules to 

define “symbols” may uncover different properties of the 

time series.

Drawbacks: 

1) Most rules have “hyper-parameters” and results often 

depend on these hyper-parameters.

2) The length of the time series can limit the number of 

different symbols that can be be used. 



 Which are the possible order relations among three (D=3) 

consecutive data points in x(t)={…xi, xi+1, xi+2, …}? 

Ordinal analysis: threshold-less rule

Bandt and Pompe, Phys. Rev. Lett. 88, 174102 (2002)

 Count how many times each “ordinal pattern” appears.

 Advantages: allows to identify temporal structures & is 

robust to noise.

 Drawback: information about actual data values is lost.

{…2, 5, 7…}

{…2, 7, 5…}

{…5, 2, 7…}

{…5, 7, 2…}

{…7, 2, 5 …}

{…7, 5, 2…}



The number of patterns increases as D! 

 A problem for short time series

 How to select optimal D? 

it depends on:

─ The length of the time series

─ The length of the correlations

What if two values are equal?

Which is the pattern?

A simple solution is to add, to 

one of the values, a small 

random perturbation.

D=4 D=5
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Symbolic analysis can  be applied to “raw” data, or to 

“compressed” / filtered / preprocessed data.

Example: climatological time 

series (monthly sampled)

− Consecutive months:

− Consecutive years:

)...]24( ),...12( ),...([...  txtxtx iii

)...]2( ),1( ),([...  txtxtx iii

Y. Zou et al. Phys. Rep. 787, 1 (2019)

How to “compress”?

First method: Select the temporal resolution (sampling time) 

to define the symbols.
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How to “compress” / pre-process the data?

Time

Neuronal spikes

2) Define “events” and analyze the sequence of time-intervals 

between events (inter-event-times): T={T0, T1, T2, …} 

Laser spikes

Time



Analysis of D=3 patterns in spike sequences

021 012

120



How to “compress” / pre-process the data?

3) Define a Poincare section and analyze the crossings

55

H. Kantz and T. Schreiber, 

Cambridge University Press 2003

X, Y when the Z=0
2D projection of 3D 

chaotic attractor

C. Masoller et al, Phys. Lett. A 167, 185 (1992).



How to “compress” / pre-process the data?

56

4) Analyze only the extreme values (either in a given time 

interval, or above a certain threshold).

Time

2



Threshold transformation: 

if xi > xth  si = 0; else si =1

 Advantage: keeps information 

about the magnitude of the 

values.

 Drawback: how to select an 

adequate threshold (“partition” 

of the phase space).

 # of symbols: 2D

Ordinal transformation: 

if xi > xi-1  si = 0; else si =1

 Advantage: no need of 

threshold; keeps information 

about the temporal order in 

the sequence of values

 Drawback: no information 

about the actual data values

 # of symbols: D!

57

Comparison between two rules to define symbols
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Number of 

symbols in 

log scale



 Null hypothesis: 

pi = p = 1/D! for all i = 1 … D!

 If at least one probability is not in the 

interval p  3 with

and N the number of ordinal patterns:

We reject the NH with 99.74% 

confidence level.

 Else, we fail to reject the NH with 

99.74% confidence level.

Are the D! ordinal patterns equally probable?

58

Npp /)1( 



Symbolic analysis gives information about the presence of 

more/less expressed patterns in data that can be used to: 

• compare real data – model data, fit model parameters

• classification 

Examples:

Applications
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Laser spike intervals

Experimental parameter

Circle map

Control parameter

A. Aragoneses et al, Sci. Rep. 4, 4696 (2014)
U. Parlitz et al. Comp. in Bio. 

and Med. 42, 319 (2012) 

Cardiac beat intervals



Example: chaotic time series generated with the Logistic map
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Normal bifurcation diagram Ordinal diagram with D=3

“Normal” and “Ordinal” bifurcation diagrams of the Logistic map

Xi

Map parameter Map parameter, r

Pattern 210 is always forbidden; pattern 012

is more probable as r increases

Ordinal

Probabilities

012 021 102 120 201 210



Software

62

Python and Matlab codes for computing 

the ordinal pattern index are available 

here: U. Parlitz et al. Computers in 

Biology and Medicine 42, 319 (2012) 

