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Abstract This review presents a synthesis of our work done in the framework
of the European project Learning about Interacting Networks in Climate (LINC,
climatelinc.eu). We have applied tools of information theory and ordinal time series
analysis to investigate large scale atmospheric phenomena from climatological
datasets. Specifically, we considered monthly and daily Surface Air Temperature
(SAT) time series (NCEP reanalysis) and used the climate network approach to
represent statistical similarities and interdependencies between SAT time series
in different geographical regions. Ordinal analysis uncovers how the structure of
the climate network changes in different time scales (intra-season, intra-annual,
and longer). We have also analyzed the directionally of the links of the network,
and we have proposed novel approaches for uncovering communities formed by
geographical regions with similar SAT properties.

Keywords Climate networks • Nonlinear time series analysis • Climate commu-
nities • Information transfer

1 Introduction

Complex networks constitute the huge revolution in nonlinear science in the
twentieth century because it provides a unified framework for the study of a wide
range of real-world complex systems, such as the Internet, social networks, transport
networks, ecological and metabolic networks, and even the human brain (Albert and
Barabasi 2002; Newman 2003; Boccaletti et al. 2006).

For understanding and extracting information from observed data, various meth-
ods for mapping statistical interdependencies between time series into “functional”
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networks have been proposed. These methods for constructing complex networks
from data are complemented by a careful analysis of the inferred network, in order
to detect fake links, missing links, hidden nodes, etc. (Timme 2007; Serrano et
al. 2009; Shandilya and Timme 2011; Yu and Parlitz 2011; Rubido et al. 2014;
Tirabassi et al. 2015a, b).

Considering the complexity of the inter-relations between the different elements
that constitute the climate system, it is clear that the analysis of observed clima-
tological data from a complex network perspective has great potential for yielding
light into relevant, previously unknown features of our climate.

Indeed, in the last two decades the research field of climate networks has
provided important insight into complex phenomena in our climate (Tsonis and
Roebber 2004; Tsonis and Swanson 2008; Yamasaki et al. 2008; Donges et al. 2009;
Barreiro et al. 2011; Fountalis et al. 2014; Hlinka et al. 2014; Tirabassi et al. 2015a,
b). Nowadays climate networks are a research field located at the triple intersection
of three active areas in nonlinear science: network theory, time series analysis, and
climate dynamics.

The European project Learning about Interacting Networks in Climate (LINC,
climatelinc.eu) brought together researchers from these communities with the goals
of training the new generation of researchers, developing cutting-edge science, and
promoting new collaborations. Here we present a summary of some of our results
developed within the LINC project.

2 Time-Scale Analysis of Climate Interactions

The work by Barreiro et al. (2011) was a first approach to characterize the climate
network by means of recurrent oscillatory patterns, with various time scales, as
described by using symbolic ordinal analysis (Bandt and Pompe 2002). By mapping
these processes into a climate network, we found that the structure of the network
changes drastically at different time scales.

The symbolic method of ordinal analysis first divides a time series x(t) of length
M into M � D overlapping vectors of dimension D. Then, each element of a vector
is replaced by a number from 0 to D � 1, in accordance with its relative magnitude
in the ordered sequence (0 corresponding to the smallest and D � 1 to the largest
value in each vector). For example, with D D 3, the vector (v0, v1, v2) D (6.8, 11.5,
11) gives the “ordinal pattern” (OP) 201 because v2 < v0 < v1. In this way, each
vector has associated an OP composed by D symbols, and the symbol sequence
comes from the comparison of neighboring values. With D D 3 the 3! D 6 different
patterns are (012, 021, 102, 120, 201, and 210). Last, the presence of recurrent
oscillatory patterns in the time series is characterized by means of the probabilities
of the ordinal patterns, computed from their frequency of occurrence in the time
series.

