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Abstract. A network of delay-coupled logistic maps exhibits two different synchronization regimes,
depending on the distribution of the coupling delay times. When the delays are homogeneous throughout
the network, the network synchronizes to a time-dependent state [F.M. Atay, J. Jost, A. Wende, Phys.
Rev. Lett. 92, 144101 (2004)], which may be periodic or chaotic depending on the delay; when the delays
are sufficiently heterogeneous, the synchronization proceeds to a steady-state, which is unstable for the
uncoupled map [C. Masoller, A.C. Marti, Phys. Rev. Lett. 94, 134102 (2005)]. Here we characterize the
transition from time-dependent to steady-state synchronization as the width of the delay distribution
increases. We also compare the two transitions to synchronization as the coupling strength increases.
We use transition probabilities calculated via symbolic analysis and ordinal patterns. We find that, as
the coupling strength increases, before the onset of steady-state synchronization the network splits into
two clusters which are in anti-phase relation with each other. On the other hand, with increasing delay
heterogeneity, no cluster formation is seen at the onset of steady-state synchronization; however, a rather
complex unsynchronized state is detected, revealed by a diversity of transition probabilities in the network

nodes.
1 Introduction

A fascinating and intriguing feature of spatially extended
systems composed of many interacting units, like chant-
ing crowds, tropical Malaysian flashing fireflies, pacemaker
heart cells, cells governing the circadian rhythms, pedes-
trians crossing the Millennium Bridge, etc., is that they
can synchronize even when the units are spread over
wide spatial areas [1-3]. In order to understand their
synchronization phenomena, these systems have been
modeled by networks of coupled phase oscillators, like
the Kuramoto model [4], and by networks of coupled
maps [5-7], such as circle maps [8,9], Bernoulli maps [10],
logistic maps [11-13], Rulkov maps [14-16] etc.

In systems of coupled units, communication delays nat-
urally arise from a realistic consideration of the finite
speed of information transmission between pairs of units,
and can have a great impact on their collective behav-
ior. In particular, in networks of coupled maps, synchro-
nization phenomena in the presence of time-delays has re-
ceived considerable attention and is still an active research
area [10-15,17,18]. Networks of delayed-coupled maps are
popular for studying the effects of delayed interactions be-
cause one can simulate large ensembles of coupled units,
even in the presence of heterogeneous and long delays,
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with a great reduction of computational time and mem-
ory requirements, as compared to delay-differential rate-
equations. The logistic map has been a popular choice be-
cause is a prototype example of how chaotic dynamics and
universal scaling laws [19-22] arise in simple non-linear
systems.

In networks of delayed-coupled logistic maps, when
the delays are heterogeneous the network exhibits a syn-
chronized collective behavior that is qualitatively different
from that of instantaneously interacting units, or by units
interacting with homogeneous delays [23,24]. Heteroge-
neous delays can enhance the synchronizability of the net-
work, but they can also affect its synchronized dynamics.
A network of delayed coupled logistic maps displays two
qualitatively different synchronization regimes, depending
on the delay distribution. When the delays are homoge-
neous throughout the network, the network synchronizes
to a time-varying state [23], and the synchronizability de-
pends mainly on the network architecture; when the delays
are sufficiently heterogeneous, the network synchronizes
to a steady-state, which is unstable for the uncoupled
maps [24], and the synchronizability depends mainly on
the average number of neighbors per node.

The stability of the steady-state of delay-coupled
maps is well-understood when the delay is homogeneous
(delta-distributed): reference [25] gave exact conditions
for stability and showed that the largest eigenvalue of
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the Laplacian matrix determines the effect of the network
structure on stability. Such precise results are unavailable
for arbitrary delay distributions. Nevertheless, it is known
that distributed delays can induce or improve stability of
the steady-state in coupled limit-cycle oscillators [17], or
in more general delay-differential equations in the vicinity
of a Hopf instability [26]. A recent example is reported
in [27], for an integro-differential equation describing the
collective dynamics of a neural network with distributed
signal delays: with Gamma distributed delays, which are
less dispersed than the exponential distribution, the sys-
tem exhibits reentrant phenomena (i.e., the stability is lost
but then recovered as the mean delay is increased), while
with delays that are more highly dispersed than exponen-
tial, the system does not destabilize.

