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Transient low-frequency fluctuations in semiconductor lasers with optical feedback
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Time-delayed systems often exhibit multistability of coexisting attractors, which can result in long chaotic
transients on the way to one of the coexisting states. Strong enough noise can transform this transient chaos into
noise-sustained dynamics. Here we study the interplay between delay-induced multistability, chaotic transients,
and noise, in the case of a semiconductor laser with optical feedback from an external reflector. The time-delayed
feedback renders the laser multistable, with a set of coexisting fixed points, and induces dynamical events called
low-frequency fluctuations (LFFs), consisting of sudden intensity dropouts at irregular times. The deterministic
Lang-Kobayashi model shows that, for a large range of realistic laser parameters, the LFFs are just a transient
dynamics toward a stable fixed point. Here we analyze the statistical properties of the transient LFF dynamics
and investigate the influence of various parameters. We find that realistic values of the noise strength do not
affect the average transient time or its distribution, provided the model includes an explicit delay. On the other
hand, nonlinear gain saturation has a strong effect: it increases both the duration of the LFF transients and the
probability of noise-induced escapes from the stable fixed point. Our results suggest that the LFFs observed
experimentally can be, at least in part, sustained by the interplay of noise and various nonlinear effects, which
are phenomenologically represented by a gain saturation coefficient.
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I. INTRODUCTION

Certain nonlinear dynamical systems exhibit transient
chaotic trajectories while on their way to a stable (usually
nonchaotic) attractor [1]. These chaotic transients result from
the existence of nonattracting chaotic invariant sets in the phase
space of the system [2]. In low-dimensional dynamical sys-
tems, the nonattracting chaotic sets are necessarily low dimen-
sional, and the average duration (and in general the statistics)
of chaotic transients can be expected to be affected by noise
and by the system parameters. On the other hand, when the
nonattracting chaotic set is high dimensional (what happens,
for instance, in systems with delay), it is not clear whether
the sensitivity to noise and system parameters is maintained,
or whether the set dimension takes over and dominates the
transient dynamics of the system completely. In this article we
address this question in a delayed system of special technolog-
ical importance, namely in a semiconductor laser with delayed
feedback.

In many applications of semiconductor lasers, the device
is subject to optical feedback from an external reflector.
This feedback can either optimize the laser performance
(by lowering its threshold and reducing the intensity noise)
or it can be detrimental, inducing multistability and chaos
[3,4]. A well-known optical feedback-induced instability is
the so-called low-frequency-fluctuation (LFF) regime, which
occurs when the laser operates close to its solitary threshold
and is affected by a moderately strong optical feedback. In
this regime, the laser intensity displays erratic dropouts in
the emitted light intensity, which are actually the envelope of
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fast picosecond pulses [5,6], followed by a gradual recovery
process. Many studies in the literature have tried to address
the question of whether the initiation of LFF dropouts
and the subsequent recovery are deterministic or stochastic
processes.

A well-known feature of the LFF dynamics is that, as the
bias current is increased, the average time interval between
consecutive dropouts decreases and the dropouts become
increasingly frequent and begin to merge [7]. Through this
gradual transition, the laser output becomes increasingly
irregular with increasing bias current. For large enough bias
current no dropouts are observed but rather a completely
irregular intensity time trace, a regime which has been termed
fully developed coherence collapse. Another feature of the
LFF regime is that, in a wide range of parameters, it coexists
with stable emission [8], with the relative duration of the
stable emission state (in comparison with the duration of
the LFF state) depending strongly on the bias current, the
feedback strength, and the phase-amplitude coupling factor
(α factor) [9,10]. The LFF dynamics also presents very
interesting characteristics from the stochastic point of view,
because it renders the laser an excitable system, and thus
provides a controllable setup to investigate noise-induced phe-
nomena such as coherence resonance [11–13] and stochastic
resonance [14,15].

