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A B S T R A C T

Changes in vegetation patterns in semi-arid regions can precede the abrupt transition to bare soil. Here,

complex network techniques are used to develop novel early-warning indicators for these desertification

transitions. These indicators are applied to results from a local positive feedback vegetation model and

are compared to classical indicators, such as the autocorrelation and variance of biomass time series. A

quantitative measure is also introduced to evaluate the quality of the early-warning indicators. Based on

this measure, the network-based indicators are superior to the classical ones, being more sensitive to the

presence of the transition point.
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1. Introduction

There are now numerous indications, from observations and
models, that transitions between different vegetation states can
occur due to the existence of multiple equilibrium states (Scheffer
et al., 2001; Rietkerk et al., 2004; Kéfi et al., 2007, 2013). One of
these transitions is between vegetated and bare soil states in semi-
arid regions and is associated with desertification. Other transi-
tions are, for example, those between savannah and forest states as
found in observations of woody cover (Hirota et al., 2011) and
above ground biomass (Yin et al., 2014). In the latter case, the
equilibrium states appear as different maxima in the probability
density function (PDF) of these quantities. Although transient
growth effects in the relatively short length of the time series
obscure the interpretation of the PDFs, it is plausible that multiple
equilibrium states exist (Yin et al., 2014).

The existence of multiple equilibria is supported by models of
vegetation dynamics of various levels of complexity. These models
can be mainly classified into spatial (PDEs) and non-spatial (ODEs)
models, and both types can display multiple equilibria and
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catastrophic transitions to desertification. Looking at the spatial
models, most of them are of reaction-diffusion type, contain
positive feedbacks at different scales, represent the dissipation
mechanism as diffusion, and use precipitation as stressor. Analysis
of three basic spatial models which describe desertification due to
decreasing precipitation (Dakos et al., 2011) indicates that the
route to desertification occurs through a saddle-node bifurcation
which gives rise to hysteresis.

From a land management point of view, these theoretical
results suggest that if transitions to desert states occur in a sudden
and unexpected way, it would be crucial to develop early-warning
signals in order to prevent or at least prepare for such transitions.
Previous studies (Scheffer et al., 2009) proposed that such
indicators could be developed based on critical slowing down
(CSD), that is, the slow recovery of a system to small perturbations
which appears to be a generic phenomenon in the vicinity of
bifurcation points (Wissel, 1984). However, CSD can only be
detected indirectly by specific statistical properties of the
dynamics of a system such as an increase in spatial and temporal
correlation as well as variance (Scheffer et al., 2009; Guttal and
Jayaprakash, 2009; Dakos et al., 2010). These CSD-based statistical
properties have been suggested to act as early-warning signals for
critical transitions (Scheffer et al., 2009), and they have been
experimentally demonstrated to exist in various living systems
(Drake and Griffen, 2010; Carpenter et al., 2011; Dai et al., 2012).
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Recently, complex network based measures were proposed as
leading indicators of critical transitions in the ocean circulation –
also known to be associated with saddle-node bifurcations (Mheen
et al., 2013; Viebahn and Dijkstra, 2014). It was shown that an
upcoming saddle-node bifurcation can be adequately detected by
network measures which are constructed via coarse-graining of
the cross-correlation matrix of the spatially extended system.

In this paper, we apply network-based indicators to time series
stemming from a vegetation model which exhibits a critical
transition to desertification. Both the vegetation model and the
network techniques are presented in Section 2. Our aim is to test
whether novel network-based measures are able to indicate the
upcoming collapse of vegetation to a desert state (Section 3) and to
assess their potential as tools for anticipating critical transitions in
a wide range of ecological systems (Section 4). The paper is closed
with a summary and discussion (Section 5).

2. Model and methods

In this section, we first present the spatial vegetation model
used to produce biomass time series, and then present the methods
of network construction and analysis.

