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Abstract. Feedback circuits are important for understanding the emer-
gence of patterns of neural activity. In this contribution we study how
a delayed circuit representing a recurrent synaptic connection interferes
with neuronal nonlinear dynamics. The neuron is modeled using a
Hodgkin-Huxley type model in which the firing pattern depends on
subthreshold oscillations, and the feedback is included as a time delayed
linear term in the membrane voltage equation. In the regime of sub-
threshold oscillations the feedback amplifies the oscillation amplitude,
inducing threshold crossings and firing activity that is self regularized
by the delay. We also study a small neuron ensemble globally coupled
through the delayed mean field. We find that the firing pattern is con-
trolled by the delay. Depending on the delay, either all neurons fire spikes,
or they all exhibit subthreshold activity, or the ensemble divides into clus-
ters, with some neurons displaying subthreshold activity while others fire
spikes.

1 Introduction

Time-delayed feedback mechanisms are relevant in many biological systems. Ex-
citable gene regulatory circuits [1], human balance [2,3], and eye movements [4,5]
are just a few examples. Many feedback loops have been proposed to explain pat-
terns of neural activity. A well known recurrent circuit is in the hippocampal
CA3 region, that is known to be involved in associative memory recall [6,7]. A
neuron might experience recurrent excitatory or inhibitory feedback though an
auto-synapse, and/or though a circuit of synaptic connections involving other
neurons. Since recurrent connections require the propagation of action poten-
tials along the synaptic path, finite signal transmission velocity, and processing
time in synapses lead to a broad spectrum of conduction and synaptic delay
times, ranging from few to several hundreds of milliseconds. Since neural spike
frequencies can exceed 10 Hz, these delays times can be much longer than the
characteristic inter-spike interval.

Within the framework of neuron rate-equation models, a recurrent feedback
circuit has been studied by adding to the membrane potential equation a term
proportional to the potential at an earlier time, ηV (t − τ) [8]. Here η is the
synaptic strength and τ is the delay time, that is the sum of conduction and
synaptic delays. While this is a very simplified approach, it has been successful
for understanding characteristic delayed feedback-induced phenomena, such as
multi-stability [9,10].
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Early experiments on the response of a single neuron in a recurrent excitatory
loop were performed by Diez-Martinez and Segundo [11], who studied a pace-
maker neuron in the crayfish stretch receptor organ. By having each spike trigger
electronically a brief stretch after a certain delay, they showed that with increas-
ing delay the discharge patterns transformed from periodic spikes to trains of
spikes separated by silent intervals. Pakdaman et al. [12] interpreted this behav-
ior as due to neuronal adaptation mechanisms, that decreased sensitivity along
successive firings. By studying models of various levels of complexity (an inte-
grate and fire, a leaky integrator and a rate-equation model including membrane
conductances), with and without adaptation to repeated stimuli, Pakdaman and
coworkers found that models including adaptation predicted a dynamics that was
similar to that observed experimentally in the crayfish receptor, exhibiting tonic
firings for short delays, and multiplets or bursts for longer delays. The influence
of noise on a single neuron with a delayed recurrent synaptic connection was
analyzed by Vibert et al. [13]. The noise-induced inter-spike interval irregularity
was found to decrease when the delay increased above the natural firing period:
for short delays noise irregularizes the firing period, while for long delays, the
neuron fires with a mean period equal to the delay, as observed without noise.

Recently, interest on delayed feedback circuitry has focused on its influence
on neural ”spontaneous” or self synchronous activity. Spontaneous synchrony is
known to be part of consciousness and perception processes in the brain [14], but
also of diseases such as epilepsy. Rosenblum and Pikovsky [15] proposed the use
linear delayed feedback to control synchrony in ensembles of globally coupled
neurons. It was shown that by variations of the delay time of the coupling,
neural synchrony can be either enhanced or suppressed [16,17]. Popovych et
al. [18] extended this method to the case of nonlinear delayed feedback, that
is, linear delayed feedback nonlinearly combined with the instantaneous signal,
showing that nonlinear feedback cannot reinforce synchronization, which can be
relevant for applications requiring robust de-synchronization.

With the aim of providing further insight into the influence of a recurrent
connection in a single neuron, and global delayed coupling in a neuron ensemble,
we study a small neuron ensemble composed by a few neurons that are globally
coupled through their delayed mean field, and compare their activity with that
of a single neuron that has a recurrent delayed synaptic connection. We show
that, as for the single neuron, the firing pattern of the ensemble is controlled
not only by the coupling strength but also by the delay time. Depending on the
delay, either all neurons fire spikes, or they all exhibit subthreshold activity, or
the ensemble divides into clusters, with some neurons displaying subthreshold
activity while others fire spikes.