A classical measure to investigate mutual interdependencies between time series
is the mutual information (MI), which is computed from the probability distribution
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functions (PDFs) associated to the two time series, and the joint probability
distribution. When using the ordinal probabilities to compute the MI, the PDF is
computed with D! bins, and the joint probability, with D! � D! bins. Therefore,
to have a good statistics one must have enough data points in the time series, i.e.,
M � D! � D!

A main advantage of ordinal analysis is that it allows selecting the time scale of
the analysis by comparing L-lagged data points instead of consecutive data points.
For example, in SAT reanalysis with monthly resolution, by comparing four data
points separated by twelve months (i.e., (v0, v12, v24, v36)) we can investigate
recurrent oscillatory patterns with a characteristic time scale of 4 years.

When using an interdependency statistical measure, such as the MI, to define the
links of the climate network, one must use an appropriate criterion to define which
MI values are considered significant and represented as network links. Performing
such significance analysis is a challenging task. A particularly important problem for
climate networks is the fact that, due to physical proximity (i.e., due to the spatial
embedding of the network), the strongest links are those between neighboring
regions. Therefore, by using a high significance threshold, one ends up with a
network in which long-distance links are scarce. On the other hand, by choosing
a low significance threshold, a lot of “noise” is included in the network as fake
links. Therefore, the challenge is how to select the threshold that provides the best
compromise between the need to include relevant long-distance links that represent
genuine atmospheric teleconnections, and the need to limit the proliferation of noisy
links.

The networks obtained from Surface Air Temperature (SAT, NCEP/NCAR
monthly reanalysis covering the period January 1949 to December 2006) with
ordinal patterns formed by comparing SAT anomalies in the same month during
four consecutive years (i.e., D D 4 and L D 12) are shown in Fig. 1 (Barreiro
et al. 2011). In this figure, the networks obtained with different MI significance
thresholds are shown. One can notice that in this “inter-annual” time scale the

0

0.0023

0.0046

0.0069

0.0092

0.0115

 0 90E 180E 90W

60S

30S

0

30N

60N

τ = 0.504   ρ = 0.001

0

0.016

0.032

0.048

0.064

0.08

 0 90E 180E 90W

60S

30S

0

30N

60N

τ = 0.227   ρ = 0.01

0

0.0436

0.0872

0.1308

0.1744

0.218

 0 90E 180E 90W

60S

30S

 0

30N

60N

τ = 0   ρ = 0.027

Fig. 1 Climate networks constructed by computing the mutual information (MI) from the proba-
bilities of ordinal patterns of length D D 4 defined by comparing SAT anomalies (NCEP/NCAR
monthly reanalysis) in consecutive years (L D 12). The color-code is such that the white
(red) regions indicate the geographical areas with zero (largest) area weighted connectivity. The
significance threshold increases from left to right. Adapted from Barreiro et al. (2011)
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dominant atmospheric connections are located in the tropical Pacific and Indian
Ocean areas, mainly associated with El Niño phenomenon. One can also notice
that, as expected, the connectivity of the network decreases as the MI significance
threshold is increased. For the highest threshold considered (shown in the right
panel, here the threshold is selected such that the density of the network is 0.1% of
the total possible links) the El Niño—Indian Ocean teleconnection is significantly
weakened with respect to the lower threshold network (shown in the left panel, here
the threshold is chosen equal to the maximum MI value obtained from surrogated
data, which gives a network with 2.7% of the total links).

Figure 2 summarizes the effect of the lag L used to define the ordinal patterns
(Deza et al. 2013). When the OPs are defined in terms of consecutive months (top
row) the network links are mainly local. In the seasonal time scale (middle row)
the tropical region becomes connected. Clearly, the extra-tropics become connected
to the equatorial Pacific through atmospheric teleconnection processes only when
considering inter-annual time scales (bottom row).

