
Optics Communications 100 ( 1993 ) 33 l-340 

North-Holland 

Full length article 

Chaotic properties of the coherence 
with optical feedback 

C. Masoller, A.C. Sicardi Schilino and C. Cabeza 

OPTICS 

collapsed state of laser diodes 

Instituto de Fisica. Facultad de Ciencias, T. Narvaja 1674, Montevideo, Uruguay 
and lnstituto de Fisica. Facultad de Ingeniera, Herrera y Reissig 565, Montevideao, Uruguay 

Received 7 May 1992; revised manuscript received 2 I January 1993 

The characterization of the geometrical and statistical properties of the coherence collapsed state of laser diodes with optical 

feedback is done by means of dimension analysis and the spectrum of Lyapunov exponents. The dimension calculation evidences 

the fractal and low-dimensional structure of the attractor, while the spectrum of Lyapunov exponents unambiguously confirms 

the chaotic nature of the coherence collapsed state. In addition, we investigated the transition from quasiperiodicity to chaos as 

the feedback parameter was increased. The detection by Poincare section analysis and power spectrum of three-period doubling 

bifurcations of a two-dimensional torus is presented. 

1. Introduction 

In recent years, optical feedback has become a fas- 
cinating subject from both the applied and the fun- 
damental points of view. From the experimental 
point of view, optical feedback from an external cav- 
ity is commonly employed to reduce the linewidth of 
semiconductor lasers, in order to meet the require- 
ments for the realization of coherent transmission 

systems and interferometric fiber sensors. From the 
theoretical point of view, optical feedback provides 
a good example of bifurcations and transitions to 
chaos in nonlinear physical systems. 

In a computer simulation, Ikeda et al. [ I] studied 
the behavior of transmitted light from a ring cavity 
containing a nonlinear dielectric medium and were 
the first to show that the presence of a time delay in 
the feedback loop might cause the laser to switch to 
a state of significantly increased phase and dynam- 
ical complexity. This coherence-collapsed state [ 21 
has been interpreted as a chaotic attractor. Since then, 
chaotic behavior has been reported for many similar 
systems. For the external cavity laser diode, chaotic 
behavior has been observed both theoretically and 
experimentally [ 3-7 1. 

Using the model of Lang and Kobayashi [8,9], 
Tromborg et al. recently showed [ 10,111 that the 

system undergoes a quasiperiodic route to chaos that 
can be interrupted by frequency locking. Even though 
the practical importance of this phenomenon, the 
chaotic properties of the coherence collapsed state 
are not quantitatively understood yet. 

Although there are several results indicating that 

the attractors of infinite-dimensional systems are of 
finite dimension and have a discrete spectrum of 
Lyapunov exponents [ 12 1, only little is known about 
their structure and their behavior as the parameters 
are varied. In this letter the evolution and charac- 
terization of the coherence collapsed state is studied 
computing the dimension and the Lyapunov expo- 
nents, for the first time we believe. 

The spectrum of Lyapunov exponents [ 13-l 71 
provides a summary of the local stability properties 
of an attractor. The standard approach of Benettin 
et al. [ 13 ] and Shimada et al. [ 161, linearizing the 
equations of motion, was used to calculate the spec- 
trum of Lyapunov exponents, and the largest Lya- 
punov exponent was also estimated studying the 
evolution of an infinitesimal perturbation at a given 
point on the attractor. The difference between both 
calculations gives an estimation of the accuracy in 
the Lyapunov exponents calculations. As the feed- 
back parameter was increased, from the spectrum of 
Lyapunov exponents three period-doubling bifur- 
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cations of the two-torus were found before the tran- 
sition to the chaotic state. 

In order to investigate the dimension of the at- 
tractor, the method of delays [ l&20] was employed 
to reconstruct the dynamics in a finite dimensional 
space. The correlation dimension of the coherence 
collapsed state, computed with the method of Grass- 
berger and Procaccia [ 2 11, was found to be D, E 3.85, 
while the Lyapunov dimension, computed according 
to the conjecture of Kaplan and Yorke [ 12,22,23], 

gives a value DLz 3.95. 
The detection by Poincare section analysis and 

power spectrum of three period-doubling bifurca- 
tions of the torus is presented. This result agrees with 
whose of refs. [ 24,251, i.e. that period-doubling bi- 
furcations of two-torus occur only a finite number of 
times before the system undergoes a transition to 
chaos. 

This paper is organized as follows. Section 2 pre- 
sents a brief discussion of the model and its main 
characteristics. In sec. 3 we investigate the transition 
to the coherence collapsed state by Poincare and 
power spectrum analysis. The calculation of the 
spectrum of Lyapunov exponents is presented in sec. 
4, while the dimension calculation is presented in sec. 
5. Finally, sec. 6 is devoted tc the discussion of the 

results. 