This paper is organized as follows. Section II presents the single neuron model
and the coupling scheme of the neuron ensemble. Section III presents results of
the numerical simulations, where the control parameter is the delay time and
the dynamics of a single neuron with a recurrent connection is compared with
that of a globally coupled neuron ensemble. Section IV presents a summary and
the conclusions.
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2 Model

To simulate the firing activity of a single neuron we use a model proposed by
Braun et al. [19] that was developed on the basis of experimental data from shark
electroreceptors [20] and mammalian cold receptors [21]. The model is a flexible
neuronal pattern generator that produces different types of firing patterns, that
are of relevance also in cortical neurons [22]. The temporal sequence of spikes
indicates that the activity of these neurons depends on subthreshold oscillations
of the membrane potential. In electro-receptors and in the upper temperature
range of cold receptors there is an irregular sequence of spikes which, however,
shows a multi-modal inter-spike interval distribution that suggest the existence
of subthreshold oscillations which operate below but near the spike-triggering
threshold. In this situation it essentially depends on noise whether a spike is
triggered or not but the subthreshold oscillation period is still reflected in the
basic rhythm of the discharge. External stimuli can alter the frequency and/or
the amplitude of the oscillations, thus inducing pronounced changes of the neu-
ron firing pattern. In contrast, in the low temperature range of cold receptors,
irregular single spikes can be recorded, whose histogram of inter-spike intervals
do not have a distinct modal structure but seems to reflect pacemaker activity
under random fluctuations.

The model proposed by Braun et al. has been studied by several authors.
As a function of the temperature different deterministic firing patterns have
been identified [23], including coexistence of spikes and subthreshold oscillations
(spikes with skippings), tonic spiking and bursting patterns. This rich dynamic
behavior is due to the interplay of two sets of de- and re- polarizing ionic con-
ductances that are responsible for spike generation and slow-wave potentials
[24]. The influence of noise was studied by Feudel et al. [25], who showed that
the model predictions are in good agreement with data of electro-physiological
experiments with the caudal photoreceptor of the crayfish. Neiman et al. [26]
demonstrated experimentally that electroreceptor cells in the paddlefish con-
tain an intrinsic oscillator that can be synchronized with an external signal,
and simulations based on Braun et al. model with a periodic external stimulus
yield good agreement with the observations. Noise induced synchronization [27]
and anticipated synchronization [28] have also been demonstrated. The effect
of delayed recurrent feedback was analyzed by Sainz-Trapaga et al. [29], who
showed that the feedback can modify the amplitude of the subthreshold oscilla-
tions in a way such that they operate slightly above threshold, therefore leading
to feedback-induced spikes.

The rate equation for the potential voltage across the membrane, V , is [19]:

CM V̇ = −INa − IK − isd − Isr − Il + ηV (t − τ), (1)

where CM is the capacitance, INa and IK are fast sodium and potassium cur-
rents, Isd and Isr are additional slow currents. These four currents depend on the
temperature T as described in [19]. Il is a passive leak current. Further details
and definitions of the other quantities can be found in [19]. The last term in the
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r.h.s. of Eq. (1) accounts for the recurrent synaptic connection. V (t − τ) is the
membrane potential at the earlier time, t − τ , η is the synaptic strength and τ
the delay time. Because we are interested in feedback-induced patterns, we do
not include any noise source in the equations, and consider parameters such that
the neuron, without feedback, displays only subthreshold oscillations.

We compare the dynamics of a neuron with feedback, with that of N neurons
globally coupled through their delayed mean field. The rate-equation for the
membrane potential of the ith neuron of the ensemble, Vi, is:

CM V̇i = −INa,i − IK,i − Isd,i − Isr,i − Il,i + ηVT (t − τ), (2)

where VT (t − τ) = (1/N)
∑N

i=1 Vi(t − τ) is the delayed mean field and the other
variables have the same meaning as in Eq.(1). This coupling scheme resembles
that studied by Rosenblum and Pikovsky [15], but in [15] the neuron ensemble
(N = 2000 Hindmarsh-Rose neurons in the regime of chaotic bursting) was
coupled by two terms, one proportional to the instantaneous mean field, and
the other, proportional to the delayed mean field. The authors found that, for
certain parameters, the delayed mean field destroyed the synchrony among the
neurons induced by the instantaneous coupling, without affecting the oscillations
of individual neurons. With the aim of providing further insight into the effect
of delayed coupling, here we consider a small neuron ensemble that is coupled
only through its delayed mean field.

