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Regular and chaotic behavior in the new Lorenz system 
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The new Lorenz system of general circulation of the atmosphere, which exhibits an immense variety of bifurcation sequences, 
is studied by computer simulation. When the external heating varies, periodic and turbulent regions are found. In the periodic 
regions, period-doubling, period-halving and saddle-node bifurcations are observed. Also, at certain parameter intervals, hyster- 
esis and coexistence of attractors is reported. The chaotic behavior in the turbulent region is discussed with the aid of Lyapunov 
analysis and correlation dimension calculations. 

In recent years, a great deal o f  interest has been 
focused on studying the complexity of  nonlinear dy- 
namical systems. Lorenz's  classical model of  thermal 
convection in the atmosphere [ l ] was the first cha- 
otic system discovered and has been one of  the most  
extensively investigated. As a modification of  this 
model o f  turbulence generation, in refs. [2,3] Lor- 
enz derived a simple but powerful model based on 
the "general circulation" o f  the atmosphere. In ref. 
[ 3 ], when the external heating F varies and the heat- 
ing contrast between oceans and continents G is equal 
to 1, several attractors were found. The coexistence 
o f  two periodic attractors (the "weak" and the 
"strong" attractors) was determined under  summer  
conditions ( F =  6.0), while only one chaotic attrac- 
tor was found under  winter conditions ( F =  8.0). 

The purpose of  the present study is to further ex- 
plore the dynamics o f  the model when the parameter  
F is varied. We first study briefly the origin and evo- 
lution Of the weak and the strong attractors. We show 
that while the weak attractor is created by a H o p f  
bifurcation o f  a stationary solution, the strong at- 
tractor appears after a reverse saddle-node bifurca- 

t ion of  the other two fixed points. In addition, we 
demonstrate that the system's transition to chaos is 
a Hopf  bifurcation where the "weak" limit cycle be- 
comes unstable. Next, we investigate the system's 
behavior in the turbulent region ( F = 8 . 0 ) .  The 
Poincar6-section of  the attractor presents the typical 
features of  a strange attractor. Moreover, Lyapunov 
spectrum analysis provides real evidence for chaos 
since one positive Lyapunov exponent is found. In 
addition, a correlation dimension of  2.23 was 
determined. 

The model equations are 

d X / d t  = - y2 _ Z 2 _ a S +  a F  , ( 1 a)  

d Y /  d t =  X Y - b X Z -  Y +  G , ( l b )  

d Z / d t  = b X Y +  X Z -  Z ,  ( lc  ) 

where the parameter F represents the cross-latitude 
external-heating contrast, G the heating contrast be- 
tween oceans and continents, and a and b are pos- 
itive parameters ( a <  1 and b >  1 ). The variable X 
represents the westerly-wind current and also the 
poleward temperature gradient which is assumed to 
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be in permanent equilibrium with it, while the vari- 
ables Y and Z represent the cosine and sine phases 
of  a chain of  superposed eddies, which transport heat 
poleward and can be identified with Rossby waves 
[ 2 ]. In this model t represents the time, and a unit 
of time is equal to 5 days. 

In order to investigate the evolution of the system, 
we have done a numerical simulation using a stan- 
dard sixth-order Runge-Kutta integration routine, 
where the time increment was 0.01 ( 1.2 h). The pa- 
rameters were fixed as a =  ~, b=4 ,  G =  1 and F vary- 
ing in the interval [ 1, 8 ] as the control parameter. 
The solution describes a trajectory in the X, Y, Z 
space. The trajectory obtained after transients have 
died away constitutes the attractor, which is pro- 
jected in the (Y, Z)  plane. 