Figure 3 displays the climate network when the mutual information is computed
with the classical approach, i.e., computing the PDFs from the histograms of values
in the time series (i.e., without taking into account the ordering of the data points).
We note that the network looks as a “superposition” of spatial structures which
are present only in some of the maps shown in Fig. 2. See, for example, the highly
connected green spot in the Labrador Sea, which is also seen in Fig. 2a and to a lesser
extent in Fig. 2b; but is not present in Fig. 2c. The Labrador Sea is one of the most
important regions of deep water formation in the north Atlantic. The formation of
this water occurs in wintertime and depends on the passage of extratropical storms
that cool the surface. The passage of storms is in turn related to the state of the
North Atlantic Oscillation. As a result, there is a clear connection of the Labrador
Sea with the rest of the north Atlantic mainly on seasonal time scales and is mostly
independent of ENSO activity.

3 Climate Communities

Many natural systems can be represented by networks with modular structure in
the form of communities of densely interconnected nodes. In the context of climate
networks, climate communities can be understood as a set of geographical regions
that share some common property (dynamical or statistical) of the climate in those
regions.

The existence of such regions is expected because of the physical processes that
govern our climate (ocean and atmospheric processes, solar forcing, vegetation,
human activity, etc.), act in a similar way in distant regions (having similar effects),
and therefore, distant regions can have similar climate. Examples include tropical
rainforests, dry and arid regions, maritime regions, etc.

The methodology for constructing climate networks described in the previous
section is not appropriate for detecting such community structure (i.e., regions
which have similar climatic properties) because, as seen in Figs. 2 and 3, the short-
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Fig. 2 Area weighted connectivity (left column) and connectivity maps (mutual information
values of the significant links of the node indicated by an x, right column) using D D 3 OPs formed
with three consecutive months (L D 1, top row), OPs formed with three equally spaced months
covering a one-year period (L D 3, middle row); and OPs formed with 3 months in consecutive
years (L D 12, bottom row). Adapted from Deza et al. (2013)

distance links between neighboring nodes dominate, and the northern and southern
hemispheres are only indirectly or weakly connected. Therefore, in this network,
areas of tropical rainforests, for example, which are located in different hemispheres
won’t be identified as belonging to the same community, because there won’t be
links that interconnect them.
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Fig. 3 As Fig. 2 but when the mutual information is computed from the PDFs of SAT anomaly
data values. Adapted from Deza et al. (2013)

Recently we proposed a novel methodology to construct the network that allows
overcoming this problem (Tirabassi and Masoller 2016). The methodology, based
on ordinal analysis, allows to group together regions that share similar properties of
the symbolic dynamics.

The main idea is to assign a high (low) weight to the link between two regions, if
the ordinal transition probabilities (TPs) that describe the statistics of the symbolic
sequence are very similar (very different) in the two regions. In other words, the
symbolic sequences are mutually compared in terms of the probability of pattern
“A” being followed by pattern “B.” Then, a significance threshold is used to keep
only the regions that have very similar transition probabilities. The third step was to
run the Infomap community detection algorithm (Rosvall and Bergstrom 2007) in
order to identify the groups of densely interconnected regions.

Figure 4 summarizes the results of the analysis. Panel a displays the communities
uncovered when the network is constructed with the classical approach (in this case,
the similarity measure used is the Pearson cross-correlation coefficient) and panel b
displays the communities uncovered by means of the novel approach, based on the
similarity of the ordinal transition probabilities.

By using the classical approach with a threshold W D 0.5 (Tsonis and Roebber
2004), Infomap algorithm uncovers 8604 communities, but only 20 are composed
by more than two nodes. Figure 4a displays the largest 16 communities. The
detected communities include the central-east equatorial Pacific dominated by El
Niño, the tropical western Pacific, Indian Ocean, and tropical north Atlantic regions
controlled mainly by the exchange of heat fluxes with the atmosphere, and the
equatorial Atlantic cold tongue dominated by dynamical air–sea interaction. The
other communities are small and some may be just noise.

