
PHYSICAL REVIEW A 82, 013819 (2010)

Quantifying the statistical complexity of low-frequency fluctuations in semiconductor lasers
with optical feedback
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Low-frequency fluctuations (LFFs) represent a dynamical instability that occurs in semiconductor lasers when
they are operated near the lasing threshold and subject to moderate optical feedback. LFFs consist of sudden
power dropouts followed by gradual, stepwise recoveries. We analyze experimental time series of intensity
dropouts and quantify the complexity of the underlying dynamics employing two tools from information theory,
namely, Shannon’s entropy and the Martı́n, Plastino, and Rosso statistical complexity measure. These measures
are computed using a method based on ordinal patterns, by which the relative length and ordering of consecutive
interdropout intervals (i.e., the time intervals between consecutive intensity dropouts) are analyzed, disregarding
the precise timing of the dropouts and the absolute durations of the interdropout intervals. We show that this
methodology is suitable for quantifying subtle characteristics of the LFFs, and in particular the transition to fully
developed chaos that takes place when the laser’s pump current is increased. Our method shows that the statistical
complexity of the laser does not increase continuously with the pump current, but levels off before reaching the
coherence collapse regime. This behavior coincides with that of the first- and second-order correlations of
the interdropout intervals, suggesting that these correlations, and not the chaotic behavior, are what determine
the level of complexity of the laser’s dynamics. These results hold for two different dynamical regimes, namely,
sustained LFFs and coexistence between LFFs and steady-state emission.
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I. INTRODUCTION

Optical feedback effects in semiconductor lasers have been
extensively investigated over the past two decades. They
are relevant not only for practical applications in which the
laser is subjected to feedback from an external reflector, but
are also very interesting from a nonlinear dynamics point
of view, as optical feedback can induce a rich variety of
dynamical regimes, including multistability, excitability, and
high-dimensional chaos. Many studies of these dynamical
regimes exist, but no systematic quantification of the level of
statistical complexity exhibited by these systems, in particular
in the regime of chaotic dynamics, exists so far.

A well-known feedback-induced instability is the regime of
low-frequency fluctuations (LFFs), which occur for moderate
feedback and near the lasing threshold. The LFFs consist in
sudden power dropouts arising at irregular times, followed
by gradual, stepwise recoveries. The power dropouts are
known to be actually a slow modulation of fast picosecond
pulses [1,2]. A characteristic feature of LFFs is that, as the
laser bias current increases, the average time interval between
consecutive dropouts decreases, and the dropouts become
increasingly frequent and begin to merge [3]. Thus, there is

*jordi.tiana@upc.edu
†carme.torrent@upc.edu
‡oarosso@fibertel.com.ar
§cristina.masoller@upc.edu
‖jordi.g.ojalvo@upc.edu

a gradual transition through which the output power becomes
increasingly irregular with increasing bias current. For large-
enough bias current no dropouts are observed, but rather a
completely irregular intensity time trace arises, a regime which
has been termed fully developed coherence collapse.

Another characteristic of the LFF regime is that, in a wide
region of parameters, it coexists with stable emission, with
the relative duration of the stable emission state and the LFF
state depending on the bias current, the feedback strength,
and the phase-amplitude coupling factor (α factor) [3–6]. The
coexistence of LFFs and stable emission has raised the issue
of whether the LFFs are a transient dynamics which turns into
a sustained one due to the presence of noise. Several studies
have focused on characterizing deterministic chaotic features
of the dropouts [7,8], as well as stochastic properties [9]. It
has been shown [10–13] that the α factor strongly influences
the operation regime of the laser. For small α, the LFFs are
transient for all levels of optical feedback, after which the laser
settles into a stable operation mode; for intermediate values
of α, the regime of sustained LFFs alternates with “windows”
of transient LFFs; for large α, the laser operates in sustained
LFFs [10,11].

