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Feedback connections and noise are ubiquitous features of neuronal networks and affect in a determinant
way the patterns of neural activity. Here we study how the subthreshold dynamics of a neuron interacts with
time-delayed feedback and noise. We use a Hodgkin-Huxley-type model of a thermoreceptor neuron and
assume the feedback to be linear, corresponding effectively to a recurrent electrical connection via gap junc-
tions. This type of feedback can model electrical autapses, which connect the terminal fibers of a neuron’s axon
with dendrites from the same neuron. Thus the delay in the feedback loop is due basically to the axonal
propagation time. We chose model parameters for which the neuron displays, in the absence of feedback and
noise, only subthreshold oscillations. These oscillations, however, take the neuron close to the firing threshold,
such that small perturbations can drive it above the level for generation of action potentials. The resulting
interplay between weak delayed feedback, noise, and the subthreshold intrinsic activity is nontrivial. For
negative feedback, depending on the delay, the firing rate can be lower than in the noise-free situation. This is
due to the fact that noise inhibits feedback-induced spikes by driving the neuronal oscillations away from the
firing threshold. For positive feedback, there are regions of delay values where the noise-induced spikes are
inhibited by the feedback; in this case, it is the feedback that drives the neuronal oscillations away from the
threshold. Our study contributes to a better understanding of the role of electrical self-connections in the
presence of noise and subthreshold activity.
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I. INTRODUCTION

Recurrent connections leading to feedback loops are very
common in neural tissue, which is characterized by a high
density of neuronal cells and connections. A well-known ex-
ample of recurrent circuit, known to be involved in associa-
tive memory recall, is located in the CA3 region of the hip-
pocampus �1,2�. Feedback in neurons can be either
excitatory or inhibitory and can arise either from autosyn-
apses or from circuits of connections involving other neu-
rons. These recurrent links require the electrical propagation
of action potentials along axons and their chemical transmis-
sion through synapses, processes that exhibit a broad spec-
trum of delay times, ranging from a few milliseconds to
tenths of seconds. Since spike frequencies can exceed 10 Hz,
delay times can be much longer than the intrinsic character-
istic time of the neuron dynamics and cannot be usually ne-
glected.

In fact, time-delayed feedback mechanisms are relevant in
many biological systems, including excitable gene regulatory
circuits �3�, human balance �4�, and saccadic eye movements
�5�. Within the framework of neuron rate-equation models, a
recurrent feedback circuit has been studied by adding to the
membrane potential equation a term proportional to the po-
tential at an earlier time �6�. This simplified approach has
been successful in the understanding of certain characteristic
delay-induced phenomena, such as multistability �7,8� and
excitability �9�. In addition, delayed feedback in the
FitzHugh-Nagumo paradigmatic model of excitable systems
was shown to increase the coherence �measured in terms of
the correlation time� and to modulate the main frequencies of
the stochastic dynamics in dependence on the feedback delay
time �10�.

The response of a single neuron to delayed feedback was
investigated experimentally by Diez-Martinez and Segundo

�11�, who studied a pacemaker neuron in the stretch receptor
of crayfish. Recurrence was introduced artificially by having
each spike trigger electronically a brief stretch after a certain
delay. The results showed that with increasing delay the dis-
charge patterns transformed from periodic spikes to trains of
spikes separated by silent intervals. Pakdaman et al. �12�
interpreted this behavior as due to neuronal adaptation
mechanisms, which decreased sensitivity along successive
firings. By studying models of various levels of complexity
�an integrate and fire, a leaky integrator, and a rate-equation
model including membrane conductances�, with and without
adaptation to repeated stimuli, Pakdaman and co-workers
found that models including adaptation predicted a dynamics
that was similar to that observed experimentally in the cray-
fish receptor, exhibiting tonic firings for short delays and
multiplets or bursts for longer delays.

Delayed feedback provides an additional time scale to the
neuronal dynamics. Yet another time scale exists in neurons
with subthreshold oscillations �13�. In these neurons, the dis-
tance to threshold can be considered to be modulated peri-
odically, which is revealed by a multimodal distribution of
interspike intervals �14�. The time delay of the recurrent con-
nections and the period of the subthreshold oscillations can
be expected to interact nontrivially. In a previous study �15�
we showed that, in the regime of subthreshold oscillations, a
weak time-delayed feedback loop can amplify the oscillation
amplitude, inducing threshold crossings and firing activity
that is organized by the delay. With the aim of providing
further insight into the influence of feedback, here we ana-
lyze the dynamics using interspike intervals �ISIs� and the
firing rate. We also show that feedback-induced activity is
robust against the inclusion of noise.