In contrast, with the ordinal approach the community structure inferred, shown
in Fig. 4b, divides the world in eight areas that share similar climatic properties,
as measured by similar symbolic transition probabilities. There are five macro-
communities: extratropical continents and southern ocean characterized by large
SAT variability (indicated with number 0), northern oceans (2), regions of tropical
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Fig. 4 Community structure uncovered by Infomap algorithm. The different communities are
indicated with different colors. (a) The network is constructed by using the Pearson cross-
correlation coefficient as a measure of dynamical similarity. (b) The network is constructed by
calculating the similarity of the ordinal transition probabilities. In panel (a), for clarity, only the
largest 16 communities are shown. Adapted from Tirabassi and Masoller (2016)

deep convection such as the western Pacific warm pool, Amazon and Congo basins
(3), tropical oceans dominated air–sea heat fluxes (4) and ENSO basin (5). Then,
there are also two boundary communities, indicated with numbers 1 and 6, which
are placed at the communities interfaces.

Both methodologies identify the region dominated by the El Niño dynamics as
a community, but there are differences in the rest. Compared to the communities
calculated with the classical approach the new methodology is able to separate
better in terms of processes dominating the SAT variability. For example, the
new methodology (1) identifies the central equatorial Atlantic as having a similar
behavior to El Niño, which is consistent with the literature (Zebiak 1993); (2)
separates the behavior of SAT over the maritime continent from that of the Indian
and tropical Atlantic oceans, consistent with a different rainfall regime, (3) considers
the tropical north and south Atlantic as belonging to the same community, which is
consistent because temperature is strongly controlled by air–sea heat fluxes.
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Fig. 5 Network average degree and number of communities vs. the threshold used to construct
the network, W. In panel (a) the network is constructed by using the Pearson cross-correlation
coefficient. For the community structure shown in Fig. 4a, the threshold used was W D 0.5 (as in
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As discussed before, in order to construct a climate network, the links weights
have to be pruned by using an adequate threshold. Decreasing the threshold leads
to a more connected network, while increasing it results in a sparser one. The
number of communities depends on the number of connections, which in turn
depends on the threshold. In order to uncover a coherent, well-defined community
structure, the threshold has to be carefully chosen. Figure 5 displays the number
of communities and the average degree as a function of the threshold. It can be
seen that there is a negative correlation between them. The fragmentation of the
network into smaller communities (as community seven in Fig. 4b) can be due to the
removal of relevant links that keep the bigger communities together. Thus, to obtain
a meaningful community structure, we selected ad hoc a threshold that provided the
best compromise between the need to limit the small-communities-proliferation and
the need to include in the network only the relevant links.

4 Net Direction of Climate Interactions

A main drawback of the methodology discussed in the previous sections for
inferring the climate network is that it uses a symmetric similarity measure (the
mutual information or the Pearson correlation coefficient) that yield non-directed
networks. In these networks the presence of a link indicates inter-dependency
but the direction of the underlying interaction is not inferred. For improving
the understanding of climate phenomena and its predictability, it is of foremost
importance not only to be able to infer the presence of a link between two nodes
but also to infer the direction of this interaction.

Deza et al. (2015) used a methodology that allows inferring directed interactions
via an analysis of the net direction of information transfer. A measure was used—
based on conditional mutual information—that quantifies the amount of information
in a time-series x(t), contained in � time units in the past of another time series
y(t). The resulting network was found to be in full agreement with state-of-the-art
knowledge in climate phenomena, validating in this way the methodology used.
No assumptions about physical processes were made, except for the appropriate
setting of the parameter � .

J
Fig. 5 (continued) Tsonis and Roebber 2004). In panel (b) the network is constructed by
calculating the similarity of the ordinal transition probabilities. For uncovering the communities
shown in Fig. 4b, the threshold used was W D 30. It can be observed that with the first approach,
a very low threshold needs to be used to uncover a small set of communities. However, using
a low threshold has the strong disadvantage of including in the network many links which are
not significant. In contrast, with the novel approach (by constructing the network considering the
similarities of the transition probabilities), the variation of the number of communities with the
threshold is more gradual, which allows uncovering a small set of communities by using a threshold
that is not too low. Adapted from Tirabassi and Masoller (2016)
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Fig. 6 Directionality of the links in a node in the central pacific (a) and in a node in the Indian
Ocean (b) indicated with a triangle. The color code indicates the directionality index: outgoing
links are shown in red while incoming links are shown in blue. The time scale of information
transfer is � D 30 days. Adapted from Deza et al (2015)