The aim of this paper is to characterize the transi-
tion to the two synchronized regimes of delayed coupled
logistic maps (time-dependent for homogeneous delays
and steady-state for heterogeneous ones) as the coupling
strength or as the width of the delay distribution increases.
The degree of synchronization is measured in terms of the
transition probabilities in the network nodes, which are
calculated via symbolic analysis and ordinal patterns. The
symbolic method is based in dividing the state space of a
given node into two regions and considering the relative
frequencies of the transitions between those regions [28];
the ordinal patterns method is based in defining patterns
in the time-series of a node that result from ordering re-
lations in consecutive values in the series [29], and com-
puting the relative frequencies of the transitions between
those patterns. The paper is organized as follows: Sec-
tion 2 presents the network model and the magnitudes
employed to quantify the degree of synchronization. Sec-
tion 3 presents the results, and Section 4 contains a sum-
mary and the conclusions.

2 The model and synchronization quantifiers

We consider N logistic maps coupled as

N
2t 4+ 1) = flesO+ 1 D wy (Flag (¢ = 7)) = Flaa(0)),
7 =1
1)

where t is a discrete time index, 7 is a discrete spatial
index, f(z) = ax(1—z) is the logistic map with parameter
a, € is the coupling strength, 7;; denotes the delay in the
link from node j to %, w;; are the elements of the adjacency
matrix w whose values equals 1 if there is a link from node
j to node 7 and 0 otherwise, and k; is the in-degree of the
node 7, k; = Zj w;j. Here, 7 and w are not restricted to
be symmetric matrices.
When the delays are sufficiently heterogeneous, the so-
lution in the spatially homogeneous steady-state,
J?l(t) = ZZ?()V’L', (2)
is stable in a certain range of coupling strengths [24],
where xq is the fixed point of the uncoupled logistic map,
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2o = f(zg) =1—1/a. (3)
We will refer to this solution as “steady-state synchro-
nization”. In contrast, when the delays are homogeneous
throughout the network (7;; = 79 Vi, j) the network syn-
chronizes to a time-dependent state [23],

i(t) = 2(t)Vi, (4)

where z(t) is a solution of

w(t +1) = fla®)] + e (flzt =)l = flz@)]), ()

and thus, the dynamics can be periodic or chaotic de-
pending on 75. We will refer to this situation as “time-
dependent” synchronization.

Clearly, other “out of phase” synchronization regimes,
where the different nodes maintain certain lag-times
among them, are also possible. For example, a 1D linear
globally-coupled network with distance-dependent delays,
Tij = |i — j|/v, where v is the speed of information trans-
mission, synchronizes to a state in which the nodes evolve
along a periodic orbit of the uncoupled logistic map (i.e.,
x;(t) is a solution of z;(t +1) = f[x;(t)]), while the spatial
correlation of the nodes along the network is such that
x;(t) = z;(t — 1) Vi,j (i.e., each map “sees” all other
maps in his present, current, state) [30,31]. In the follow-
ing we only focus on “steady-state” and “time-dependent”
synchronization.

To capture the degree of synchronization and to distin-
guish between steady-state synchronization, equation (2),
and time-dependent synchronization, equation (4), we use
the following measures:

(1) The variance of the nodes’ states,

s 1/ 2
o :N<Z($i(t)—<$>s) >t

=1

(6)

where (.)s; denotes an average over the nodes of the
network, and (.); denotes an average over time.
The variance of the distance to the steady state,

1 N
0'/2 = N<Z(xl(t) —$0)2> 5

i=1

(7)

where xq is the fixed point of the uncoupled logistic
map, equation (3).

One can notice that o = 0 if and only if z; = z; =
(x)s Vi, j, while 0’2 = 0 if and only if 2; = x¢ Vi. Thus,
o' allows to distinguish synchronization in the steady
state from synchronization in a time dependent state.
In the former case, both 02 and ¢’ are zero, in the
latter case, only o2 is zero.