Due to the excitable character of neurons, noise has natu-
rally a large influence on their dynamics, inducing spikes and
even increasing their regularity in certain conditions �16�.
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The influence of noise on a single neuron with a delayed
recurrent synaptic connection �but without subthreshold os-
cillations� was analyzed by Vibert et al. �17�. The noise-
induced interspike interval distribution was found to change
strongly when the delay increased above the natural firing
period: for short delays noise irregularizes the firing period,
while for long delays the neuron fires with a mean period
equal to the delay, as observed without noise.

Some studies also exist on the influence of noise on the
firing patterns of neurons with subthreshold oscillations �18�,
but to our knowledge the joint effect of delayed feedback,
noise, and subthreshold activity on neuronal dynamics has
not been studied so far. Here we undertake such a study and
show that depending on the sign of the delayed feedback,
either noise suppresses the delay-induced spikes mentioned
above �for inhibitory feedback� or, conversely, delay inhibits
noise-induced spikes �for excitatory feedback�. In both cases,
the phenomenon occurs with the periodicity of the subthresh-
old oscillations, which underlies the complex interplay be-
tween these three different features.

II. MODEL

We use a model displaying sustained subthreshold activ-
ity, proposed by Braun et al. �19� and developed on the basis
of experimental data from shark electroreceptors �20� and
mammalian cold receptors �21�. The experimental distribu-
tions of interspike intervals in these neuronal types indicate
that their activity depends on subthreshold oscillations of the
membrane potential. Specifically, those electroreceptors and
cold receptors �in their upper temperature range� exhibit an
irregular sequence of spikes with a multimodal interspike
interval distribution. As mentioned in the Introduction, this
multimodality suggests the existence of subthreshold oscilla-
tions that operate below but near the spike-triggering thresh-
old. In this situation spikes are triggered by noise, but the
subthreshold oscillation period is still reflected in the basic
rhythm of the discharge. External stimuli can alter the fre-
quency and/or the amplitude of the oscillations, thus induc-
ing pronounced changes of the neuron firing pattern. In con-
trast, in the low-temperature range of cold receptors,
histograms of interspike intervals do not have a distinct
modal structure, but rather seem to reflect pacemaker activity
under random fluctuations.

The model proposed by Braun et al. produces different
types of firing patterns that are also found in cortical neurons
�22�. In particular, deterministic firing patterns such as coex-
istence of spikes and subthreshold oscillations �spikes with
skippings�, tonic spiking, and bursting patterns have been
found as a function of temperature �23�. This rich dynamic
behavior is due to the interplay of two sets of de- and repo-
larizing ionic conductances that are responsible for spike
generation and slow-wave potentials �24�. The influence of
noise on this model was studied by Feudel et al. �25�, and
model predictions were found to be in good agreement with
electrophysiological experiments in the crayfish caudal pho-
toreceptor. Inclusion of a periodic external stimulus leads to
a satisfactory reproduction of experiments in paddle-fish,
showing that electroreceptor cells contain an intrinsic oscil-

lator that can be synchronized with an external signal �26�.
The model has also been used to show the existence of noise-
induced synchronization �27� and anticipated synchroniza-
tion �28�. On the other hand, Sainz-Trapaga et al. �29�
showed that delayed feedback can increase the amplitude of
the subthreshold oscillations beyond threshold, thus leading
to feedback-induced spikes. Here we consider the effect of
both noise and delayed feedback on this model.

The rate equation for the potential voltage across the
membrane, V, is �19�

CMV̇ = − INa�T� − IK�T� − Isd�T� − Isr�T� − Il + �V�t − ��

+ ��t� , �1�

where CM is the membrane capacitance, Il=gl�V−Vl� is a
passive leak current, INa and IK are fast sodium and potas-
sium currents, and Isd and Isr are additional slow currents.
These four currents are given by