A well-known and widely employed model to study the
LFF dynamics is the Lang-Kobayashi (LK) model [16], which
assumes as main simplifications single-mode emission and
a single reflection in the external cavity. The LK model is
a set of delay-differential equations with a rich variety of
dynamics. Depending on the feedback parameters there is
multistability of steady state (fixed-point) solutions, which are
known as external cavity modes (ECMs). These fixed points
are stable focus, saddle points, or unstable focus, the saddle
points usually being referred to as antimodes [17]. Within
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the framework of the LK model, the LFF dynamics has been
interpreted as due to chaotic itinerancy with a drift [18], an
effect also known as the “Sisyphus effect” [19]: the trajectory
tends to move toward the ECM with the maximum gain, which
is a stable focus; however, this mode is located in the phase
space in a region close to the antimodes, and a “collision”
with one of them expels the trajectory toward the solitary
laser steady state, triggering an intensity dropout. The resulting
chaotic dynamics can be strongly high dimensional for realistic
parameters [20]. Alternatively, experimental data on the
statistics of the time intervals between power dropouts are
consistent with the assumption that noise triggers the dropouts
and that after a dropout the laser recovers in a deterministic
fashion [21,22].

Despite the fact that the LFF dynamics has been extensively
studied within the framework of the LK model, few studies
have addressed the issue that this dynamics is actually a
transient regime for a wide range of realistic laser parameters
[23–25]: simulations of the noise-free LK model show that
the power dropouts vanish once the trajectory reaches the
basin of attraction of a stable ECM. At that point, ejecting
the trajectory away from the stable ECM (so the LFF can
restart) requires the presence of a certain amount of noise. A
key parameter that increases the duration of the LFF transient is
the phase-amplitude coupling factor [25]. When a value of α ∼
5–6 is used, simulations of the LK model predict stationary
LFFs (in the sense that the dropouts last for time intervals
longer than 10–100 ms); however, if a value of α ∼ 2.5–3.5 is
used, which is realistic for currently available diode lasers, the
simulations predict that the dropouts will die out after 1–10 ms.
This is in good agreement with earlier observations by Heil
et al. [10], who found that stable emission was more probable
when decreasing the linewidth enhancement factor, so that for
α ∼ 1 robust stable emission was observed over a very wide
parameter range.

The aim of this article is to characterize the statistical
features of the transient LFF dropouts and the influence on
these statistics of the high dimensionality of the underlying
nonattracting chaotic set. With this aim, we simulate the laser
turn on by choosing random initial conditions in the vicinity
of the solitary laser steady state and integrate numerically
the resulting trajectory. The LFF lifetime, TLFF, is defined as
the time taken by the intensity fluctuations to decrease below
a chosen threshold, which occurs when the trajectory falls
into the basin of attraction of one of the stable ECMs. We
find that typical noise levels do not significantly affect the
average transient time nor its probability distribution function
(PDF): both the deterministic model, with no noise source
included in the rate equations, and the stochastic model, with
typical values of the spontaneous emission noise strength,
predict similar 〈TLFF〉 and PDF. Strong enough noise, however,
induces escapes from the stable ECM, leading the laser output
to display coexistence of LFFs and stable emission, similar to
experimental observations [8].

We also show that the nonlinear gain saturation coefficient,
ε, which is included phenomenologically in the LK model to
represent a variety of saturation mechanisms such as carrier
heating, carrier diffusion, and spatial hole burning, is a key
parameter in determining the duration of the LFF transient:
when increasing ε both the average transient time 〈TLFF〉

and the probability of noise-induced escapes from the stable
ECM increase. Therefore, our results suggest that the LFFs
observed experimentally can be, at least in part, sustained by
the interplay of noise and the various nonlinear effects which
are phenomenologically represented by the gain saturation
coefficient.

Some characteristics of the LFF dynamics, in particular, the
statistical properties of time intervals between power dropouts,
can be explained by a rate-equation model proposed by Eguia,
Mindlin, and Giudici (EMG model) [26], which supports the
scenario that the laser behaves as an excitable system and
that the LFFs are induced by noise. The dependence of the
shape of the PDF of inter-dropout intervals on the pump
current or the feedback strength was shown to be equivalent
to variations produced by the two parameters of the EMG
model [27]. Moreover, in [28] the periodic “spike” patterns
generated experimentally under external periodic forcing were
compared with the solutions of the EGM model, and it was
shown that the topological organization of the experimentally
observed periodic orbits was equivalent, in the parameter
region explored, to the one displayed by the model solutions.
The limits of the excitable LFF behavior, and thus the region of
validity of the EMG model, were studied in [29], where it was
shown that excitability deteriorates in the parameter region
where there is a high probability of stable emission; in this
region of “coexistence” the laser dynamics can be separated
into stable and bursting states.