2.1. A spatial model of vegetation dynamics with a local positive

feedback

The local positive feedback model (LPF) is described by the
following set of stochastic differential equations (Shnerb et al.,
2003; Guttal and Jayaprakash, 2007; Dakos et al., 2011),

@w

@t
¼ R � w

tw
� LwB þ Dr2w þ sww0j

wðtÞ; (1)

@B

@t
¼ rB

w

w0
� B

Bc

� �
� m

B

B þ BO
þ Dr2B þ sBB0j

BðtÞ; (2)

where w (in mm) is the soil water amount and B (in g/m2) is the
vegetation biomass. The quantity D is the diffusivity and tw, m, r,
L, w0, BO, Bc are additional constants explained in Table 1. Finally, R

is the amount of rainfall which is used as the bifurcation parameter
of the system. Additive Gaussian white noise, j, for which

hjðtÞjðt0Þi ¼ dðt � t0Þ; (3)

is prescribed with amplitudes sw and sB for soil water and
biomass, respectively. A characteristic spatial pattern of biomass as
well as time series for different values of R are shown in Fig. 1.

The important mechanism in this model is a positive feedback
that causes each patch to have alternative stable states. This is
demonstrated in the bifurcation diagram of the LPF model which is
sketched in Fig. 2. The deterministic homogeneous solutions of the
LPF model and their linear stability can be determined analytically.
Table 1
Parameters of the local positive feedback model (LPF) given by Eq. (2) and same

values as in Dakos et al. (2011).

Parameter Meaning Value

D Exchange rate (m2/day) 0.5

L Water consumption rate by vegetation (m2/(g day)) 0.12

r Maximum vegetation growth rate (day�1) 1

Bc Vegetation carrying capacity (g/m2) 10

m Maximum grazing rate (g/(day m2)) 2

BO Half-saturation constant of vegetation consumption (g/m2) 1

sw Standard deviation of white noise in water moisture 0.1

sB Standard deviation of white noise in vegetation biomass 0.25

w0 Water moisture scale value (mm) 1

B0 Biomass density scale value (g/m2) 1

tw Water moisture scale time (day) 1
For all values of R, the trivial solution (B = 0, w ¼ twR) exists. For
the standard parameter values shown Table 1, the trivial solution is
linearly stable for R < 2 mm/day and unstable for R > 2 mm/day
(see Fig. 2). At R = 2 mm/day, a transcritical bifurcation occurs and
two additional branches of steady solutions emerge. Solutions on
the lower branch are not considered here because they have B < 0,
i.e., they are physically non-realistic. Solutions on the upper branch
are unstable for values of R down to Rc = 1.067 mm/day. At this R-
value a saddle-node bifurcation occurs which provides a linearly
stable upper branch of solutions for R > 1.067 mm/day. Finally, a
fourth homogeneous solution exists but it has also values of B < 0
for every R value and hence is not further considered in this study.

In order to determine inhomogeneous vegetation patterns in
the stochastic case, the model equations (2) are numerically solved
on a periodic square grid composed of 100 � 100 = 104 grid cells on
a regular lattice with dimension L = 100 m. The evaluated model
data consists of a set of time series (500 time steps with Dt = 0.01
days) of statistically equilibrated biomass fields B for different
fixed rainfall parameters R. Time series related to 10 different
values of R with 1.1 mm/day �R � 1.8 mm/day are analysed. For
R < Rc only the desert-like solution, with B = 0 over the whole
domain, is found.

The temporal and spatial mean values of the biomass
distribution of each of these spatially inhomogeneous solutions
are plotted as the red dots in Fig. 2. Obviously, the average values of
the inhomogeneous solutions are similar to those of the homoge-
neous solutions, hence, diffusion and noise do not impact on the
average state of the system.

2.2. Network approach and analysis

A network is defined by two sets of objects: the so-called nodes,
and the set of their mutual connections, namely their links

(Caldarelli, 2007). In the following, we will associate a network to
the simulated field of biomass. The nodes are defined as the
N = 100 � 100 = 104 grid cells of the discretised LPF model. In order
to define the links between the nodes, the zero-lag temporal
correlations between the biomass time series at the different nodes
are considered. More precisely, two nodes i and j are linked if the
temporal cross-correlation CðBi; B jÞ of the time series Bi and Bj is
statistically significant. A sketch of the network formation is
depicted in Fig. 3. Note that in this way the number of nodes of the
network is kept fixed, and changes in the network structure due to
varying R are solely related to the links, that is, to changes in the
values of the cross-correlation matrix CðBi; B jÞ.