2. The model equations 

The theoretical investigations of the external cav- 
ity configuration are usually based on the model of 
Lang and Kobayashi [ 81. In this model the system 

is described by a set of coupled rate equations for the 
complex electric field E(t) and the carrier density 
N(t). The equations are nonlinear and the field 
equation contains a time-delayed term that accounts 
for the field reflected from the external mirror and 
that renders the system infinite dimensional. By sep- 
arating the field equation into two equations for the 
amplitude E( t) and the phase @(t) we obtain the fol- 
lowing set of equations 

dE(t)/dt=;[G(N)-1/7,]E(t) 

+(k/7i,)E(t-7)cosd(t), (1) 

d@(t)/dt=fa[G(N)-l/7,] 

-(k/7,,) ]E(t--7)/E(t)] sin d(l) , (2) 

dN(t)/dt=J-N(t)/zs-G(N)E(t)2, (3) 

whered(t)=wo7+@(t)-@(t-7) isthephasedelay, 
w. being the angular frequency of the solitary laser; 
G(N) = GN( N- No) is the gain per unit time. tin and 
7 are the round-trip time in the laser cavity and the 
external cavity, respectively. k2 is the feedback power 
ratio, i.e., is the power reflected from the external 
cavity relative to the power reflected from the laser 
mirror. a! is the linewidth enhancement factor; 7, is 
the carrier lifetime and J is the bias current. Equa- 
tions ( 1 )- (3) do not include multiple reflection, and 
are therefore valid only for k < 1. 

In order to investigate the evolution of the system, 
we have done a numerical simulation. The equations 
were solved by a standard six-order Runge-Kutta in- 
tegration routine, where the time increment was taken 
as At= 0.02 ns. The parameters used are: (Y= 6, 
G,= 1.1 X lo-l2 m3/s, No= 1.1 X 1O24 m3, 7,=2 ns, 
7,= 2 ps, 7,,= 8 ps and 7= 2 ns. J was taken as J= 

2.OJ,,,, where Jth is the threshold current (Jth= 

Nthl~ G(N,,) = l/7,). 
Let us now describe briefly the changes that occur 

in the nature of the system’s attractor as the feedback 
k is increased. A linear stability analysis [9] shows 
that, for low values of k, the external cavity mode 
(ECM) with minimum carrier density is a stable 
fixed point of eqs. ( 1) - ( 3 ). The computer program 
was initiated from this fixed point, and was first 
started for the laser diode without feedback. Increas- 
ing k, we found that the ECM becomes unstable and 
a stable limit cycle appears. If we continue to in- 
creases k, this limit cycle looses stability and it is re- 
placed by a two-torus, which period doubles three 
times and becomes chaotic. 

In order to distinguish periodic behavior from 
chaotic behavior, we used a variety of methods [ 201. 
Let us begin with two of the most commonly em- 
ployed, namely the Poincare section and the power 
spectrum [ 23,261. 

3. Visualization of the dynamics 

The solution describes a trajectory in (E, N, d) 

332 



Volume 100, number 1,2,3,4 OPTICS COMMUNICATIONS I July 1993 

space. For the visualization of the dynamics we used 
the Poincart section technique, which easily allows 
the recognition of two-torus and its bifurcations. We 
plotted the normalized photon number (1( t)/Z,= 
E(t)*/,!?,*) and the phase delay (G(t)-@(t-r)) at 
the intersection points of the trajectory with the plane 
N/N,,- 1 = 0; N,,, and I, corresponding to the soli- 

tary laser. Let us next present our results. 

merical computation of the Lyapunov exponents 
several algorithms available have been used [ 13-l 7 1. 
These algorithms were compared with respect to their 
efficiency and accuracy for computing the Lyapunov 
exponents of delay equations, and the details of these 
investigations will reported elsewhere. 

Increasing k, the first Hopf bifurcation occurs when 
the ECM becomes unstable and a limit cycle with os- 
cillation frequency fO= 5.77 GHz is born. The limit 
cycle leads to a single intersection point in the Poin- 
care map [ 281 (“mirror” points are rejected). If we 
continue increasing k, this limit cycle undergoes a 
Hopf-Landau bifurcation and a two-dimensional to- 
rus with incommensurate frequencies f0 and f, = 0.5 
GHz appears. While f0 is approximately the relaxa- 
tion frequency of the laser, f, is related with the in- 
verse of the external resonator round-trip time 
fi=t- ‘=(L,,,/2c)-‘. 

Figure la shows the Poincare section of the torus. 
As the feedback k is increased, the torus period dou- 
bles three times (figs. lb, lc, Id) and then becomes 

chaotic (fig. le). 