In spite of the vast amount of research done on the LFF
instability, the statistical complexity of this dynamical regime
has, to the best of our knowledge, not been investigated
so far. Here we address this issue from the perspective of
information theory, which allows us to quantify the com-
plexity of the LFF regime as it approaches fully developed
coherence collapse, for increasing intensity of the laser’s pump
current.
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Most systems in nature are neither completely ordered nor
completely disordered, but something in between. Within the
framework of information theory, the statistical complexity
of a system is zero in the extreme situations of complete
knowledge (or “perfect order”) and total ignorance (or
“complete randomness”). Both are simple situations, as one
is fully predictable and the other has a simple statistical
description. In order to capture the diversity and the rich
spectrum of unpredictability occurring between these two
extreme situations, many statistical complexity measures have
been proposed in the literature [14–23]. These are useful
tools for analyzing high-dimensional dynamics presenting
underlying, hidden, or unobserved states that might organize
the system’s behavior. Statistical complexity measures are
particularly useful when there is no prior knowledge of the
hidden dynamics. They have been used, for instance, to
characterize spatiotemporal patterns [24], distinguish noise
from chaos [25], and identify a transition from a healthy to a
diseased state in the brain [26].

The LFF power dropouts, being a slow modulation of
fast high-dimensional pulses, are a potentially interesting
dynamical regime to be analyzed with complexity tools.
Here, following Refs. [22,25], we employ the Martı́n,
Plastino, and Rosso (MPR) statistical complexity measure
C[P ], defined as a functional of the probability distribu-
tion function P that characterizes the state of the system.
C[P ] is the product of the “disequilibrium,” Q[P ], which
measures the distance to the equilibrium state, and the
normalized Shannon entropy, H [P ]. Defined in this way,
C[P ] can be expected to display a maximum somewhere
between H = 0 (complete order) and H = 1 (complete
disorder).

A crucial step for obtaining meaningful results is to define
a probability distribution P that fully characterizes the system,
that is, that captures the organization of the hidden fast dynam-
ics underlying the LFF dropouts. While one could just define
P in terms of the distribution of either intensity fluctuations
or interdropout intervals, this would result in neglecting time
correlations that may exist between consecutive dropouts. An
alternative methodology, originally proposed by Bandt and
Pompe (BP) [21], is based on “ordinal patterns” and makes it
possible to define a probability distribution function that takes
into account the time ordering of the dropouts. Even though
this method ignores the precise timing of the dropouts and the
absolute duration of the interdropout intervals, it reveals, as we
show in what follows, interesting features in the transition from
LFFs to fully developed coherence collapse (such as enhanced
complexity accompanied by a decrease of the entropy).

This article is organized as follows: Section II describes
the experimental setup and presents the quantification of
the transition from LFFs to coherence collapse, in terms of
two indicators that are commonly used in the literature: the
average interdropout interval and the normalized standard
deviation of the interdropout intervals. Section III presents
the results of the analysis of the experimental time series
using the BP method. We show that during the transition to
coherence collapse, there is a region of enhanced complex-
ity, accompanied by a decrease of the normalized entropy.
Section IV contains a discussion of the results and the
conclusions.

II. EXPERIMENTS

We consider a laser diode subject to optical feedback from
an external cavity. The laser used in the experiment is an
Al-Ga-In-P Fabry-Perot semiconductor laser (GHO6510B2A)
operating at a nominal wavelength λn = 650 nm. The tem-
perature and pump current of the laser are controlled with
an accuracy of ±0.01◦C and ±0.01 mA. For a temperature
T = 18.30◦C, the threshold current of the solitary laser is
Ith = 29.39 mA. The round-trip time in the external cavity is
2.5 ns. The laser intensity is detected by a high-speed fiber pho-
todetector with a bandwidth of 2 GHz (DET01CFC), whose
signal is amplified using a 2-GHz high-speed amplifier (Femto)
and sent to a 1-GHz oscilloscope (Agilent DS06104A). Due
to the relatively low bandwidth of the detection system, we
are only able to measure the slow feedback-induced dynamics
(i.e., the LFF power dropouts) and not the fast picosecond
pulses.