The EMG model is low dimensional, and thus it offers a
good control to test the influence of the delay-induced high di-
mensionality of the LK model on the statistics of the LFF tran-
sient time. Thus in this article we also investigate the transient
dynamics predicted by the EMG model with parameters in the
excitable region. We show that by choosing appropriate initial
conditions, a qualitatively good agreement is found with the
features of the transient dynamics predicted by the LK model.
However, in this case noise does affect the shape of the PDF
of LFF transient times, which indicates the importance of the
high dimensionality of the nonattracting chaotic set of the LK
model in determining the transient time statistics. The article
is organized as follows: Section II describes the LK model
and discusses the initial conditions chosen for the simulations.
Sections III–VI present the numerical results and discuss the
statistical features of the LFF transient lifetime in terms of var-
ious parameters. Section VII presents the results of the control
simulation of the low-dimensional EMG model. Finally, Sec-
tion VIII contains a summary of results and the conclusions.

II. MODELING FRAMEWORK

We first describe the dynamics of a single-mode semicon-
ductor laser with optical feedback by means of the well-known
Lang-Kobayashi (LK) delay-differential rate equations for the
slowly varying complex amplitude of the electric field, E, and
the carrier density, N [16]:

dE

dt
= k(1 + iα)[G(E,N) − 1]E + κfbE(t − τ )e−iω0τ

+
√

Dξ (t), (1)

dN

dt
= γN [J − N − G(E,N)|E|2], (2)
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where k is the field decay rate, α is the linewidth enhancement
factor, and G is the optical gain, given by G(E,N) = N/(1 +
ε|E|2), with ε being the gain saturation coefficient. γN is the
carrier decay rate and J is the injection current parameter
(normalized such that the solitary threshold current is Jth = 1
if ε = 0). The feedback term is characterized by its strength κfb,
its associated delay time τ , and the feedback phase ω0τ . ξ (t)
is an uncorrelated complex Gaussian white noise representing
spontaneous emission fluctuations of strength D.

To integrate the model rate equations, Eqs. (1) and (2),
we have to specify the initial conditions, which we choose to
correspond to the steady state of the solitary laser plus a small
random term:

E(t) = Ese
iφ0 + ηξ (t), −τ � t � 0, (3)

N (0) = Ns + ρζ, (4)

where Es and Ns are the stationary solutions of the system,
which correspond, for a normalized injection current J below
the solitary laser threshold, to the off state, Es = 0 and Ns = J ,
whereas if J > Jth they correspond to the ECMs. Defining
E(t) = Ese

i(ωs−ω0)t and N (t) = Ns , then the values of Es , ωs ,
and Ns are determined by

ωsτ = ω0τ − κfbτ
√

1 + α2 sin(ωsτ + tan−1 α), (5)

Ns = 1 − (κfb/k) cos (ωsτ )

(1 + ε)
+ Jε

1 + ε
, (6)

|Es |2 = J − Ns

Ns − (J − Ns)ε
. (7)

Alternatively, one could always choose as initial condition the
off state of the laser, regardless of the value of the injection
current. As discussed later, we find that the results are robust
with respect to the specific choice of the initial condition.
Unless otherwise explicitly stated, we integrated the LK model
with the parameter values given in Table I, using the stochastic
Heun method with an integration time step of 0.8 ps. The
simulations were verified using smaller integration steps and
the Euler integration method, with which we obtained similar
results.

TABLE I. Typical parameter values of the LK model described
by Eqs. (1) and (2).

Description Symbol Value

Linewidth enhancement factor α 3
Field decay rate k 300 ns−1

Feedback strength κfb 30 ns−1

External round-trip time τ 6.667 ns
Feedback phase ω0τ 0 rad
Carrier population decay rate γN 1 ns−1

Normalized injection current J 1.02
Gain saturation coefficient ε 0
Spontaneous emission noise strength D 10−4 ns−1

Noise intensity (field initial condition) η 10−3

Noise intensity (carriers initial condition) ρ 10−3

III. TRANSIENT TIME DISTRIBUTION

As discussed in Sec. I, simulations of the LK model
show that, close to the solitary laser threshold and with
moderately strong optical feedback, the laser intensity displays
fast picosecond pulses, which when subjected to a low-pass
filter (as occurs in experiments, where photodetectors have
a limiting bandwidth) transform into a collection of sudden
dropouts, characteristic of the LFF dynamics, as shown in
Fig. 1(a). All through this section a filter with a cutoff
frequency of 120 MHz is applied to the intensity time trace,
given by |E(t)|2.