3 Results

The parameters used in the simulations are such that the neurons, in the absence
of feedback or coupling, display subthreshold oscillations of period T0 ∼ 130 ms
(the temperature parameter is set to 350C, and other parameters are as in [19]).
To integrate Eq. (1) [Eq.(2)] it is necessary to specify the initial value of the
potential V [Vi with i = 1, N ] on the time interval [−τ, 0]. It is known that the
neuron exhibits multistability as different initial conditions lead, after a transient
time, to different stable firing patterns [9,10]. Here the initial conditions are such
that the neuron is oscillating in its natural cycle when the feedback begins to act
(i.e., the feedback starts when the neuron is at a random phase of the cycle). For
the neuron ensemble, the initial conditions are such that the neurons oscillate
independently one of another (i.e., they are at random, different phases of the
cycle) when the coupling starts.

We begin by considering a single neuron with self-feedback. Due to the ex-
citable nature of the dynamics it can be expected that even weak feedback
strengths can be a strong perturbation to the neuron subthreshold oscillations.
The feedback can amplify the amplitude of the oscillations, inducing threshold-
crossings and giving rise to firing activity that can be self-regularized by the
delay time. This is indeed observed in Fig. 1, that depicts the amplitude, A =
max(V ) − min(V ), and the frequency of the neuronal oscillations vs. the de-
lay for fixed synaptic strength. When η is positive, Fig. 1(a), the oscillation
amplitude is diminished, with respect to the natural oscillation amplitude, for
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Fig. 1. (a), (b) Amplitude of the neuron oscillations vs. the delay time, normalized
to the subthreshold oscillation period, T0, for feedback strength η = 0.001 (a) and
η = −0.001 (b). The dashed line indicates the amplitude of the natural subthreshold
oscillations (in the absence of feedback). (c), (d) Frequency of the oscillations vs. the
normalized delay time for η = 0.001 (c) and η = −0.001 (d). The dashed line indicates
the frequency of the natural oscillations.
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Fig. 2. Oscillatory waveforms for increasing values of the delay time and negative
feedback strength, η = −0.001. τ/T0 = 2.4 (a), 2.5 (b), 2.65 (c) and 2.7 (d).

all delay values, but there is a non-monotonic relationship of the amplitude
with the delay: the oscillation amplitude is maximum (minimum) for τ ∼ nT0
[τ ∼ (n + 1/2)T0] with n integer. When η is negative, Fig. 1(b), the oscillation
amplitude is enhanced with respect to the natural amplitude, and the neuron
fires spikes; however, the feedback is not strong enough to induce firings for all
delay values; there are feedback-induced spikes only in ”windows” of the delay
centered at τ ∼ (n + 1/2)T0 with n integer. The frequency of the neuronal oscil-
lations [Figs. 1(c), 1(d)] is also modified by the feedback: for delays longer than
a few oscillation periods, the frequency decreases with τ in a piece-wise linear
way, increasing abruptly at certain delay values.

In the windows of delay values where feedback-induced spikes occur, the firing
pattern is governed by the value of the delay: at the beginning of the window
the firings are frequent [tonic spikes are displayed in Fig. 2(a)], they become
increasingly sporadic as the delay increases [spikes with skippings are displayed
in Figs. 2(b)-2(d)], until they disappear at the end of the window. The process
repeats itself in the next window, that is separated by an interval ∼ T0.
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Fig. 3. Amplitude (a), (c) and frequency (b), (d) of the mean field oscillations (gray
circles) vs. τ/T0, for η = 0.001 (a), (b); and η = −0.001 (c),(d). The black dots display
the amplitude and the frequency of one neuron of the ensemble. The dashed lines
indicate the amplitude and frequency of the natural oscillations.

Next, we consider the ensemble of N neurons under the influence of delayed
global coupling. we present results for N = 5 neurons, but similar patterns are
observed for other values of N .

Figure 3 displays the amplitude and the frequency of the oscillations of the
mean field (black dots) vs. the delay time for fixed coupling strength. For com-
parison, the amplitude and the frequency of the oscillations of one of the neurons
of the array are also displayed (gray circles). For both, positive and negative cou-
pling strength, it can be observed that the mean field oscillation amplitude [Figs.
3(a), 3(c)] exhibits periodic features at delay times separated by T0, similar to
those observed in Fig. 1 for a single neuron with a recurrent connection. In win-
dows of τ separated by T0 the amplitude of the oscillations of the mean field
decreases to close to zero, revealing that the neurons organize their activity such
that they oscillate out of phase, and even in perfect antiphase, keeping the mean
field nearly constant. The frequency of both, the mean field and one neuron of
the array has a piece-wise linear dependence with the delay [Figs. 3(b), 3(d)]. In
the regions of out of phase behavior the frequency of the individual neurons is
nearly constant, equal to the natural frequency f0 = T−1

0 , while the frequency
of the mean field is nf0 with n ≥ 2 integer (not shown because of the scale).