Ik = ��T�gkak�V − Vk� , �2�

where k stands for Na, K, sd and sr, gk are the maximum
conductances of the corresponding channels, and the activa-
tion variables ak are given by

dak

dt
=

��T��ak� − ak�
�k

, �3�

for K and sd,

dasr

dt
=

��T��− �Isd − �asr�
�sr

, �4�

and aNa=aNa�. The steady-state activations are defined by

ak� =
1

1 + exp�− sk�V − V0k��
. �5�

The temperature-dependent factors ��T� and ��T� are

��T� = A1
�T−Tc�/10, ��T� = A2

�T−Tc�/10. �6�

The time-delayed term on the right-hand side of Eq. �1� ac-
counts for the recurrent connection, with � representing the
feedback strength and � the delay time. Here we concentrate
on electrical connections mediated by gap junctions, for
which the coupling term is linear, while the delay � repre-
sents exclusively the delay associated with axonal propaga-
tion prior to the signal recurring onto the neuron. This type
of feedback can in principle represent an electrical version of
chemical autapses, which are chemical synapses made by a
neuron onto itself �30–32�. In our case, the autapses would
be electrical; i.e., they would be based on gap-junction cou-
pling instead of neurotransmitter exchange and would occur
between the terminal fibers at the end of an axon and den-
drites from the same neuron. The last term is a Gaussian
white noise, with zero mean and correlation ���t���t���
=2D	�t− t��, representing the influence of a stochastic envi-
ronment.

III. RESULTS

The parameters used in the simulations, listed in the cap-
tion of Fig. 1 below, are such that in the absence of feedback
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and noise the neuron displays subthreshold oscillations of
period T0�130 ms. To integrate Eq. �1� in the presence of
feedback it is necessary to specify the initial value of the
membrane potential V on the time interval �−� ,0�. Delayed
feedback is known to lead to multistability; i.e., different
initial conditions lead, after a transient time, to different
stable firing patterns �7,8�. Here we chose the initial condi-
tions in such a way that the neuron is oscillating in its natural
cycle when the feedback begins to act �i.e., the feedback
starts when the neuron is at a random phase of the cycle�.

A. Deterministic feedback-induced dynamics

First, we perform numerical simulations of the model
equations in the absence of noise. In a previous study �15�
we showed that positive feedback decreases the oscillation
amplitude, while negative feedback amplifies the oscilla-
tions, inducing threshold crossings and firing activity for spe-
cific delay values. This is a generic feedback effect, and in
order to illustrate the concept with a simple example, in the
Appendix we discuss the influence of positive and negative
feedback on a limit-cycle oscillator.

Let us first fix �=−0.001 and vary �. The numerically
calculated ISIs �normalized to the intrinsic subthreshold pe-
riod T0� are plotted in Fig. 1�a�, and the corresponding firing
rate �the average number of firings per intrinsic subthreshold
period T0� is plotted in Fig. 1�b�. These figures are done as
follows: for each value of �, after a transient time, we plot all
the intervals in between spikes occurring during a time inter-
val NT0, with N large enough to have good resolution �typi-
cally we integrate the model equations for N=1500–2000

subthreshold oscillation periods, after letting transients die
away�; the firing rate is the averaged rate—i.e., the number
of firings divided by N. The firing rate can be slightly larger
than 1 because the feedback modifies not only the amplitude,
but also the period of the oscillations, and thus for certain
delay values there can be more than one firing in a time
interval T0. The feedback-induced modification of the oscil-
lation period was also reported in Ref. �33�, which studied
the effect of delayed feedback on a noisy oscillator near
Andronov-Hopf bifurcation and showed entrainment of the
basic period of oscillations to the time delay of the feedback.

It can be noticed that the instantaneous feedback is sub-
threshold; i.e., it does not induce firings; however, the de-
layed feedback is sub- or suprathreshold, depending on the
delay time. The feedback induces firings only in “windows”
of the delay time centered at ���n+1 /2�T0, with n integer.
In these windows, the firing pattern is regulated by the value
of the delay. Figures 2 and 3 show details in two of these
windows �for delays shorter than one subthreshold oscilla-
tion period and for delays longer than four periods, respec-
tively�. The corresponding firing dynamics is also presented.
At the beginning of the first window one can observe spikes
with skipping �Fig. 2�b��, which become tonic spikes as �
increases �Fig. 2�c��. The firings become increasingly spo-
radic as the delay continues to increase �Figs. 2�d� and 2�e��,

FIG. 1. �Color online� �a� Interspike intervals �normalized to
T0� and �b� firing rate �number of spikes per intrinsic oscillation
period� vs the delay time for negative feedback strength, �
=−0.001 mS /cm2, in the absence of noise. Other parameters are
CM =1 �F /cm2, gl=0.1 mS /cm2, gNa=1.5 mS /cm2, gK

=2 mS /cm2, gsd=0.25 mS /cm2, gsr=0.4 mS /cm2, Vl=−60 mV,
VNa=50 mV, VK=−90 mV, Vsd=50 mV, Vsr=−90 mV, sNa