With initial conditions such that the laser is emitting on the
stable state without feedback, at t = 0 the optical feedback is
turned on. As a result the laser begins to experience intensity
dropouts during a certain time interval 0 < t < TLFF, as shown
in Fig. 1(a). For t � TLFF the laser output is stable, since
the trajectory falls into the basin of attraction of one of the
stable ECMs [fixed points given by Eqs. (5)–(7)], and remains
trapped there provided the noise strength is not too large.

The lifetime of the transient LFF dynamics, TLFF, is defined
as the time interval during which the intensity fluctuations,
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FIG. 1. (Color online) (a) Filtered intensity time trace obtained by
integrating the LK model with parameters given by Table I. Typical
LFF dropouts can be observed. The red arrow defines the transient
time, TLFF, which in this case is about 7.77 µs. (b) Probability
distribution function (PDF) of the transient time TLFF calculated from
30 000 realizations of the stochastic initial condition. Inset: PDF with
vertical logarithmic scale to show the exponential tails with noise
(solid line) and without noise (dashed line, red online). (c) Intensity
time traces corresponding to the two maxima of the PDF shown in
panel (b).
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measured as the standard deviation calculated in a time
window, �T , are above a certain threshold, chosen here
to be 2% of the average intensity. To make sure that the
system has reached an asymptotic behavior (in the vicinity
of a fixed point), we use a time window of �T = 1800 ns,
much larger than the characteristic time scale of the fast
intensity pulsations. The total integration time is of the order
of 10–100 ms, which thus correspond to the longest transient
times that we can compute.

The duration of the LFF transient depends on the specific
realization of the random initial condition and can strongly
deviate from its mean value. Figure 1(b) displays the (PDF)
of the transient time TLFF. The shape of this distribution can
be understood as follows: the system has a zero probability
of finding a stable ECM in a very short transient time TLFF,
due to the finite amount of time it takes to go from the
initial condition (near the solitary laser’s steady state) to
the phase space region where the stable ECMs are located.
The largest peak in the PDF corresponds to this single-rise
travel time, which we refer to as T1 (typically, T1 < 1 µs
depending on parameters). We show this trajectory in the
top trace of Fig. 1(c). Note that there is a large probability
that the system finds a stable ECM the first time it is in the
region of the phase space where the stable ECMs are located.
The secondary maximum of the PDF (T2) corresponds to
trajectories in which the system finds a stable ECM during
its second visit to the area near it. In this case the transient
dynamics contains one dropout, as shown in the bottom trace of
Fig. 1(c).

In between T1 and T2 the system has a small probability
of finding a stable ECM because it is in another region of the
phase space (i.e., in the recovery process after the dropout).
For larger values of TLFF the PDF decays exponentially, as
is expected in chaotic transients [1]. The inset of Fig. 1(b)
plots the PDF in both the presence and absence of noise.
The two distributions overlap, which suggests that the average
transient time, 〈TLFF〉, is not affected by noise. We verify this
fact in Fig. 2(a), which shows the average duration of the
transition from LFFs to a stable output as a function of the
noise strength, D, for different values of the injection current
and feedback strength. In all cases the average transient time is
not significantly affected by noise and is approximately equal
to that of the noise-free case.

Later in this article it is shown that the TLFF distribution
strongly depends on the other laser parameters α and ε, besides
J ; therefore, it could be expected that for different values of
these parameters the TLFF distribution is not so insensitive to
noise. To check this point we performed extensive simulations
for other values of α and ε, and we present in Figs. 2(b) and 2(c)
two examples of the results. Again, it can be observed that the
average duration of the transient time does not significantly
change with noise strength. Therefore, at least in the parameter
region explored, we can conclude that the duration of the
transient dynamics is not qualitatively affected by random
fluctuations. It is important to remark that we have limited
ourselves to explore the parameter region where the average
transient time is not too long; for larger values of J , α, or τ