First, we examine the behavior of the stationary 
solutions and their linear stability. As fig. 1 shows, 
the system has one stable fixed point in the region 
F <  1.188 (labeled 1 ). At F =  1.188 a saddle-node bi- 
furcation occurs and two new fixed points are born: 
one unstable (labeled 2) and one stable (labeled 3 ). 
The initially stable focus 3 becomes unstable at 
F =  1.27 after a Hopf  bifurcation, and a limit cycle 
(the "weak" limit cycle) appears. In addition, at 
F=4.31 a reverse saddle-node bifurcation occurs 
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Fig. 1. Coordinate X o f  the fixed points as a function ofF.  In the 
regions F <  1.18 and F >  4.31 there is a single fixed point (a sink 
and a saddle, respectively), while in the region 1 . 1 8 < F <  1.27 
there are two sinks and one saddle and in the region 1.27 < F <  4.31 
there are one sink and two saddles. 

when points 1 (sink) and 2 (saddle) collide and dis- 
appear completely. After this crisis, a new periodic 
orbit appears (the "strong" limit cycle) as a con- 
sequence of global changes in the phase portrait [ 4 ]. 

The weak and the strong limit cycles are clearly 
different from each other (see figs. 2 and 3). The 
weak limit cycle has a smaller amplitude and a much 
shorter period than the strong limit cycle. Moreover, 
the convergence to the weak limit cycle is weaker, 
i.e., nearby points are attracted to it relatively slowly. 

Let us now investigate the evolution of these limit 
cycles. For the location of a periodic orbit, an ex- 
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Fig. 2. Weak limit cycle for (a) F = 6 . 0  (period T=  1.49); (b)  
F = 7 . 0  ( T = 2 . 8 ) .  
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Fig. 3. Strong limit cycle for F =  4.31 (period T=  56.27 ). 

tension of Newton's method of tangents [5 ] was 
used. Once we located a limit cycle, its stability was 
studied calculating the eigenvalue spectrum of the 
linearized Poincar6 map (Floquet matrix [4,6] ). 
These eigenvalues 21, ~,2, ,~.3 are the characteristic 
multipliers of  the limit cycle. The multiplier asso- 
ciated with a perturbation along the orbit is always 
unity (let this be 23), while the remaining two de- 
termine the stability of  the orbit. A periodic orbit is 
linearly stable if its multipliers are < l in modulus, 
and unstable if  at least one multiplier is > 1 in mod- 
ulus. Let us now describe briefly the results obtained. 

As we have said, the weak attractor (shown in fig. 
2 ) is born after a (supercritical) Hopfbifurcat ion of 
focus 3. The amplitude of the limit cycle smoothly 
increases while its period slowly decreases as the pa- 
rameter F is increased. This limit cycle undergoes a 
period-doubling bifurcation at F =  6.25 when one ei- 
genvalue traverses the unit circle in - 1 ,  and at 
F =  7.85 loses stability after a Hopf  bifurcation, where 
two complex conjugated eigenvalues simultaneously 
cross the unit circle at about -0.76_+ 0.61. 

Above F =  7.85, a strange attractor appears (illus- 
trated in fig. 4). We shall call this region the tur- 
bulent region. Hysteresis is exhibited near the Hopf  
bifurcation since the chaotic attractor is barely un- 
stable, i.e., close to the bifurcation point, trajectories 
originated near the weak limit cycle remain close to 
it, while trajectories originated far from it, evolve 
chaotically for a while before arriving near the pc- 
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Fig. 4. Projection of a part of a trajectory onto the plane (Y, Z)  
in the turbulent region ( F =  8.0). 

riodic orbit, where they converge rapidly. 
As was mentioned before, the strong limit cycle 

(shown in fig. 3) is born after the reverse saddle-node 
bifurcation of the stationary solutions 1 and 2. Con- 
trary to the weak limit cycle, the strong limit cycle 
displays remarkably complex dynamics. As F is var- 
ied, several periodic regimes appear ("windows of 
periodicity"). These windows are the domains of  
different strong limit cycles, and their appearance and 
disappearance follow the same sequence of events, 
which we will describe in detail. 