A compact way to describe a network composed of N nodes is to
consider its adjacency matrix A, a symmetric N � N matrix with
Aij = 1 if node i and node j of the network are linked, and Aij = 0
otherwise. Thus, the correlation network of the biomass data is
given by the following adjacency matrix,

Aij ¼ HðjCðBi; B jÞj � uÞ; (4)

where H is the Heaviside step function, and u is a constant
threshold indicating statistical significance of the cross-correlation
CðBi; B jÞ.

To determine the value of u we build the following test variable
for the Student’s t-test, i.e.,

t ¼ uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � u2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ntime-steps

1 � r

1 þ r

r
; (5)

with the null hypothesis u = 0. Here r = r(R) and Ntime-steps are the
autocorrelation and the length of the time series, respectively. The
test variable takes the effective number of degrees of freedom of
the time series into account. From this we can compute the value of
u which ensures statistical significance of correlations larger than



Fig. 1. (a) A snapshot at t = 500 time-steps of the biomass field B at R = 1.1 mm/day. (b) Example of biomass time series for a node (single grid-cell) i and different values of R.
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u. A value of u = 0.2 guarantees that, for each value of R, the zero-lag
correlation between linked nodes is statistically significant with a
p-value smaller than 0.05 and this value is taken in all results
below.

A central advantage of this approach is that by taking into
account only the statistically significant correlations to establish
links between nodes, we can remove part of the noise and extract
only the relevant information. This coarse-graining results in a
more precise measure and identification of the essential properties
of the system under study.

It is important to note that using the temporal cross-correlation
among nodes does not directly take their spatial distribution into
account. It is only the temporal part of the data which is used to
build the network, but the spatial information is kept because the
nodes have a definite spatial location in physical space (that is, on a
grid). Thus, within this network approach we exploit both the
systems temporal information and spatial information which are
treated separately in the classical early-warning approaches. After
-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  1.2  1.4  1.6  1.8  2  2.2

B 
[g

/m
2 ]

rainfall (R) [mm/day]

saddle-node
transcritical
bifurcation

Rc

Fig. 2. Bifurcation diagram of the local positive feedback model (LPF) given by

Eq. (2). Curves depict steady homogeneous states, that is, determined under

vanishing diffusion and noise. Linearly stable branches are denoted by solid lines,

whereas linearly unstable branches are indicated by dashed lines. The blue lines

mark states for which the Jacobian matrix has eigenvalues with a non-zero

imaginary part. The shaded region indicates to the non-physical negative B values.

The average value of B for each simulation of biomass evolution via the full Eq. (2) is
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similar to those of the homogeneous solutions, hence, diffusion and noise do not

impact on the average state of the system. (For interpretation of the references to

colour in this figure legend, the reader is referred to the web version of the article.)
the construction of the interaction network of the biomass data, we
can study changes in the topology of the network due to varying R.
The most basic characteristic of a network is its degree
distribution. The degree ki of a node i is defined as the number
of links of the node i. For example, node i in Fig. 3 has degree ki = 3.
In general, the degree of a node can be computed from the
adjacency matrix by

ki�
XN

j¼1

Aij: (6)

In our network construction ki can range from 0 to N � 1,
because we exclude self-connections.