In this article the Lyapunov exponents were com- 
puted using the method proposed by Benettin et al. 
[ 131 and Shimada et al. [ 161. Equations (l)-(3) 
were linearized but, at variance with finite dimen- 
sional problems, the linearized equations are differ- 
ential delay equations: thus, we consider an infini- 
tesimal perturbation that is not a vector with a few 
components, but a vector with three components, two 

of which (the field and the amplitude) are functions 
of time over the entire delay 7. The technique we used 
is as follows [ 121: for each exponent Ai to be com- 
puted, we selected (arbitrarily) an initial vector 
dxi(0). We integrated over a time r and renormal- 
ized dx, ( 1) to have length one. Then, using a Gram- 
Schmidt algorithm, we orthonormalized the second 
vector relative to the first, the third relative to the 
first and second, and so on. We repeated this pro- 
cedure for L iterations and computed 

The transition to the chaotic state can be recog- 
nized by power spectrum analysis. The power spec- 
trum was calculated for the time series of the nor- 
malized photon number using 4096 sampling points 
and a sampling interval dt= 0.04 ns. A series of 
Fourier spectra are shown in fig. 2. For k=0.006, the 
spectrum presents a typical quasiperiodic nature, 
where two incommensurate frequencies are present 
cfO and f,). For k=0.0064, k=0.0066, and k= 

0.00666 the spectrum shows evidence of period dou- 
bling. In addition, for k= 0.0064 the spectrum shows 
evidence of frequency locking. Increasing k, the 
spectrum changes to that with a broad-band noise 
characteristic of chaotic attractors (see fig. 2e). 

A,= kk$, loI.3 
Ihi I 

Idx,(k-l)l 
(4) 

where the euclidean metric was chosen to define dis- 
tances in the phase space 

ldx,(k)/*= C dEf+ 1 d@;+dN*(k). (5) 
I I 

Here dE, and d@, are the components of the pertur- 
bations in the electric field and phase over the entire 
delay r. 

4. Lyapunov analysis 

Equations ( 1 )-( 3) are invariant under a global 
translation in the phase (@j+ Qj+ a ). This invariance 
introduces a “spurious” zero Lyapunov exponent in 

the spectrum, since two points in the attractor that 
differ by a constant value of @ will not merge nor sep- 
arate. The “extra” zero exponent will be ignored in 
the rest of our calculations. 

The spectrum of Lyapunov exponents presents a Because the computation of many Lyapunov ex- 
useful tool for the study and classification of the at- ponents is too time consuming, we computed only 
tractors of a dynamical system [ 15,231. While the the ten largest Lyapunov exponents. We noted that, 
positive exponents measure the expansion on the at- if we increased the number of calculated exponents, 
tractor, the negative exponents measure the contrac- the additional exponents that appear were all 
tion of trajectories onto the attractor. For the nu- negative. 
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Fig. I. Poincark section for (a) k=0.006; (b) k=0.0064; (c) 
k=0.0066; (d)sk=0.00666; (e) k0.007. 



Volume 100, number 1,2,3,4 OPTICS COMMUNICATIONS I July 1993 

(4 OJ j 

lb) c 

-2a 

-40 

-80 

” 2 4 6 B 10 12 14 

FREQUENCY (GHz) 

FREQUENCY (GHz) 

Fig. 2. Power spectra at the transition from periodicity to chaos for feedback levels of (a) 0.006; (b) 0.0064; (c) 0.0066; (d) 0.00666; 
(e) 0.007. 

Figure 3 shows the spectrum of the five largest comes zero, and a transition to the chaotic state at 
Lyapunov exponents as the parameter k is varied 
from 0.006 to 0.007. We can observe three period 

k=0.00668 when the first exponent becomes posi- 

doubling bifurcations at k= 0.006 12, k= 0.00646, 
tive. The largest exponent of the coherence collapsed 

k=0.0664 when the third Lyapunov exponent be- 
state, for k=0.007 was found II, x 0.12. 

The largest Lyapunov exponent was also calcu- 
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Fig. 2. Continued 

lated examining the evolution of an “infinitesimally 
small” displacement vector d.x(O) at a given point 
on the attractor. For a chaotic system, the evolved 
vector dx( t ) grows (on average) as 

dx(t) =d.x(O) exp(At) , (6) 

where A> 0 is the largest Lyapunov exponent. Figure 
4 shows the two largest Lyapunov exponents A, and 
A2 calculated with eq. (4) and the largest Lyapunov 
exponent I calculated with eq. (6). We observe a very 
good agreement between both calculations. For the 
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Fig. 3. The five largest Lyapunov exponents as the feedback pa- 
rameter k varies from 0.006 to 0.007. 

coherence collapsed state (k= 0.007) it was found 
Rz0.12. 