For positive coupling strength all the neurons display subthreshold oscilla-
tions. The oscillations can be either in-phase, out-of-phase, or in perfect anti-
phase depending on the delay τ . A few examples are displayed in Fig. 4: in
Fig. 4(a) the neuron oscillate inphase; in Fig. 4(b) two neurons display in-phase
oscillations (i.e., they form a cluster); in Fig. 4(c) the ensemble splits into two
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Fig. 4. Oscillatory waveforms for η = 0.001 and τ/T0 = 6.9 (a), 7.0 (b), 7.1 (c), and
7.3 (d). The black lines display the oscillation of the individual neurons (displaced
vertically for clarity) and the grey lines, the collective mean field.

clusters, and the oscillations of the clusters are in antiphase, in Fig. 4(d) the five
neurons display perfect antiphase behavior that leaves the mean field constant.

For negative coupling strength the ensemble displays more complex behavior:
depending on τ either all the neurons fire spikes, or they all display subthreshold
oscillations, or some neurons display subthreshold oscillations while others fire
spikes. The neuronal oscillations can be either in-phase or out-of-phase depend-
ing on the delay. A few examples are displayed in Fig. 5: in Fig. 5(a) the neurons
fire synchronized spikes; in Fig. 5(b) four neurons fire out of phase spikes, while
the other displays subthreshold oscillations; in Fig. 5(c) the five neurons display
perfect antiphase subthreshold behavior that leaves the mean field constant; in
Fig. 5(d) the ensemble splits into two clusters, one fires synchronized spikes while
the other displays subthreshold oscillations; in Fig. 5(e) the ensemble splits into
two clusters that alternate their firing pattern; in Fig. 5(f) the neurons synchro-
nize their firings again, but the pattern is different from that of Fig. 5(a).

The firing pattern varies not only with τ , but also with the initial conditions
of the neurons, that is, with the positions of the neurons in the subthreshold
oscillation cycle when the coupling begins to act. For most values of the delay,
different initial positions lead to different firing patterns, and there is multi-
stability of solutions with the coexistence of in-phase and out-of-phase behaviors.
As an example, Figs. 6(a) and 6(b) display, for the same parameters as Figs. 5(a)
and 5(b), different firing patterns, that occur with different (random) initial
conditions. However, for specific values of the delay, the basins of attraction of
inphase firings and out of phase subthreshold oscillations are very wide, and
almost all initial conditions lead to these states. Fig. 6(c) and 6(d) display the
mean field oscillation amplitude and the oscillation amplitude of one neuron of
the array, respectively, for 8 random initial conditions. For τ/T0 =5.5, 6.5 and
7.5, it is observed that all initial conditions lead to large amplitude oscillations of
both, the mean field and one neuron of the array, indicating inphase firings, while
for τ/T0 =5.8, 6.8 and 7.8, almost all initial conditions lead to small amplitude
oscillations, of both, the mean field and one neuron of the array, reveling out of
phase subthreshold oscillations.
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Fig. 5. Oscillatory waveforms for η = −0.001 and τ/T0 = 6.6 (a), 6.7 (b), 6.8 (c), 7.0
(d), 7.3 (e), and 7.5 (f)
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Fig. 6. (a), (b) Oscillatory waveforms for η = −0.001, τ/T0 = 6.6 (a), 6.7 (b), and
initial conditions different from those of Figs. 5(a), 5(b). (c), (d) Amplitude of the
oscillations of the mean field (c) and of the oscillations of one neuron of the ensemble
(d) for 8 random initial conditions.

4 Summary and Conclusions

We studied the dynamics of a neuron under the influence of a delayed feedback
circuit representing a recurrent synaptic connection. The neuron was modeled
using a Hodgkin-Huxley type model with parameters corresponding to the sub-
threshold oscillation regime, and the feedback was included as a time delayed
linear term in the membrane voltage equation. We found that weak positive
feedback strengths reduce the amplitude of the subthreshold oscillations, while
weak negative feedback strengths amplify the oscillation amplitude, inducing
threshold-crossings and firing activity for certain values of the delay time, which
are related to integer multiples of the subthreshold oscillation period, T0. We
also studied the firing pattern of a small ensemble of neurons globally coupled
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through the delayed mean field, and found a rich variety of different behaviors,
with the firing pattern controlled by the delay time of the mutual coupling. For
certain intervals of the delay, related to T0, the neurons synchronize their oscil-
lations, either subthreshold oscillations (for positive coupling strength), or firing
activity (for negative coupling strength). Outside the synchronization regions,
depending on the value of the delay time, either the neurons exhibit out of phase
oscillations, or the ensemble divides into clusters, with the clusters exhibiting
anti-phased oscillations. As the delay is increased for a fixed coupling strength,
the different regimes repeat themselves in a periodic sequence (synchronization,
out of phase, cluster behavior, and synchronization) with a periodicity approxi-
mately equal to T0. These results can be of relevance for a deeper understanding
of the role played by time delays in weakly coupled neuronal ensembles.
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