Another basic network measure is the assortativity ai of a node i,
which is the average degree of its neighbours, that is, of all the
nodes to which node i is linked to. In Fig. 3, all three neighbours of
node i have degree 2 and hence its assortativity ai = 2. In general,
the assortativity coefficient of a node can be computed from the
adjacency matrix via

ai�
1

ki

XN

j¼1

Aijk j: (7)
Fig. 3. Sketch of the network associated to the local positive feedback model (LPF)

given by Eq. (2). The circles represent the biomass grid-cells, that is, the nodes of the

network. The dashed lines represent the computational grid, whereas the solid lines

represent the network connections, that is, the links. The node i (marked orange)

has degree ki = 3, clustering coefficient ci = 0.33, and assortativity ai = 2. The link

length of its three links is
ffiffiffi
2
p

,
ffiffiffi
2
p

, and 2 grid-steps (see text for the definition of

these quantities). (For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of the article.)
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The assortativity characterizes the tendency of a node to be
connected to nodes with high degree. Note that a node can have
low degree but at the same time high assortativity. As the degree,
the assortativity coefficient can range from 0 to N � 1.

As a third basic network measure we consider the clustering
coefficient ci that measures the number of links among the
neighbours of a node i, weighted by the possible number of links
among its neighbours. In the example shown in Fig. 3, there is only
one link between the neighbours of node i and there are three
possible links among these neighbours and hence the clustering
coefficient ci = 1/3. In general, the clustering coefficient of a node
can be computed from the adjacency matrix via

ci�
1

kiðki � 1Þ
XN

j¼1

XN

l¼1

AijAjlAli: (8)

which can take values between 0 and 1. The average clustering
coefficient of a network quantifies the presence of strongly
connected groups (clusters) in the network.

3. Results

In Section 3.1, the time series of the LPF model related to
different values of R are analysed by computing the classical early-
warning indicators and focussing on the behaviour of these
measures when R approaches the critical value Rc. In Section 3.2,
we investigate whether changes in the network topology (diag-
nosed via the distributions of degree ki, assortativity ai and
clustering ci) can be used as alternative network-based indicators
of R approaching Rc.

3.1. Classical indicators

The most prominent statistical measure to infer CSD from data
is the lag-1 autocorrelation. The spatially averaged autocorrelation
of the LPF model data is shown in Fig. 4 for each value of R. As R

decreases and approaches Rc, the system indeed experiences an
increase in autocorrelation, a distinct fingerprint of CSD.

It has also been suggested that spatial statistics may be used to
detect CSD (Dakos et al., 2011). In particular, an increase in spatial
correlation of the system is expected when the system experiences
CSD close to the transition. A typical measure of spatial correlation
that has been used is Moran’s coefficient, I, defined here through
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the biomass mass field B as

I � NP
ijgij

P
ijgijðBi � B̄ÞðB j � B̄ÞP

iðBi � B̄Þ2
; (9)

where gij = 1 if i and j are two adjacent grid cells and gij = 0
otherwise. The spatially averaged biomass is indicated by B̄.
Moran’s coefficient I is shown in Fig. 4 and demonstrates that the
spatial correlation increases in a similar way – although stronger –
to the temporal correlation as R decreases and approaches Rc.

However, despite the fact that the classical indicators are able to
reflect CSD, they change in a very smooth, gradual and monotonic
way. From a strictly local point of view, that is, based on a few
closely spaced R values, it is not possible to estimate the proximity
of the system to Rc. In other words, the correlation coefficients
suffer from a lack of distinct features necessary to provide a
pronounced early-warning signal of desertification.

3.2. Interaction network based indicators

In order to give a general characterization of the interaction
network of the LPF model biomass data, we briefly discuss its link
length distribution before studying the changes in degree,
assortativity and clustering due to varying R.