World length (wl): 4

Lag = 3 (skip 2 points)

Result: 

indcs=3

http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf


 Return maps

 Distribution of data values

 Autocorrelation and Fourier analysis

 Surrogates

 Attractor reconstruction, Lyapunov exponents, and fractal 

dimension

 Symbolic analysis

 Information theory measure: entropy

 Network representation of a time-series

 Spatio-temporal representation of a time-series

Methods of univariate time series analysis
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Entropy (disorder) and information

https://imgur.com/gallery/Otg97

Low entropy high informationHigh entropy low information



 Interpretation: “quantity of surprise one should 

feel upon reading the result of a measurement ”.

Shannon entropy
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0 0.5 1
0
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0.8

1

p

H

C. Shannon, "A Mathematical Theory of Communication",

Bell System Technical Journal. 27 (3): 379–423 (1948).

Bell System Technical Journal. 27 (4): 623–656 (1948).

 Example: a random variable takes 

values 0 or 1 with probabilities: 

p(0) = p, p(1) = 1 − p.

H = −p ln(p) − (1 − p) ln(1 − p).

 p=0.5: Maximum unpredictability.

Claude Shannon



Permutation entropy
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Time series
Ordinal probabilities, D=3 Permutation entropy, 

D=3
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Bandt and Pompe, Phys. Rev. Lett. 88, 174102 (2002)

Shannon entropy of a time series, computed from the 

probabilities of the ordinal patterns.



Permutation entropy (PE) of the Logistic map

67

Entropy per symbol:

x(i+1)=r x(i)[1-x(i)] 

Robust to noise

Bandt and Pompe, Phys. Rev. Lett. 88, 174102 (2002)



Permutation entropy analysis of financial data

68



E. G. Turitsyna et al., Nat. Phot. 7, 783 (2013).

A. Aragoneses et al., Phys. Rev. Lett. 116, 033902 (2016).

L. Carpi and C. Masoller, Phys. Rev. A 97, 023842 (2018). 

Application to the Laminar → Turbulence transition in a 

fiber laser as the pump power increases

I(t)

I=0

=1

0.8 W

1.0 W

0.9 W

0.95 W

Time

Time

2

Raw and thresholded data



Surrogate

HVG or PE

Probabilities of symbols 

in “thresholded” data

Probabilities of 

symbols in “raw” data

(the abrupt transition is 

robust to variations of 

the threshold)

HVG

PE

The variation of the entropy with a parameter 

depends on the set of probabilities used. 

Probabilities of

“raw” intensity values

A. Aragoneses et al., Phys. Rev. Lett. 116, 033902 (2016).

(HVG: horizontal visibility 

graphs –is another 

symbolic method)

 ii ppH ln



Varying the sampling time () can identify ``hidden’’ 

periodicities in raw data
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A. Aragoneses et al., Phys. Rev. Lett. 116, 033902 (2016).



Renyi entropy, generalized dimension, and multifractality
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If q=0: H0=ln N  D0 = -lim0 (ln N)/

D0 is the box-counting dimension: # of occupied boxes N (1/)D

If q=1: Information dimension





)(
lim 01

H
D


 

: size of the bin for 

defining the probabilities

A set is multi-fractal if Hq changes with q. 

Most chaotic sets are multi-fractal.



 Return maps

 Correlation and Fourier analysis

 Stochastic models and surrogates

 Distribution of data values

 Attractor reconstruction: Lyapunov exponents and fractal 

dimensions

 Symbolic methods 

 Information theory measure: entropy

 Network representation of a time-series

 Spatio-temporal representation of a time-series

Methods of time-series analysis
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Example: ordinal network
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F. Olivares et al., Chaos 30, 063101 (2020).

 Adjacency matrix:

wij = TP(ij)

 In each node i: 

j wij=1

 Weigh of node i: the 

probability of pattern i

(i pi=1)

We use ordinal patterns as the nodes of the network and 

the transition probabilities (TPs)  define the links.