the simulations require too long and unpractical computational
times. Therefore, we cannot exclude that for larger values of
J , α, or τ the noise has an effect on the transient time.
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FIG. 2. (Color online) Transient time (dots) and average transient
time 〈TLFF〉 (solid lines) for 300 realizations of the stochastic initial
conditions as a function of the noise intensity for different values of
the injection current and the feedback strength. (a) ε = 0.0, α = 3,
and, additionally, from top to bottom: J = 1.02, κfb = 15 ns−1 (blue);
J = 1.02, κfb = 30 ns−1 (black) J = 0.98, κfb = 30 ns−1 (red).
(b) ε = 0.06, α = 3, J = 1.02, κfb = 30 ns−1. (c) ε = 0.1, α = 2.6,
J = 1.02, κfb = 30 ns−1. Other parameters are as in Table I.

IV. EFFECT OF THE LASER PARAMETERS

To investigate how the LFF lifetime depends on the param-
eters of the system, we computed the average transient time,
〈TLFF〉, for varying values of different parameters, classified in
terms of laser parameters (this section) and optical feedback
parameters (next section). An interesting effect is provided
by the gain saturation coefficient, ε. When increasing ε in a
realistic range the average transient time 〈TLFF〉 increases three
orders of magnitude, as shown in Fig. 3(a). In fact, nonlinear
gain saturation acts as a coupling between the field and the
phase in a way similar to the linewidth enhancement factor, α,
whose effect is displayed in Fig. 3(b).

Recently, Torcini et al. [25] analyzed the relationship
between the stability of the ECMs and the length of the LFF
transient and derived an analytical expression for estimating
the transient time in relation to the eigenvalues of the stable
ECMs. In the specific range of parameters examined in [25],
J < Jth and α < 4, a periodic variation of 〈TLFF〉 with α

was found [see the inset in Fig. 3(b)], which was well
understood in terms of the analytical expression derived.
However, the agreement worsens for bias currents above the
solitary threshold, which is the parameter range examined here.

The influence of the injection current parameter, J , is
displayed in Fig. 3(c), which shows that the transient time
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FIG. 3. (Color online) Transient time (dots) and average transient
time 〈TLFF〉 (red circles) for 100 random realizations of the initial
conditions, as a function of (a) the gain saturation coefficient with
α = 3 and J = 1.02, (b) the linewidth enhancement factor with J =
1.02 and ε = 0, and (c) the injection current with α = 3 and ε = 0.
In the inset in panel (b), we show results for the same parameters
as in [25]. Other parameters are κfb = 30 ns−1, τ = 6.667 ns, and
D = 10−4 ns−1.

〈TLFF〉 also increases with J . Our results are consistent with
those in [25], where it was shown that the transient time
increases with both α and J . These figures also show the
existence of a minimum transient time, as discussed previously
in relation to Fig. 1(b).

V. EFFECT OF THE OPTICAL FEEDBACK PARAMETERS

The influence of the delay time τ is depicted in Fig. 4(a). For
small delays the dynamics is not chaotic and all realizations
of the stochastic initial conditions lead to almost the same
transient time. As we increase τ , the average transient time
〈TLFF〉 increases nearly exponentially up to the maximum delay
studied. This is due to a nearly exponential increase of the
average number of dropouts during the transient, while the
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FIG. 4. (Color online) Transient time (dots) and average transient
time 〈TLFF〉 (circles, red online) for 100 stochastic realizations of
the initial conditions, as a function of (a) delay time with κfb =
30 ns−1 and ω0τ = 0, (b) the feedback strength with τ = 6.667 ns
and ω0τ = 0, and (c) the feedback phase with τ = 6.667 ns and
κfb = 30 ns−1. Other parameters are ε = 0, α = 3, J = 1.02, and
D = 10−4 ns−1.

mean time interval between dropouts increases monotonically
with the delay [7,30].

For increasing feedback strength, κfb, the duration 〈TLFF〉 of
the transient decreases, as depicted in Fig. 4(b). Although the
parameter region is different, it is interesting to compare this
result with those of [24], where the authors show that for low
feedback levels, that is, for a small number of ECMs, sustained
and transient dynamics alternate for increasing κfb.