The link length measures how close two linked nodes are in
physical space, that is, the link length is the Euclidean distance
between two linked nodes (for an example see again Fig. 3), where
the grid spacing is taken as a unit length. The distribution of link
lengths for different R is shown in Fig. 5. Apparently, the link length
distribution does not depend on R. The smaller spike at link length
of one grid spacing represents the underlying grid structure and is
related to local correlations due to diffusion. The linear behaviour
at larger distances can be attributed to the random structure of the
network: If the links are randomly distributed in physical space,
the probability of two nodes i and j to be connected is independent
of their distance. In fact, the number of links of length d of any node
i is solely proportional to the number of nodes at distance d from
node i. This number scales with the circular area 2pd. Hence, the
probability of a certain link length is directly proportional to the
link length itself, until the appearance of the boundary reduces the
possible number of links again (here at a distance of 50 m, that is L/
2). Consequently, the interaction network of the simulated
biomass field appears to be composed of a random architecture
superimposed on the grid structure.
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Fig. 6 shows the spatial field of the degree distribution for two
values of R (at the transition and far away from the transition),
together with the degree density distribution (i.e., the PDF of ki) for
different R. With decreasing rainfall R the mean number of links per
node in the network increases. Consequently, the degree PDF shifts
to the higher degrees when the system approaches the critical
transition. The increase of network connectivity is related to higher
Fig. 6. (a and b) Spatial field and (c) PDF o
values of the cross-correlation among the nodal time series which
occurs near the saddle-node bifurcation (Mheen et al., 2013).

This feature can also be seen in the spatial patterns of the degree
field. For R = 1.8 mm/day (Fig. 6b), the network is almost
disconnected and the majority of the nodes has zero or one link.
With decreasing rainfall the number of connections increases, and
the disconnected nodes eventually join the network. At the
transition, the spatial pattern of the degree distribution shows a
granular structure, with patches of highly connected nodes
(Fig. 6a).

The shift of the degree PDF to higher degrees (Fig. 6c) can be
used to develop an indicator of the upcoming transition. Fig. 7a
shows the mean of the degree distribution as a function of R. This
network measure is highly sensitive to R near criticality, showing a
steep increase close to the transition. Additionally, Fig. 7b shows
the variance of the degree distribution as a function of R. The
increase in variance when approaching the transition point is even
more abrupt. The behaviour of the average degree is directly
related to high degree values occurring near the saddle-node
bifurcation. Close to the transition, the vegetation variability
synchronizes over the domain, which can be seen as the spatial
expression of CSD. This apparent synchronization produces an
increasing number of connections approaching the tipping point.
As it can be seen, the panels in Fig. 7 allow quantifying the
behaviour displayed by the spatial degree field in Fig. 6. In this way
we capture the bidimensional information of the size of the
patches and their degree values in a clear way, which monitors
quantitatively the presence of the upcoming transition.
f node degree for different values of R.
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Fig. 8 shows the assortativity field of the interaction network
and the corresponding PDF for different rainfalls R. The spatial
pattern of assortativity is more homogeneous than that of the
degree field and hence its PDFs are narrower. Similar to the degree
field, there is a substantial shift to larger values of the PDF when R
Fig. 8. (a and b) Spatial field and (c) PDF of the assortativity for different values of R. The s

the behaviour of the corresponding degree field.
approaches Rc. The spatial patterns of assortativity display a very
noisy structure, compatible with the random network architecture
previously inferred from the link length distributions. Further-
more, the average assortativity (not shown) increases sharply
when approaching the transition as can also be seen in the PDFs.
harp increase of the assortativity approaching the tipping point is directly related at
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Fig. 9a-b shows the skewness and kurtosis of the assortativity
distribution1 for different R. The switch in sign of the skewness
(Fig. 9a) is a feature that could be related to the forthcoming
transition. This switch in sign is unique (a distinct qualitative
feature), and it is not prone to false alarms. Furthermore, the
kurtosis (Fig. 9b) shows a huge and quick drop just before the
transition, providing a distinct warning related to the upcoming
transition point, especially if considered together with the
behaviour of the skewness. However, the combined analysis of
these two quantities reveals a more pronounced change in the
assortativity distribution: Just before the transition the skewness
approaches 0, while the kurtosis is close to 3; thus the assortativity
distribution is close to a Gaussian distribution near Rc. This
‘‘Gaussianisation’’ may therefore be used as an early-warning
signal of the transition point.

Finally, Fig. 10 shows the spatial field of the node clustering
coefficient and the corresponding PDF for different rainfall
parameter R. At high R, the clustering coefficient is zero
everywhere. The average node degree is very low such that there
are not sufficient links to create clustered structures. With
decreasing R the first small clusters start to appear and a non-
vanishing average value of the clustering coefficient emerges. The
more links are being added to the network with decreasing R, the
more clusters are formed and mean clustering coefficient
continues to increase. Close to the transition, a richer network
structure provides the noisy pattern displayed in Fig. 10a.