=0.25 mV−1, sK=0.25 mV−1, ssd=0.09 mV−1, V0Na=−25 mV, V0K

=−25 mV, V0sd=−40 mV, �K=2 ms, �sd=10 ms, �sr=20 ms, �
=0.17, �=0.012, A1=1.3, A2=3.0, and Tc=25 °C.
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FIG. 2. �Color online� �a� Detail of the ISI profile displayed in
Fig. 1�a�. Time traces of the membrane potential for �=−0.001,
� /T0=0.31 �b�, 0.5 �c�, 0.68 �d�, and 0.695 �e�.
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until they disappear at the end of the window. A similar
behavior is observed for larger delay values �Fig. 3�, al-
though in that case the skipping patterns arising in the upper
region of the delay window are characterized by a more ir-
regular alternation between the spikes and subthreshold os-
cillations �see, e.g., Fig. 3�d��, and there is multistability of
different firing patterns. The interspike intervals grow
sharply to infinity at the end of the short-delay windows—
i.e., the spikes disappear abruptly—while there is a smoother
transition for longer delays �note the logarithmic vertical
scale in Fig. 3�a��.

B. Stochastic dynamics

We now turn to examine the effect of noise in the system.
Importantly, in the presence of noise there is a base-line fir-
ing rate, depending on the noise intensity, even when the
parameters are tuned such that the system is below threshold
deterministically, as in the present case. Therefore, in prin-
ciple one should not expect a situation like the one shown in
Fig. 1�b�, where for values of the delay time around mul-
tiples of the natural period T0 the system became completely
silent; i.e., the firing rate was 0. Figure 4 shows the corre-
sponding plot when noise is included in the simulations,

again for negative feedback �the firing rate in the presence of
noise is defined in the same way as in the deterministic situ-
ation: it is the number of firings per oscillation period, aver-
aged during a time interval NT0, with N large enough�.

It can be observed that the “window” structure reported in
the noiseless case �Fig. 1� is robust against noise, although
the firing rate does not reach 0 at any delay time �Fig. 4�b��
due to the existence of noise-induced spikes. However, the
spikes are more frequent for certain delay times ����n
+1 /2�T0 with n integer�. Interestingly, we can notice that
within some of these delay windows, the firing rate is lower
than in the noise-free situation. This is due to the fact that
noise can actually inhibit feedback-induced spikes by driving
the neuron oscillation away from the firing threshold.

The case of positive feedback is shown in Fig. 5. Remark-
ably, there are “gap” regions of delay values where the
spikes that would be induced by the noise are completely
inhibited by the feedback, leading to a vanishing firing rate
even in the presence of noise. This happens because the feed-
back term drives the neuron oscillation away from the
threshold. These silent “gaps” shrink and eventually vanish
as the noise strength is increased.
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FIG. 3. �Color online� �a� Same as Fig. 2, but for larger delay
times. Notice the logarithmic vertical scale. Time traces of the
membrane potential for � /T0=4.3 �b�, 4.5 �c�, 4.7 �d�, and 4.75 �e�.

FIG. 4. �Color online� �a�,�c� Interspike intervals �normalized to
T0� and �b�,�d� firing rate �number of spikes per intrinsic oscillation
period� vs the delay time for negative feedback strength, �=
−0.001, in the presence of noise: �a�, �b� D=0.005 and �c�, �d� D
=0.01.
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A few examples of time traces of the membrane potential
are displayed in Fig. 6. In Fig. 6�a� there is no feedback and
the firings are only noise induced; in Figs. 6�b� and 6�c�,
there is negative feedback and two different delay times, one
such that, without noise, there are periodic spikes ��=T0 /2;
the noiseless spike pattern is presented in Fig. 2�c��. With the
inclusion of noise, it can be seen in Fig. 6�b� that some
spikes are skipped. The other delay �=T0 is such that the
firing rate is about the same as for instantaneous feedback
�see Fig. 4�d��. Figures 6�d� and 6�e� display time traces of
the membrane potential when positive feedback is included,
and again two delay times are considered, one such that the
delayed feedback inhibits noise-induced spikes �Fig. 6�d��
and the other such that the firing rate is about the same as for
instantaneous feedback �Fig. 6�e��.