We note that both o2 and ¢’ are “global” indicators
that give no information about the microscopic local
dynamics in the nodes of the network. To gain inside
into this local dynamics, the transition probabilities
in individual nodes can be computed via symbolic dy-
namics [28] or ordinal patterns [29], as follows.
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(3) Transition probabilities computed via symbolic dy-
namics: at each node 7, a two-symbol dynamics is gen-
erated by the partition of the phase space as

si(t) = a if i (t) < a”
s;(t) = 3 otherwise, (8)
where z* is a threshold value, which in the following
is chosen equal to the fixed point of the uncoupled
logistic map, xg. The transition probability in node 1,
P sq(a, @), is calculated as

_ TGt =astr) =a)
>y n(si(t) = a)

where n is a count of the number of times of occur-
rence in a time-series of length L. The global proper-
ties of the network can be quantified by the variance
of P, sa(c, ) over the network [28],

B,Sd(av a) ’ (9)

1 N
52d = N Z(Pi,sd(av a) - <P8d(a7 a)>8)27
1=1

(10)

where (Pug(e, a))s = (1/N) XN | Py cala, a) is the av-
erage transition probability.

In addition, in each node i, a sequence of symbols can
be generated via a comparison of consecutive values
(“ordinal patterns” of dimension two, as proposed by
Brandt and Pompe [29])

si(t) = a if 2;(t) < zi(t+1)
si(t) = B otherwise. (11)
A nice advantage of this procedure is that it does not
require the definition of a threshold. As before, the
transition probability in node i, P; pp(o, ), can be
calculated as

_ S n(sit) = oy sit +1) = )

H ’ - )
i) SL nlsit) = o)
(12)
and its variance,
1 N
(hp = N > (P.pp(a,a) = (Pepla,a)).)?,  (13)
1=1

where (Ppp(a,a))s = (1/N) Zf;l P, pp(a, ), can be
used to capture global properties of the network.

3 Results

In the following we present the results for an Erdds-Renyi
random network [32] of N nodes with an average degree
(k)s such that the network has a single component. Un-
less otherwise explicitly stated, N = 200, (k)s = 20 and
the coupling delays are Gaussian distributed with a mean
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delay (7)s = 5. The parameter that controls the delay het-
erogeneity is the standard deviation of the delay distribu-
tion, normalized by the mean delay, ¢* = o,/(7)s. The
parameter of the logistic map is taken to be a = 4 and
the simulations start with random initial conditions. Un-
less otherwise explicitly stated, the quantifiers 2, 0%, (2,
and (%, are computed over time series of length L = 500,
after the first 3000 iterations are disregarded, and they are
averaged over 20 stochastic trajectories, where the random
initial conditions (z;(0)), delay distribution (7;;), and ad-
jacency matrix (w;;) are varied.

First we consider the transition to “steady-state” syn-
chronization as the coupling strength e increases, while
the delay heterogeneity c* is kept constant. The delays
are sufficiently heterogeneous such that, for large enough
€, the network synchronizes as x; = xg Vi.

Figure 1 displays o2, /2, Qfd and (% vs. the coupling
strength e. It also displays the four transition probabili-
ties, for one typical stochastic trajectory, in 20 randomly
selected nodes, as computed via symbolic dynamics (cir-
cles) and ordinal patterns (squares). It can be seen that
before the onset of synchronization there is a formation
of two clusters, as the transition probabilities P;(«, «),
Pi(«a, 8) and P;(8,«) are 0 in some nodes and 1 in oth-
ers. One can also notice that P;(8, ) is very small in all
the nodes, and that the transition probabilities calculated
with symbolic dynamics are very similar to those calcu-
lated with ordinal patterns.

Further insight into the networks’ dynamics near the
synchronization transition can be obtained by examin-
ing the time evolution of the quantifiers, of the transition
probabilities (now computed over a moving time-window
of length 500), and the dynamics of a few, randomly se-
lected nodes. These are shown in Figure 2, where the
coupling strength is slightly smaller than that needed for
“steady-state” synchronization. In Figure 2d the network
configuration at a fixed time (i.e., a ‘snapshot’ of the states
of the nodes) is also shown. One can notice that the nodes
form two clusters that oscillate in anti-phase: when one
cluster is above the fixed-point solution, the other one is
below, and at the next time step, the two clusters switch
their positions.