Regarding the transition, the mean clustering (not shown) does
not provide more information than the mean degree because these
two quantities are related: In a completely random network the
clustering scales linearly with the number of links. The variance of
the clustering distributions (not shown) provides an early-warning
indicator of the transition by drastically dropping just before Rc. The
combined increase in mean clustering and reduction in variance can
be explained as an effect of the increase in spatial coherence
displayed by the system. Approaching the transition, patches of
vegetation increase their synchronization forming well defined
groups of strongly connected nodes. However, these indicators do
not perform better than the corresponding degree measures.

In contrast, the skewness and kurtosis of the clustering distribu-
tion, shown in Fig. 11c and d, can be used as an early-warning indicator
1 We exclude the mean and variance of the assortativity distribution from the

presentation because they are directly connected to the mean and variance of the

degree distribution.
if the two quantities are monitored together. They are displaying a
‘‘Gaussianisation’’ of the clustering distribution, similar to the
assortativity distribution when approaching the tipping point.
However, up to this point the ‘‘Gaussianisation’’ of the assortativity
and clustering PDFs is only a qualitative feature. In the following
section we give a more quantitative measure of this class of early-
warning indicators.

4. Quality assessment of early-warning indicators

Based on the results of the previous section, we can divide the
early-warning indicators considered into two main classes. The
first class consists of scalar-based indicators, that is, scalar
measures which generally change monotonically when the
transition point is approached. For example, the mean and
variance of degree, assortativity and clustering belong to this
class. For these indicators it is generally important to monitor their
derivative with respect to the bifurcation parameter R in order to
sign proximity of the system to the transition point. The absolute
value of the indicator itself gives less information than its abrupt
change close to the transition (Van Nes and Scheffer, 2007; Scheffer
et al., 2009). The classical indicators are also included in the scalar-
based class.

The second class consists of distribution-based indicators. These
indicators monitor changes in the distribution of key quantities
when the system approaches the tipping point. In our case, the
assortativity and the clustering belong to this class because their
distributions approach Gaussian distributions close to Rc. The
degree distribution, instead, does not approach a Gaussian (not
shown). The critical normalization of clustering and assortativity
can be quantified numerically through the Kullback–Leibler
Distance (KLD), also called relative entropy, which measures the
distance between two PDFs. Given two one-dimensional distribu-
tions P(x) and Z(x), their relative entropy is defined as

KLD �
Z 1
�1

ln
PðxÞ
ZðxÞ

� �
PðxÞ dx: (10)

Measuring KLD between assortativity/clustering distributions and
Gaussians with the same mean and variance allows to quantify the
‘‘Gaussianisation’’ of these PDFs when the tipping point is
approached. We note that the Gaussianisation might a model-
specific feature and further analysis is required to assess the
generality of this result.



Fig. 10. (a and b) Spatial field and (c) PDF of node clustering for different values of R.

G. Tirabassi et al. / Ecological Complexity 19 (2014) 148–157 155
The KLD measure for both assortativity and clustering
distributions is plotted in Fig. 12. Obviously, KLD quickly drops
to zero when approaching the transition point for both the
assortativity and clustering distributions. Small KLD means that
the distribution under examination is comparable to a Gaussian,
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Fig. 11. (a) Skewness and (b) kurtosis of the
whereas for large values it deviates from Gaussianity. Unlike the
scalar-based case, the absolute value of the indicator is more
important than its derivative.

For both indicator classes a quality measure can be defined.
First, we define an e-environment around the bifurcation point by
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Fig. 12. KLD values for clustering and assortativity PDFs with respect to Gaussian

distributions with same mean and variance.

Table 2
Quality values of different early-warning indicators.