The first window begins when the strong limit cycle 
is born (we shall call this limit cycle cycle A). As F 
increases, the period of cycle A decreases continu- 
ously. At F =  4.48, a saddle-node bifurcation occurs 
and a stable (B) and unstable (C) pair of limit cycles 
appear. Figure 5 shows the coexistence of cycles A, 
B and C for F =  4.5. 

While cycle A is always stable and cycle C is al- 
ways unstable (the multipliers are 0 < 2 1 <  1 <22),  
cycle B is stable at the beginning but at F =  4.484 be- 
comes unstable (one eigenvalue crosses the unit cir- 
cle at - 1 and the multipliers are 2 ~ < - 1 < 22 < 0). 
As a consequence a period-doubling bifurcation oc- 
curs in which another limit cycle (cycle D)  of  twice 
the period appears. 

Increasing F, a reverse saddle-node bifurcation oc- 
curs when cycles A and C collide and disappear corn- 
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Fig. 5. Coexistence of cycles A, B and C for F =  4.5. 
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Fig. 6. Chaotic attractor for F=4.56.  

pletely (at F=4 .52 ) .  After this crisis, a new cycle is 
born (cycle E). 

We next follow the evolution of the limit cycles D 
and E. Cycle D quickly becomes unstable, when the 
biggest (in modulus) eigenvalue crosses the unit cir- 
cle in - 1 .  On the contrary, cycle E suffers a com- 
plicated cascade of bifurcations that lead to the cha- 
otic attractor shown in fig. 6. This attractor 
disappears at F=4.561 when a saddle-node bifur- 
cation occurs and two new limit cycles appear (cycles 
F and G).  

This is the beginning of a new window of peri- 
odicity. Limit cycle D regains its stability at 
F=4.5679 when the biggest (in modulus) eigen- 
value traverses the unit circle in - 1. Increasing F, 
one eigenvalue approaches the value + 1 until 
F =  4.5681 when the limit cycle collides with the un- 
stable cycle F. Above this value of F, the behavior is 
similar to the one studied before: the creation and 
annihilation of a stable and unstable pair of limit 
cycles. In addition, we observe the coexistence of two 
stable limit cycles in narrow regions of  the parameter 
F. Also, several sequences of period-doubling bifur- 
cations occur. Finally, this periodic window ends 
when the basic cycle loses stability. The system will 
then evolve toward the weak limit cycle, which is the 
only stable attractor that we found in this parameter 
region. 

The next window begins at F =  5.03, when another 
pair of strong limit cycles is born (cycles N, P). A 
subharmonic cascade arises as the initially stable 
cycle N becomes unstable at F =  5.062 due to the 
passage through - 1 of  one of the eigenvalues of  its 
Floquet matrix. These period-doubling bifurcations 
accumulate at a point at which chaotic nonperiodic 
motion occurs. Increasing F, the diagram of solu- 
tions becomes extremely complex. There are some 
narrow periodic windows appearing within the cha- 
otic regimes and in these periodic windows, period- 
doubling bifurcations are observed. This behavior is 
strongly reminiscent of  the behavior of the logistic 
map [7,8]. 

As F continues to increase, the system shows pe- 
riod-halving or reverse period-doubling bifurca- 
tions. This second cascade appears as a consequence 
of the limit cycle N regaining its stability at F =  5.342 
when one eigenvalue traverses the unit circle in - 1. 
A similar kind of process occurs when the basic limit 
cycle N again loses stability at F =  6.64 and regains 
it at F =  7.45. 

Finally, this periodic window ends at F =  7.5 when 
cycle N collides with an unstable limit cycle (Q) and 
both cycles disappear completely. This unstable limit 
cycle was born at F =  4.18 with a stable limit cycle 
(R).  Above this crisis, long chaotic transients ap- 
pear before the system reaches the "weak" limit cycle, 
and as was already mentioned, these chaotic tran- 
sients become stable in the turbulent region, after the 
weak limit cycle loses stability. In this region, the tra- 

188 



Volume 167, number  2 PHYSICS LETTERS A 13 July 1992 

jectories projected onto the ( Y, Z)  plane (see fig. 4) 
exhibit the irregular appearance of chaotic behavior. 
It is worthwhile to mention that the coordinates of 
the unstable fixed point of the flow (focus 3) in this 
region are approximately (F, 0, 0) and thus the 
strange attractor shown in fig. 4 is not close to the 
unstable fixed point. 