Another delay parameter is the feedback phase, ω0τ . By
increasing ω0τ , pairs of modes and anti-modes are created far
from the chaotic attractor, and they are destructed in the region
of phase space where the stable ECMs are. Varying ω0τ also
changes the stability of the ECMs with a periodicity of 2π .
Then it could be expected that at least one of the ECMs collides
with the chaotic attractor and it may be reflected in 〈TLFF〉 with
the same periodicity. Figure 4(c) shows that varying ω0τ does
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J. ZAMORA-MUNT, C. MASOLLER, AND J. GARCÍA-OJALVO PHYSICAL REVIEW A 81, 033820 (2010)

 0

 0.05

 0.1

 0.15

 0  200  400  600  800  1000

|E
|2 (a

rb
. u

ni
ts

)

(a)

 0.05

 0.1

 0.15

 0  200  400  600  800  1000|E
|2 (a

rb
. u

ni
ts

)

Time (µs)

(b)

FIG. 5. (a) Intensity time trace for relatively large noise strength
(ε = 0, D = 10−2 ns−1). (b) Same as in panel (a) with ε = 0.05.

not change the average transient time in a significant way. This
result indicates that the stabilities of the LFF dynamics and of
the ECMs are not directly related, at least for the parameter
values examined here, for which there are global trajectories
in phase space.

VI. COMBINED EFFECT OF LARGE NOISE
AND GAIN SATURATION

Even after the laser has settled around the stable ECM once
the chaotic transient has finished, strong enough noise can lead
the trajectory to eventually escape and display another set of
LFF dropouts, as shown in Fig. 5(a). The ensuing transient LFF
regime is similar to the one studied previously, in which the
laser was off at t = 0, when the feedback was turned on. These
two situations only differ in the choice of initial conditions,
which as discussed previously lead to the same distribution of
LFF durations. Noise-induced escape of the basin of attraction
of the stable ECMs was studied in [25] for large enough noise
and interpreted in terms of the Kramers rate. This provides the
system with two time scales that can be tuned separately and
could lead to resonant effects such as stochastic or coherent
resonance. One of these time scales (the excursion duration)
is deterministic, as shown in Fig. 2, and the other one (the
escape time) is stochastic, as shown in [25]. Finally, we note
that, if nonlinear gain saturation is included in the simulations,
the probability of noise-induced escape away from the stable
ECMs substantially increases, as shown in Fig. 5(b).

VII. TRANSIENTS IN A LOW-DIMENSIONAL
PHENOMENOLOGICAL MODEL

Eguia, Mindlin, and Giudici proposed a phenomenological
model (EMG model) that describes the dynamics of the time-
averaged laser intensity, that is, not the fast picosecond pulses
but the slower dropouts [26]. The model is defined by the
following set of ordinary differential equations:

dx

dt
= y +

√
dξ (t), (8)

dy

dt
= x − y − x3 + xy + ε1 + ε2x

2, (9)

where ε1 and ε2 are two control parameters, d is the noise
strength, and ξ (t) is a Gaussian white noise.
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FIG. 6. (Color online) (a) Phase space portrait of the EMG model.
For the parameters chosen the system is in an excitable regime,
exhibiting a stable node (green circle), a saddle point (yellow full
square), and a repeller (blue open square). The background color
represents the transient time of a trajectory starting at that point in
phase space in the absence of noise. The white dashed line represents
the stable manifold of the saddle point, and the red solid line shows
a typical trajectory with noise. (b) Time trace of the EMG model
corresponding to the red trajectory shown in plot (a), for the variable
−x(t). The minus sign is chosen to compare with Fig. 1(a). Noise
intensity is d = 2 × 10−3, and the deterministic parameters of the
model are ε1 = 0.25 and ε2 = 0.4.