Indicator J Class Type QJ

Average degree Scalar Network 0.963

Variance of degree Scalar Network 0.996

Variance of assortativity Scalar Network 0.971

Average clustering Scalar Network 0.904

Assortativity Gaussianity Distribution Network 0.973

Clustering Gaussianity Distribution Network 0.951

Lag � 1 autocorrelation Scalar Classical 0.468

Spatial correlation Scalar Classical 0.730
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all the R values for which (R � Rc)/Rc < 0.1. For a scalar-based
indicator J, we then define the normalized quality measure QJ

s by

QJ
s �
h@J=@RiR < e � h@J=@RiR > e

h@J=@RiR < e þ h@J=@RiR > e
: (11)

where the brackets indicate the mean over the interval indicated.
In this way we achieve that if J shows an abrupt change in its
derivative close to the transition then we have QJ

s � 1. In contrast, if
the change of J is merely linear when approaching the tipping point
then we obtain QJ

s � 0.
In case of distribution-based indicators we can define a similar

quality measure QJ
d by taking into account J itself instead of its

derivative, that is,

QJ
d�
hJiR > e � hJiR < e

hJiR < e þ hJiR > e
: (12)

In Table 2 the quality values for both network-based and classical
indicators are shown. Obviously, the network-based measures
have significantly higher early-warning quality than the classical
measures.

5. Summary and discussion

In this study the possibility of anticipating desertification
transitions in a simple vegetation model using novel interaction
network techniques is investigated. Interaction networks are
constructed from time series of biomass fields and the topological
changes in the resulting networks are studied along a gradient of
decreasing rainfall. We find that network measures like degree,
assortativity and clustering may offer novel indicators for
identifying an upcoming desertification in semi-arid ecosystems.
Our results are consistent with previous studies that have used
network measures as early-warning indicators of critical transi-
tions in models. For example, Mheen et al. (2013) used an
interaction network approach to obtain an early-warning signal of
the Atlantic Meridional Overturning Circulation (AMOC) collapse.
In that study the network is built using temperature time series,
and the behaviour of the average degree is monitored as function of
freshwater input. Similar to the results in this study, the average
degree increases sharply approaching the transition. In contrast,
Viebahn and Dijkstra (2014) analysed the flow field of the wind-
driven ocean circulation introducing a flux-based network
approach. Also in that context, the degree of the network increases
while the system approaches the transition, but a more precise
early-warning indicator is given by the network’s closeness which
shows a big drop near the tipping point due to a local regime
change in the flow field.

In this study we have introduced measures to assess the quality
of different early-warning indicators. Using these quality measures
we compared the performance of the novel network-based
indicators with the classical indicators based on variance and
autocorrelation. We find that the scalar network-based indicators
have a higher quality value than the classical indicators. Moreover,
distribution-based indicators, here calculated from the assorta-
tivity and clustering distributions, have also a high quality value.
When these distributions become close to Gaussians, there is an
early-warning indication of the upcoming transition. Although
these observations hint that the indicators we developed here may
offer a strong indirect measure of proximity to critical transitions,
they may still be prone to similar limitations that classical
indicators face, like producing false positives (Boettiger and
Hastings, 2012), or requiring a lot of information for their practical
application (Dakos et al., 2012).

Regarding the possibility of false positives, it is well known that
CSD is a characteristic feature of transitions related to an
eigenvalue going to zero. However, not all the transitions
accompanied by an eigenvalue going to zero are also catastrophic
– that is implying an abrupt discontinuity in the stable branches
(Kéfi et al., 2013; Dijkstra, 2011). Thus, CSD can be prone to false
alarms, and it will be interesting to test, in future work, the new
network indicators against this possible pitfall.

Regarding the sample size of the data, instead, it is clear that the
network construction requires a sufficient spatial sampling which
temporally based classical indicators do not need. As a test, we
computed all the indicators presented in this paper also for other
two networks, obtained by spatially down-sampling the original 100
� 100 dataset considered here. In particular we considered 10�10
and 50 � 50 sub-sets. We find that the scalar-based indicators still
perform quite well, whereas the distribution-based indicators do
not. In particular, the assortativity Gaussianity still anticipates the
transition in the 50 � 50 data set, whereas the clustering measure is
unable to detect the transition in both data sets. This is a reasonable
feature of the proposed distribution-based indicators; in fact a good
estimation of a PDF requires a big amount of data, much more than
simple low-order moments estimators, as the one used here to build
the scalar-based indicators.