The directionality measure and the statistical significance analysis are discussed
in detail in Deza et al. (2015). Here we present two examples that illustrate the
directional structure of the network. Figure 6 displays the directionality of the links
of two nodes in the tropics (indicated with triangles) computed from SAT reanalysis
data with daily resolution and parameter � D 30 days. The color code in this figure
indicates the Directionality Index (DI): outgoing links are shown in red, while the
incoming links are shown in blue.

Figure 6a shows, as expected, the central Pacific influenced by the eastern Pacific
(in blue) and influencing the global network, with many regions in the tropics and
in the extra-tropics in red. Reciprocally, Fig. 6b shows that the blue links come
to the node in the Indian Ocean from a well-defined region in the central Pacific
Ocean. In addition, few red outgoing links connect the node in the Indian Ocean
to other regions. A main drawback of the directionality index used is that it does
not distinguish indirect from direct information transfer. Therefore, the red areas
influenced by the node in the Indian Ocean can be an artifact in the sense that these
regions might be directly influenced by El Niño region.

Figure 7 displays the influence of the parameter � that characterizes the time
scale of the information transfer from one node to another. As an example, a
region in southeastern South America is considered (indicated with a triangle). For
synoptic time scales of a few days, the directionality index uncovers the existence
of a wave train propagating with a southwest-northeast direction. Moreover, there
is a clear separation line between regions with incoming and outgoing links. This
configuration is characteristic of the progression of a front through the reference
point. As the parameter � increases, the extratropical wave train associated with
synoptic time scales fades and only blue links to the tropics remain, consistent with
an influence of the equatorial Pacific on the region on longer time scales, likely
related to ENSO.
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Fig. 7 Directionality of the links in a node in southeastern South America, indicated with a
triangle. The color code indicates the directionality index: outgoing links are shown in red while
incoming links are shown in blue. The time scale of information transfer � is (a) 1 day, (b) 3 days,
(c) 7 days, and (d) 30 days. Adapted from Deza (2015)

5 Conclusions

We have shown that symbolic time series analysis based on ordinal patterns
and information theory measures, applied to surface air temperature anomalies
(reanalysis data with monthly or daily resolution) are powerful tools for uncovering
the large-scale structure of the climate network.

A main advantage of the ordinal methodology is that, by varying the dimension
of the pattern and the year–month comparison, one can uncover memory processes
with different time scales, and depending on the time scale considered, the climate
network can change completely. Overall we found that on seasonal time scales the
extra-tropical regions, mainly over Asia and North America, present strong connec-
tivity, while in inter-annual time scales, the tropical Pacific clearly dominates.

A novel methodology for inferring the community structure of the climate
network was proposed. Constructing the climate network by taking into account
the similarity of the ordinal transition probabilities in different regions allowed
to identify communities formed by geographical regions where the climate
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variability displays similar statistics of ordinal patterns. Five macro-communities
were identified: extratropical continents, northern oceans, tropical convective
regions, tropical oceans, and ENSO basin.

The analysis of the net directionality of the links revealed variability patterns
consistent with well-known features of the global climate dynamics. For example,
in the extra-tropics, the link direction revealed wave trains propagating from west to
east, in both hemispheres. A drawback of the directionality index employed is that
it does not distinguish direct from indirect interactions.

Ongoing and future work is aimed at exploring the suitability of other techniques
of time series analysis, such as Hilbert analysis (Zappalà et al. 2016), other
directionality measures (partial directed coherence and directed partial correlation,
Tirabassi et al. 2017), and measures of distances between time series and entropy
measures (Arizmendi et al. 2017) for gaining additional information from climato-
logical datasets.
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