 Weighted and 

directed network



Network-based diagnostic tools

• Entropy computed from node weights (permutation entropy)

• Node entropy (entropy of each node, computed from the 

transition probabilities) and the average

• Asymmetry coefficient: normalized difference of transition 

probabilities, P(‘01’→ ‘10’) - P(‘10’→ ’01’), etc.

 iip pps log

(0 in a fully symmetric network; 

1 in a fully directed network)

ijiji wws   log



Example: ordinal 

analysis of the 

Logistic map with 

patterns of length D=4

Both entropies detect 

the merging of four 

branches, which is not a 

“bifurcation” and is not 

detected by the 

Lyapunov exponent. 

Sp=PE

Sn=H(TPs)

Lyapunov

exponent

Map parameter

Slinks

ac

C. Masoller et al, New J. of Phys. 17, 023068 (2015)



77
C. Masoller et al, New J. of Phys. 17, 023068 (2015)

The entropies can anticipate an abrupt transition



Eyes closed Eyes open

Application to EEG recordings during eyes closed- eyes 

open transition (physionet dataset, 160 healthy subjects)

time

C. Quintero-Quiroz et al., Chaos 28, 106307 (2018).



There are many other ways to represent a time-series as 

a network.

79

Adjacency matrices corresponding to different types of networks 

constructed from the x-coordinate of the Lorenz system.

Y. Zou et al, Physics Reports 787, 1 (2019) 



 Return maps

 Distribution of data values

 Autocorrelation and Fourier analysis

 Surrogates

 Attractor reconstruction, Lyapunov exponents, and fractal dimension

 Symbolic analysis

 Information theory measure: entropy

 Network representation of a time-series

 Spatio-temporal representation of a time-series

Methods of univariate time series analysis
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The space-time representation of a time series: 

a convenient way to visualize the dynamics

Color

scale: Ii
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
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Another example: spatio-temporal representation 

of quasi-periodic and chaotic time series

83

C. Masoller, Chaos 7, 455 (1997) Control parameter



And many more time series 

analysis methods
 Wavelets

 Hilbert

 Detrended fluctuation analysis

 Sample entropy, approximate entropy

 Topological data analysis

 Etc. etc.
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 For a given time series, by using different methods of analysis 

we obtain a large number of “features”, M.

 Examples of “features”: 

• Statistical properties (mean value, standard deviation, etc.), 

• Fourier properties (main frequencies), 

• Fractal dimension, Lyapunov exponent, etc. etc.

 If we have a large number of time series to analyze (N), we 

end up with a very large number of features (N x M).

 What to do? 

• Dimensionality reduction

• Machine learning

Time series analysis + complex systems  Big Data
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Permutation entropy: a form of “dimensionality reduction”
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Main types of machine learning classification algorithms

88

Support Vector Machine

M. Zanin et al, Physics Reports 635, 1 (2016).

Decision Tree



 Linear methods and nonlinear methods are useful for 

investigating complex signals.

 Different methods provide complementary information (i.e., 

“features” that encapsulate different properties of a signal).

 Appropriate statistical “surrogate” tests are needed to 

determine if the numerical values are significant.

Take home messages

Holger Kantz: “Every data set bears its own 

difficulties: data analysis is never routine”

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis, Cambridge University Press (2004)

Software implementation: https://www.pks.mpg.de/tisean/
G. Datseris and U. Parlitz, Nonlinear dynamics: a concise introduction interlaced with 

code, Springer (2022).

http://www.pik-potsdam.de/~donges/pyunicorn/

https://www.pks.mpg.de/tisean/


(you can also use your own data)

1. Test the “ordinal pattern” program with some examples.

2. Calculate the probabilities of the 6 ordinal patterns of length 

D=3 for the logistic map with r=3.99.

3. Calculate the ordinal bifurcation diagram: r in (3.5,4) with D=3.

4. For r=3.99 generate two trajectories starting from very similar 

initial conditions and calculate the sequence of ordinal patterns 

and their distribution.

Hands-on exercise 3: Ordinal analysis of the logistic map
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