While the average degree behaviour as a function of R can be
easily linked to the spatial expression of the enhancement of
correlations of the time series between the nodes, the interpreta-
tion of the other indicators, especially that of the distribution-
based indicators, is not straightforward. Nevertheless, the net-
work-based indicators seem to offer a better measure of proximity
to the tipping point than the classical ones. This may be attributed
to the thresholding of the correlation matrix when constructing
the interaction network. This coarse-graining of the information
eliminates most of the noise, producing a better signal to noise
ratio of the spatial signature of CSD.
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The network based indicators hence offer a promising alterna-
tive to detect critical transitions. An interesting next step is to
analyse the utility of these indicators in a scale dependent feedback
model (Dekker et al., 2007; Dakos et al., 2011), for which basic
bifurcation diagrams were presented in Dijkstra (2011). Also in
such a model, the desertification transition is a saddle-node
bifurcation but the approach to this saddle-node with decreasing
rainfall is not as smooth as in Fig. 2 due to presence of multiple
branches of stable steady states.
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Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E.H., Rietkerk, M., 2013. Early warning
signals also precede non-catastrophic transitions. Oikos 122, 641–648.

Mheen, M., Dijkstra, H.A., Gozolchiani, A., den Toom, M., Feng, Q., Kurths, J.,
Hernandez-Garcia, E., 2013. Interaction network based early warning indicators
for the Atlantic MOC collapse. Geophys. Res. Lett. 40, 2714–2719.

Rietkerk, M., Dekker, S.C., de Ruiter, P., van de Koppel, J., 2004. Self-organized
patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929.

Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B., 2001. Catastrophic shifts
in ecosystems. Nature 413, 591–596.

Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held,
H., Van Nes, E.H., Rietkerk, M., Sugihara, G., 2009. Early-warning signals for
critical transitions. Nature 461, 53–59.

Shnerb, N.M., Sarah, P., Lavee, H., Solomon, S., 2003. Reactive grass and vegetation
patterns. Phys. Rev. Lett. 90 .

Van Nes, E.H., Scheffer, M., 2007. Slow recovery from perturbations as a generic
indicator of a nearby catastrophic shift. Am. Nat. 169, 738–747.

Viebahn, J., Dijkstra, H.A., 2014. Critical transition analysis of the deterministic
wind-driven ocean circulation – a flux-based network approach. Int. J. Bifurc.
Chaos 24 .

Wissel, C., 1984. A universal law of the characteristic return time near thresholds.
Oecologia 65, 101–107.

Yin, Z., Dekker, S.C., van den Hurk, B., Dijkstra, H.A., 2014. Bimodality of woody cover
and biomass caused by vegetation structures in West Africa. Earth Syst. Dynam.
Discuss. 5, 83–120.

http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0005
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0005
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0010
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0010
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0015
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0015
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0020
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0020
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0020
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0025
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0025
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0030
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0030
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0035
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0035
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0035
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0040
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0040
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0040
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0045
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0045
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0050
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0050
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0055
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0055
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0060
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0060
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0065
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0065
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0070
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0070
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0075
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0075
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0080
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0080
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0085
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0085
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0090
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0090
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0095
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0095
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0100
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0100
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0105
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0105
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0110
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0110
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0110
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0115
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0115
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0120
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0120
http://refhub.elsevier.com/S1476-945X(14)00069-5/sbref0120

	Interaction network based early-warning indicators of vegetation transitions
	Introduction
	Model and methods
	A spatial model of vegetation dynamics with a local positive feedback
	Network approach and analysis

	Results
	Classical indicators
	Interaction network based indicators

	Quality assessment of early-warning indicators
	Summary and discussion
	Acknowledgements
	References