Power dropouts for three different values of the pump
current are shown in Fig. 1, whose panel (a) represents the
output intensity corresponding to a dynamical behavior where
there is coexistence between stable emission and LFFs. As
described in [3], within the coexistence region, the duration
of the LFF intervals increases with the pump current and the
feedback strength. In Fig. 1(b) the injection current is high
enough to be outside of the coexistence region, and the laser
intensity displays sustained LFFs. Due to the increment of the
injection current, the time between consecutive dropouts is
shorter. Finally, in Fig. 1(c), the injection current is high and
the laser operates close to coherence collapse, characterized
by highly irregular oscillations of the light intensity.

Time series with more than 104 dropouts were recorded for
various values of the pump current. For low pump currents
the dropouts are infrequent and very long time series had
to be recorded; thus, a small sampling rate was used in
the digital acquisition system. For high pump currents the
dropouts are more frequent, and shorter time series were
recorded with a larger sampling rate. The sampling rates

FIG. 1. Time traces for three different values of the pump current
corresponding to three different dynamical regimes. (a) Coexistence
of LFFs and stable emission, (b) sustained LFFs, and (c) transition
to coherence collapse. Ia = 31.20 mA, Ib = 32.40 mA, and Ic =
35.00 mA. The horizontal scale is the same in the three panels.
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FIG. 2. (Color online) Mean value of the interdropout interval
as a function of the pump current for two different experimental
measurements that differ in the alignment of the external mirror and
thus in the optical feedback strength. For one data set (referred to
in the text as set I and indicated with circles) the mean interdropout
interval is longer than for the other data set (set II, squares). This
occurs in the entire range of variation of the injection current, except
at the lowest current values in set II.

used in the experiments ranged from 250 megasamples/s to
1 gigasample/s.

III. STATISTICAL CHARACTERIZATION
OF THE TIME SERIES

Figure 2 displays the mean time between consecutive
dropouts, 〈T 〉, as a function of the pump current, for two
experimental realizations that differ in the alignment of the
external mirror. This results in different couplings between the
intracavity field and the reinjected field. The two couplings
are distinct enough to lead to two different dynamical regimes
[sustained LFFs (set I) and dynamic alternation of LFFs
and stable emission (set II)], but similar enough to have a
comparable threshold reduction due to the feedback (around
7%). As can be seen in Fig. 2, in the two sets of experimental
measurements the mean time between consecutive dropouts
decreases with the injection current, as mentioned previously.
We have adjusted the experimental conditions such that the
experimental conditions were as similar as possible, with
the goal of analyzing data that were different only in their
dynamical behavior.

In the next section we analyze via ordinal patterns the time-
series measured under these different conditions and contrast
their complexity measures. However, before computing the
complexity of the time series, we first characterize them
statistically. Figure 3(a) displays the normalized standard devi-
ation of the interdropout interval (or coefficient of variation),
R = σ/〈T 〉. Note that a decrease of R indicates enhanced
regularity of the dropouts. Close to the solitary threshold (in the
range from 30 to 32 mA) the increase of the injection current
results in a decrease of R and the system becomes more regular.
At an intermediate value of the pump current a minimum of
R is reached, beyond which the dropouts become increasingly
irregular, approaching coherence collapse, as the pump current
increases further. As described in [7], the pump current affects
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FIG. 3. (Color online) (a) Normalized standard deviation of the
interdropout intervals (IDIs) as a function of the injection current, for
two different experimental realizations. (b) First- and second-order
IDI correlation coefficients as a function of the injection current,
again for two different experimental realizations. Circles correspond
to set I and squares to set II.

the fast dynamics, that is, the picosecond intensity pulses,
differently than it affects the slow modulation, that is, the
power dropouts. The fast pulses play the role of an effective
noise, and thus the variation of the injection current results
in a variation of the amplitude of the effective noise. Within
that context, the existence of a minimum in the coefficient of
variation for an intermediate pump current can be likened with
the enhanced regularity of dropouts that arises for an optimal
noise level in coherence resonance [27–29].