Next, we consider the situation where the delay hetero-
geneity ¢* increases, starting with a delay distribution that
is a delta function (¢* = 0), while the coupling strength e
is kept constant. The coupling strength is strong enough
that, for homogeneous delays, the network synchronizes
as x; = x; Vi,j (time-dependent synchronization), while
for sufficiently heterogeneous delays, the network syn-
chronizes as x; = xo Vi (steady-state synchronization).
Figure 3 displays the quantifiers vs. the delay hetero-
geneity and also displays the four transition probabili-
ties for one typical stochastic trajectory, in 20 randomly
selected nodes. In this scenario, for small delay hetero-
geneity the time-dependent synchronization is gradually
lost, and as the delay heterogeneity increases, there is
a smooth transition to the steady-state synchronization.
No cluster formation can be observed at the onset of
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Fig. 1. (Color online) Transition to “steady-
state” synchronization for fixed delay hetero-
geneity (¢* = 0.6) and increasing coupling
strength, e. The quantifiers 02, 0’2, and ¢? are
plotted vs. the coupling strength. The transi-
tion probabilities P; in 20 randomly selected
nodes are also shown. In panels (c¢)-(j) the
transition probabilities are computed via sym-
bolic dynamics (circles) and ordinal patterns

€ € (squares; red online).
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= 8 evolution of three randomly selected nodes. In
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“steady-state synchronization”, since the transition prob-
abilities are within a certain range of values.

The dynamics of the network near “steady-state” syn-
chronization is examined in Figure 4, with parameters
such that the heterogeneity of the delays is slightly smaller
than that needed for “steady-state” synchronization. Here
one can notice that the nodes evolve together, in a sin-
gle cluster, displaying slow oscillations around the steady
state (compare the oscillation frequencies in Figs. 2f, 2h, 2j
with 4f, 4h, 4j). The period and shape of these oscillations
vary with ¢*. One should keep in mind that the scenario
we are considering is with strong coupling, such that, for
c¢* = 0 the array synchronizes in a time-dependent state;
the network dynamics near this state (with the presence
of a small delay heterogeneity), is shown in Figure 5.

The approach towards “steady-state synchronization”
reveals ‘critical slowing down’ in the sense that the ampli-
tude of the oscillations in Figures 2f, 2h, 2j and 4f, 4h, 4j
gradually decreases with increasing e or ¢*, and there is a
slow approach towards the fixed-point solution. The main
differences being that for sufficiently heterogeneous de-
lays and small coupling, the network splits in two clusters
which display fast anti-phase oscillations, while for large
enough coupling but not sufficiently heterogeneous delays,
the network approaches the fixed point solution as a single
cluster and slow oscillations.

One can then interpret the diversity of transition prob-
abilities seen at the boundary of steady-state synchro-
nization as “noise amplification”. When the network is
almost or nearly synchronized, for all the nodes we have
x;(t) ~ zo and therefore very small variations near xq re-
sult in a diversity of transition probabilities. This occurs
when both € or ¢* is varied. However, because of the dif-
ferent way the network approaches the homogeneous so-
lution, increasing ¢ yields two clusters and the transition
probabilities are either close to 0 or to 1, while, increasing
c* yields a single cluster and the transition probabilities
are within an interval of values.

Two-dimensional plots in the parameter space (cou-
pling strength, delay heterogeneity), shown in Figure 6,
provide a more complete picture of the various dynamical
regimes. We can recognize two synchronization regions oc-
curring for large coupling: steady-state synchronization for
large delay heterogeneity (top-right corner in Figs. 6a, 6b,
where both ¢2? and o2 are zero), and time-dependent
synchronization, for homogeneous delays (bottom-right
corner in Figs. 6a, 6b, where only o2 is zero). In ad-
dition, there is a narrow window of synchronization for
weak coupling strength and almost homogeneous delays
(n ~ 0.15—0.2, bottom-left corner in Figs. 6a, 6b, where
02 is zero and ¢'? is small). This region was reported in [23]
for homogeneous and odd delay values, and it can be seen
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Fig. 4. (Color online) As Figure 2 but with the
delay heterogeneity slightly below that required for
synchronization to the steady-state (e = 0.9, ¢* =
0.33).