We observed that the strange attractor exists in a 
large interval of the parameter F. However, higher 
values of F give rise to simple periodic motions of 
small period again. The transition between these two 
motions and the behavior of the system for higher 
values of F will be discussed elsewhere. 

We now turn to study the dynamics in the tur- 
bulent region ( F =  8.0). In order to visualize the dy- 
namics in the turbulent region we pick the cross sec- 
tion ( (x, y, z ) / z =  0) and consider the Poincar6 map 
shown in fig. 7. Note that the irregular motion of fig. 
4 displays considerable structure when viewed in a 
Poincar6 map, and that it appears to be truly aper- 
iodic. Also, note the self-similarity (Cantor-set) 
structure of this map, characteristic of strange 
attractors. 

In order to arrive at a deeper understanding of the 
dynamics, we now turn to the calculation of the Lya- 
punov exponents and correlation dimension of the 
attractor. 

Lyapunov exponents provide the best quantitative 
measure of chaotic behavior by describing the mean 
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Fig. 7. Poincar~ map  of  the strange attractor of  fig. 4. 

rate of exponential divergence of initially neighbor- 
ing trajectories. We have calculated the complete 
Lyapunov spectrum using the method proposed by 
Wolf et al. [9 ]. The resulting Lyapunov exponents 
(0.23, 0, - 0 . 5 9 )  clearly indicate that the system's 
dynamics is chaotic (power spectrum also supports 
this conclusion). The reciprocal of the positive ex- 
ponent provides the characteristic time scale to prac- 
tical prediction (21 days). Also, note the hyperbolic 
nature of this attractor, with stronger convergence of 
trajectories in one direction than divergence in 
another. 

Strange attractors are typically characterized by a 
fractal dimension. The method proposed by Grass- 
berger and Procaccia [ 10] leads to the determina- 
tion of the correlation dimension D2 which is a lower 
bound of the Hausdorff dimension. The correlation 
dimension was calculated from the three-dimen- 
sional time series {Xi(t), YRt), Zi(t)} using 70000 
data points and a value of Dc=2.23 was found. 

It is worthwhile to mention that when G = 0  the 
system is symmetric under the transformation (X, Y, 
Z)--* (X, - Y, - Z )  and as a consequence we can re- 
write eqs. ( 1 ) as 

dx/d t= - m - a x  + aF , 

d m / d t = 2 m ( x -  1 ) ,  (2) 

where x = X  and m =  YE+Z2. The points (x=F, 
m = 0) and (x =  l, m = a ( F -  1 ) ) are the fixed points 
of the system. The first point (that is stable if F <  1 ) 
corresponds to the steady state solution X=F, 
Y = Z = 0 ,  while the second point (that exists and is 
stable if F >  1 ) corresponds to the weak limit cycle 
X= 1, Y 2 + Z E = a ( F -  1). Thus, in the symmetric 
case only the weak attractor exist and the richness of 
attractors and complex behavior discussed above 
does not exist, i.e., the asymmetry between the oceans 
and the continents plays a fundamental role in the 
dynamics of the atmosphere. 

In summary, we have performed a detailed inves- 
tigation of the chaotic phenomena in the new Lorenz 
systems. We have found period-doubling bifurca- 
tions to chaos, crisis, reverse period doubling, peri- 
odic windows, hysteresis and coexistence of periodic 
attractors. Finally, the chaotic behavior was dis- 
cussed with the aid of Poincar6-section, Lyapunov 
spectrum and correlation dimension analysis. 
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