In Fig. 3(a) it can also be noticed that for one set of
experimental measures R presents large fluctuations at low
current values, while for the other set these oscillations are
absent. As explained previously, the two sets of observations
differ on the alignment of external mirror, and thus in the
feedback strength. The large variations of R in data set II
are due to the occurrence of a regime of coexistence of
LFFs and stable emission, which is absent in the other data
set. This behavior induces an error on R. Another statistical
property of the data is the correlation of time intervals
between consecutive dropouts (interdropout intervals, IDIs).
The nth-order correlation coefficient between IDIs is defined
as

ρn = 〈Ik+nIk〉 − 〈Ik+n〉〈Ik〉〈
I 2
k

〉 − 〈Ik〉2
, (1)
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where {Ik} is an ordered sequence of IDIs. Figure 3(b) shows
the dependence of the first- and second-order IDI correlation
coefficients on the pump current. A transition from a Markov
to a non-Markov process is observed at a value of the pump
around 32.5 mA, above which the correlations become nonzero
(the second-order correlation being smaller than the first-order
one). In what follows we will evaluate and compare the
statistical complexity of both data sets.

IV. QUANTIFYING THE STATISTICAL COMPLEXITY

We begin by transforming the sequence of consecu-
tive interdropout intervals {Ti, i = 1 . . . M} into a set of
D-dimensional “ordinal patterns,” following the BP method
[21]. This is done by dividing the sequence {Ti} into M − D

overlapping vectors of dimension D. Then, the value of Ti in
a given vector is replaced with a number from 0 to D − 1,
in accordance with the relative length of Ti in the ordered
sequence (0 corresponding to the shortest Ti and D − 1 to
the longest Ti in each vector). A third step is to compute the
probability distribution P of the different vectors. Since the
number of different vectors of dimension D is equal to D!, to
have a good statistics one must have a large enough number of
vectors, such that M − D � D!.

The last step is to compute the normalized Shannon entropy,
H [P ], and the MPR statistical complexity, C[P ]. The entropy
is given by

H [P ] = S[P ]/Smax, (2)

where S[P ] = −∑N
i=1 pi log pi and Smax = log N , with N =

D! being the total number of vectors over which P is
computed.

The MPR measure is defined as

C[P ] = H [P ] · Q[P ], (3)

where Q[P ] = Q0JS[P,Pe] quantifies the disequilibrium, cal-
culated from the symmetric form JS[P1,P2] of the Kullback-
Leiber relative entropy [30], K[P1|P2] (i.e., JS[P1,P2] =
(K[P1|P2] + K[P2|P1])/2). Pe is the equilibrium distribution
(pi,e = 1/N ∀ i) and Q0 is a normalization constant,

Q0 = −2

{(
N + 1

N

)
ln(N + 1) − 2 ln(2N ) + ln N

}−1

.

(4)

Figure 4 displays H and C for the the experimental data
set where the feedback level is such that no coexistence is
observed at low pump currents (set I); Fig. 5 displays H

and C for the other data set (set II), for which there is
coexistence between LFFs and stable emission at low pump
currents. Results are presented for various values of the length
of the ordinal patterns, D (embedding dimension). Since the
experimental data series have about M = 15 000 dropouts
(set I) and M = 10 000 dropouts (set II), in order to have a
good statistics we limit ourselves to D � 5. We also display the
results of analyzing the corresponding surrogate data, which
consistently shows H ∼ 1 and C ∼ 0.