5. Dimension calculations 

In order to arrive at a deeper understanding of the 

-0.08 I,,,,,,,,,,,,,,,, ,,,,,‘,,,,,~m,,,,,,,,~,,,,,,,r 

0.0060 0.0062 0.0064 0.0066 0.0068 0.0070 

Feedback level 

Fig. 4. The largest Lyapunov exponent calculated with eq. (6) 
(dotted) and the two largest Lyapunov exponents calculated with 
eq. (4) (solid). 

dynamics, we now turn to the calculation of the di- 
mension of the chaotic attractor [ 12,23,26-281. 

Since the system is infinite dimensional, both the 
dimension of the phase space where the attractor 
“lives” and the dimension of the attractor are un- 
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known. To recover this phase space, we used the time- 
difference method [ 18-201 applied to time series of 
the normalized photon number. Given the time se- 
ries x,, x2, . . . xN, we constructed a space of high 
enough dimension which allows the attractor to lie 
there unconstrained, i.e., we form a set of d-dimen- 
sional vectors with components taken from the time 
series Y~=(x*, Xi+,, . . . . x~+(~_I)~) with i=l, . . . . 
N- (d- 1 )p; where d is the embedding dimension 
and p is the delay time. 

The correlation dimension, which gives a lower 
bound of the fractal dimension, was calculated fol- 

lowing the procedure of Grassberger and Procaccia 
[ 2 11. The correlation function 

C(r) = 1 /N2 

(Number of pairs(x,, xj)with Ix, -x, 1 <r) (7) 

was calculated for each embedding dimension d, and 
the scaling region in r for which C(r) z r” was lo- 
cated. If p approaches a limiting value D, as d is in- 
creased, D, is identified as the correlation dimen- 
sion. For the coherence collapsed state (k=0.007), 
fig. 5a shows logarithmic plots of the correlation 
function C(r) with r for embedding dimension d= 5, 
10, 20, 30 and 40. The time series consisted of 
N~70.000 points, separated by a time At=0.2 ns. 
The local derivative of the curves, which better help 
to judge the quality of the plateau, is plotted in fig. 
5b. Slopes for each embedding dimension were ob- 
tained using standard least squares regression. Ob- 
serving the saturation of slopes the correlation di- 
mension is estimated to be D,z 3.85. However, this 
value is large enough to be possible affected by in- 

sufficient statistics. 
In addition, from the spectrum of Lyapunov ex- 

ponents, we calculated de Lyapunov dimension us- 
ing the definition of Kaplan and Yorke [ 12,221 

&=j+(lA,+, I)-’ i: A,, (8) 
i=1 

wherej is the largest integer for which 1 i + . . . +A,> 0. 
For typical attractors it has been conjectured [28] 
that the Lyapunov dimension is equal to the infor- 
mation dimension and thus gives a value DL> DC. 

The Lyapunov dimension as a function of k is 
plotted in fig. 6 for k between 0.006 and 0.007. For 
k-co.00668 the attractor is a two-torus, there are two 
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Fig. 5. (a) Doubly logarithmic plots of the correlation function 

with embedding dimensions d= 5, 10, 20, 30, 40 for the coher- 

ence collapsed state (k=0.007). (b) Local derivative of the 

In [ C( I) ] versus In(r) curves plotted against In(r). The value of 

the slope at the plateau is DC- 3.85. 

exponents I, and ;12 equal to zero, and the dimen- 
sion is two. At k=0.00668 a transition to a chaotic 
state occurs and the dimension abruptly jumps to 
three. For k>0.00668 the dimension exceeds three 
and continues to increase until it approaches four. 
Note that the dimension exceeds three while there is 
only one positive exponent and two zero exponents. 

In these calculations we did not consider the “spu- 
rious” zero associated to the phase invariance of eqs. 
( 1 )-( 3), because it does not influence the stability 
and the topological properties of the attractors. The 
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Fig. 6. The Lyapunov dimension as a function of k for k= 0.006- 

0.007, calculated from eq. (8). The dimension is shown as a solid 

line and the number of non-negative Lyapunov exponents is in- 

dicated by a dotted line. 

Lyapunov dimension of the coherence collapsed state 
(for k=0.007) gives D,=3.95. 

6. Conclusions and discussion 

In conclusion, a detailed investigation on the 
properties of the coherence collapsed state has yielded 
a definitive identification of chaos. Dimension anal- 
ysis confirms that the laser dynamics occurs in a low 
dimensional space, in spite of the fact that the time 
evolution of the laser with optical feedback depends 
on the field stored in the external cavity, and there- 
fore the system has an infinite number of degrees of 
freedom. By Fourier and Poincare section analysis, 
three period-doubling bifurcations of the torus were 
detected, and evidence of frequency locking was 
found. The spectrum of Lyapunov exponents of the 
coherence collapsed state confirms that the laser dy- 
namics is highly chaotic. The details of the transition 
from quasiperiodicity to chaos along with the inves- 
tigation of the effects of the spontaneous emission 
terms is in progress and will be reported elsewhere. 
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