Fig. 5. (Color online) As Figure 4 but for small
delay heterogeneity (e = 0.9, ¢* = 0.05).
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Fig. 6. (Color online) Synchronization quantifiers in the pa-
rameter space (coupling strength on the horizontal axis, delay
heterogeneity on the vertical).

from Figure 6 that it is also robust to small delay hetero-
geneities.

In Figure 7 we consider finite-size and time-dependent
effects during the onset of steady-state synchronization,
Figures 7a, 7b and of time-dependent synchronization,
Figures 7c, 7d. We plot the time-evolution of the instan-
taneous values of 02 and ¢'? (i.e., 02 and ¢'? are com-
puted as in Egs. (6), (7) but without time-averaging)
for various network sizes N, while the average number
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during the onset of steady-state synchronization (e = 0.69,
¢* = 0.57). (c) Time-evolution of ¢ during the onset of time-
dependent synchronization for homogeneous delays (¢ = 0.45,
¢* = 0). 0’ remains finite and is not shown. (d) Time-evolution
of o2 during the onset of time-dependent synchronization, in
the window for weak coupling existing only for homogeneous
and odd delays (¢ = 0.18, ¢* = 0). 0’ remains finite and is
not shown. o and ¢’ were computed for the various network
sizes indicated in panel (a).
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Fig. 8. (Color online) Time-evolution of o during the transi-
tion to steady-state for (a) various values of €, ¢* = 0.57 (b) for
¢ = 0.9 and various values of ¢*. ¢’ exhibits similar behavior
(not shown).

of neighbors per node is kept constant. Approaching the
steady-state synchronization, there is a gradual decrease
of the quantifiers, and initially their time-evolution is in-
dependent of the network size. In contrast, the approach
to time-dependent synchronization, Figures 7c, 7d occurs
abruptly, at a time that is nearly independent of the net-
work size.

For parameters close to “steady-state” synchronization
critical slowing down occurs during the approach to the
homogeneous steady state, as can be seen in Figure 8,
where we display the time-variation of o2 for various val-
ues of € and c*.
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We have checked the robustness of the above ob-
servations by considering delays that are exponentially
distributed, and very similar results were found: the for-
mation of two clusters before the onset of steady-state
synchronization for increasing e, while there is a single
cluster for increasing c¢*. The small synchronization re-
gion that occurs for weak coupling strength is also robust
to exponentially distributed delays, as long as the width
of the distribution is not too wide. The difference with
Gaussian delays is that, with exponentially distributed
delays, for strong coupling (e ~ 1), steady state synchro-
nization is lost (02 is small and positive) but the network
remains synchronized, as 02 = 0 and the transition prob-
abilities in the nodes are all equal.

4 Conclusions

To summarize, we have studied the transition to syn-
chronization in a network of delay-coupled logistic maps.
When the coupling delays are homogeneous through-
out the network, the network synchronizes to a time-
dependent state; when the delays are sufficiently hetero-
geneous, the synchronization occurs in a steady-state. We
employed global and local measures to characterize the
synchronization transitions. The global measures are the
standard deviation of the distance to the synchronized
state, as well as the standard deviation of the transi-
tion probabilities in the nodes. The transition probabil-
ities were computed using symbolic analysis and ordinal
patterns. We have found that, as the coupling strength
increases or as the width of the delay distribution grows,
there is a gradual approach to the synchronized state, as
seen with the global indicators. An inspection of the local
dynamics in the individual nodes, measured by the tran-
sition probabilities, reveals that for increasing coupling
there is the formation of two clusters before the steady-
state synchronization, detected by the fact that the nodes
exhibit two qualitatively different transition probabilities.
For increasing delay heterogeneity, no cluster formation
is seen at the onset of steady-state synchronization, but
there is a diversity of values of transition probabilities.
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