It can be observed that in both data sets, a region of
enhanced statistical complexity, accompanied by a decrease of
the normalized entropy, occurs at high-enough pump currents,
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FIG. 4. (Color online) (a) Normalized Shannon entropy and
(b) statistical complexity measure vs the laser injection current, for
various values of the length of the ordinal patterns, D (embedding
dimension). M = 15 000. The data set is “set I,” for which there is
no coexistence of LFFs and stable emission at low injection currents.
Open symbols represent the surrogate data for the filled symbols with
the corresponding shape.

that is, around the transition between “regular” LFFs (where
R is minimum; see Fig. 3) and highly irregular LFFs (ap-
proaching coherence collapse). The increase in the value of the
complexity reveals that the distribution of ordinal vectors has a
certain structure, in spite of the fact that the dynamics is highly
stochastic. (Note that the normalized entropy is close to 1;
however, it decreases in the region of increased complexity.)
For low injection currents, the coexistence of LFF and stable
emission is not detected, as C ≈ 0 and H ≈ 1 for both data
sets. However, we remark that for the second data set, large
oscillations of the normalized standard deviation are seen for
low current in Fig. 3. This reveals a drawback of the BP
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FIG. 5. (Color online) (a) Normalized Shannon entropy and
(b) statistical complexity measure vs the laser injection current, for
various values of the length of the ordinal patterns, D (embedding
dimension). The data set is “set II,” for which there is coexistence
of LFFs and stable emission at low injection currents. M = 10 000.
Open symbols represent the surrogate data for the filled symbols with
the corresponding shape.
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FIG. 6. (Color online) (a) Normalized Shannon entropy and
(b) statistical complexity measure vs the laser injection current, for
various values of the length of the time series, with D = 5. Note that
C and H converge with increasing M . The data set used in this figure
is set I.

methodology, which is due to the fact that the absolute length
of the interdropout intervals is not considered, but only the
relative order is taken into account.

It can be noticed that the analysis with the entropy
and complexity measures agrees very well with that of the
first- and second-order correlations in clearly displaying two
qualitatively different regimes: one memoryless, occurring
at low injection currents, and the other occurring at higher
current values, for which there are memory effects revealed by
time correlations. The second-order correlation coefficient is
smaller than the first-order one, while an opposite effect is seen
with the complexity measure C, which grows continuously
as the ordinal pattern dimension D increases. This lack of
convergence with respect to D can be interpreted as due to
the finite size of the time series. To check this hypothesis, we
display in Fig. 6 results of the analysis for fixed D and various
values of the length of the time series. The figure shows that
both C and H converge with increasing M . In other words, we
speculate that if we could record experimentally a long-enough
time series, such that we could use larger D values with good
statistics, convergence would be seen with increasing D; that
is, there would be an optimal D revealing the finite length of
the memory of the system.

While we present here results only for two data sets, we have
done extensive analysis of various experimental realizations
and found that the results are robust, in the sense that
characterizing the system in terms of the distribution of ordinal
patterns captures enhanced complexity during the transition to
coherence collapse; however, the enhanced regularity (i.e., the
minimum of the indicator R) and the regime of LFF-stable
emission coexistence are not detected.

V. DISCUSSION AND CONCLUSIONS

We interpret the results in the following terms: At low
injection currents the dropouts are infrequent, there are long
time intervals between consecutive dropouts, and therefore, the
dropouts are statistically independent one of another: There are
no memory effects and no patterns or correlations arise in the
sequence of consecutive dropouts. For larger injection currents
the dropouts are more frequent and there is some memory
in the system; that is, there are time correlations revealed
by C 	= 0 and H 	= 1. We believe that these correlations
might arise because of the finite recovery time: The time
when the next dropout occurs will depend on whether the
laser fully recovered from the previous dropout. To conclude,
we have shown that the normalized Shannon entropy and
the MPR statistical complexity measure are suitable tools
for quantifying subtle characteristics of the LFF dropouts
and, in particular, the transition to fully developed coherence
collapse as the laser bias current increases. However, the
coexistence of LFF and stable emission at low bias currents,
and the phenomenon of coherence resonance, for which the
normalized deviation of the interdropout intervals displays a
minimum at a certain bias current [27–29], are not detected.

ACKNOWLEDGMENTS

This research was supported in part by the Spanish
Ministerio de Ciencia e Innovación through Project No.
FIS2009-13360-C03-02, the Air Force Office Scientific
Research through Project No. FA-8655-10-1-3075 (C.M.),
the I3 program (J.G.O.), and the Agència de Gestió d’Ajuts
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