We chose a parameter for which the model operates in an
excitable regime, with three fixed points (xs ,ys) with ys =
0 and xs being a solution of the third order equation x −
x3 + ε1 + ε2x

2 = 0. The three fixed points are a stable focus,
a saddle point, and an unstable focus (repeller), shown as
symbols in Fig. 6(a). In a previous work, Yacomotti et al. [27]
associated the parameter ε1 with the bias current and ε2 with
the feedback strength. Exploiting this similarity we chose the
initial conditions as similar as possible to the ones described
in the previous sections. Specifically, we chose random initial
conditions for ε2 = 0 inside the region limited by the stable
manifold of the saddle point and the repeller:

x(t = 0) = x0 + rξ, (10)

y(t = 0) = y0 + rζ, (11)

where x0 = 0.4, y0 = 0, and r = 0.25. ξ and ζ are uncorrelated
Gaussian random numbers. We integrated the EMG model
using the stochastic Heun method with an integration time
step of 8 × 10−3 arbitrary units. Some characteristics of the
LFF dynamics can be satisfactorily reproduced by the EMG
model. In particular, the transient regime can be reproduced
approximately, as shown in Fig. 6(b). The distribution of
transient times obtained in this case is plotted in Fig. 7 and
shows a qualitative agreement with the results found in the
aforementioned LK model. In this case, however, noise does
play an important role, changing qualitatively the shape of
the distribution for large transient times, as shown in the
inset of Fig. 7. In order to understand how this distribution
function arises and why noise plays a more important role
in this case, we have examined the dependence of the
transient time on the initial conditions for the deterministic

033820-6



TRANSIENT LOW-FREQUENCY FLUCTUATIONS IN . . . PHYSICAL REVIEW A 81, 033820 (2010)

0 20 40 60 80
0

0.01

0.02

Time (arb. units)

P
D

F

0 10 20 30 40 50
10

−4

10
−2

FIG. 7. (Color online) Probability distribution function for the
transient time for the EMG model. Parameters are as in Fig. 6. Inset:
the same plot with vertical logarithmic scale with noise (solid line)
and without noise (red dashed line).

model. This dependence is shown in color coding in Fig. 6(a).
The results presented in this figure reveal that the initial
conditions leading to a given transient time have a well-defined
structure in phase space, with the transient time being larger
the closer the initial conditions are to the stable manifold of
the saddle (white dashed line in the figure). In that case, a
substantial slowdown is experienced by the trajectory as it
passes nearby the saddle, leading to the exponential time in
the transient time distribution. Noise seems to increase the
probability that trajectories encounter this area of phase space,
thus increasing the fraction of large transient times. Thus, in
this region, the transient time depends strongly on the noise
fluctuations, and unlike in the LK model [Fig. 1(b)], long
transient times are induced by noise.

VIII. CONCLUSIONS

We have studied numerically the transient LFF dynamics
of a semiconductor laser with optical feedback using the
well-known LK model. We defined the transient time as the
time taken by the intensity fluctuations to decrease below
a chosen threshold, which occurs when the system leaves
the chaotic LFF attractor and falls into one of the stable
fixed points (the so-called ECMs). The PDF of the transient
time has an exponential tail that is characteristic of chaotic
transients, and there is a minimum transient time due to the
finite amount of time needed to go from the fixed point of
the solitary laser to one of the stable ECMs of the laser with
feedback.

We found that in the LK model noise does not significantly
affect the average transient time or its distribution for realistic
parameter values. This demonstrates that the transient LFF
is mainly a deterministic phenomenon, its duration being
determined by the various model parameters that affect the
time needed to go from the fixed point of the solitary laser
to a stable ECM. We have also shown that sufficiently large
values of the noise strength can induce escapes from the
stable ECM, leading to regimes of power dropouts alternating
with intervals of stable steady-state emission. This behavior
provides evidence that transient LFFs are excitable due to the
effect of noise.

We presented an in-depth analysis of the statistical proper-
ties of this transient dynamics and investigated the influence of
different parameters. Our results show that the nonlinear gain
saturation coefficient, which represents various gain saturation
effects, plays a key role in determining the duration of the LFF
lifetime: a small variation of the saturation coefficient results
in a drastic increase of the duration of the LFF transient.
Nonlinear gain saturation also increases the probability of
noise-induced escapes, and therefore, our results suggest that
the LFFs observed in experiments can be, at least in part,
sustained by various nonlinear light-matter interactions in the
laser active medium.

Finally, we have compared the behavior of the delay-
differential LK model with that of a phenomenological
ordinary differential equation (ODE) model [26] operating in
the excitable regime and with appropriate initial conditions.
This comparison shows that noise plays an important role in
the transient dynamics when the dimensionality of the system
is low, but not when it is large (due to the explicit delay in the
LK model). It would be interesting to investigate whether this
type of behavior also occurs in other high-dimensional chaotic
systems.
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