Finally, to gain insight into �i� how positive feedback in-
terferes with stochastically generated spikes and �ii� how
noise interferes with deterministically feedback-induced
spikes we analyzed the probability density function of ISIs.
We found that both � and � have complex effects on the ISI
distribution. Several distributions are presented in Figs. 7
and 8. Figure 7�a� displays the distribution in the absence of
feedback. A multipeaked distribution is observed, which can
be interpreted in the same way as in Ref. �34� for resonant

neurons: if a spike occurs at time t=0, the probability of
another spike occurring at a latter time t is modulated by the
subthreshold oscillation. Figures 7�b� and 7�c� display the
effect of positive feedback. We observe that it enlarges the
tail of the distribution and there is a delay-dependent modi-
fication of the distribution shape.

Next we consider the influence of noise on feedback-
induced irregularly timed spikes. The ISI distribution in the
absence of noise is presented in Fig. 8�a�, and the effect of
noise is displayed in Figs. 8�b� and 8�c�. Noise tends to
broaden the distribution and also modifies its shape, with a
dip appearing at the value of the delay time ��=4.7T0�.

The influence of feedback and noise on a bistable system
was studied in Ref. �35�. It was shown that the feedback
modifies the shape of the distribution of residence times �the
time spent in a well before jumping to the other�, increasing
or decreasing the probability of residence times shorter than
the delay time, depending on the sign of the feedback. This
effect was understood in terms of a simple two-state model
with transition rates depending on the earlier state of the
system. More recently, for a linear oscillator driven by col-
ored Gaussian noise, modeling a resonant neuron, the prob-
ability density of the first passage time �the time after which
x�t� reaches certain level for the first time� was calculated
based on a non-Markovian approximation �37�, and complex
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FIG. 6. �Color online� Membrane potential when noise is in-
cluded in the simulations �D=0.01�. No feedback �a�, negative
feedback ��=−0.001� �b�,�c�, and positive feedback ��=0.001�
�d�,�e�. The delay time is �=T0 /2 �b�,�d� and �=T0 �c�,�e�.
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structures, characteristics of underdamped dynamics, were
revealed. The interpretation of the effects of delayed feed-
back on the ISI distribution, based on these previous studies,
and their relation with common noise effects in excitable
systems �36�, such as stochastic and coherence resonance,
resonant activation, etc., is the subject of ongoing work.

IV. SUMMARY AND CONCLUSIONS

We studied the dynamics of a neuron with subthreshold
oscillations under the influence of delayed feedback and
noise. We simulated numerically a Hodgkin-Huxley-type
model, extended to account for a feedback circuit with an
additional time-delayed linear term in the membrane voltage
equation. The feedback term is assumed linear, correspond-
ing effectively to an electrical connection via gap junctions.
This type of feedback can model the electrical analog of
chemical autapses, which would connect linearly the termi-
nal fibers of a neuron’s axon to its own dendrites. Thus, the
delay time is due basically to axonal propagation along the
feedback loop. The model parameters are such that the neu-
ron displays only subthreshold oscillations in the absence of
feedback and noise. The neuronal oscillations are near the
firing threshold, and small perturbations can drive the oscil-
lations above the level for generation of action potentials. In
this situation we find a complex interplay of weak delayed
feedback and noise with the subthreshold intrinsic activity.

For negative feedback, the oscillation amplitude is en-
hanced, and this enhancement is more pronounced for certain
delay values. In the noise-free situation, this leads to the
existence of specific “windows” of delay values where

feedback-induced spikes occur. When noise is included in
the simulations, firings are observed for all delay values, but
for certain delays, the firing rate can be lower than in the
noise-free situation. This is due to the fact that the noise can
inhibit some of the feedback-induced spikes by randomly
driving the neuron oscillations away from the firing thresh-
old.

For positive feedback, in the noise-free situation there are
no firings because the feedback reduces the oscillation am-
plitude. However, this reduction is more pronounced for cer-
tain delays, and when noise is included in the simulations,
there are “gap regions” of delay values where the noise-
induced spikes are inhibited by the feedback; in this case, it
is the feedback that drives the neuron oscillations away from
the threshold.

Taken together, our results show that subthreshold activity
nontrivially modulates the response of a neuron to delayed
feedback and noise.

Our study aims to contribute to a better understanding of
the role of electrical autapses, in the presence of noise and
subthreshold oscillations. While their functional significance
is not yet clear, chemical autapses have been recently sug-
gested to have important roles in regulating spike timing
�38�, since a blockade of autaptic transmission resulted in

0 10 20 30 40 50
0

0.02

0.04

(a)

0 10 20 30 40 50
0

0.02

0.04

(b)

0 200 400 600 800 1000
0

0.005

0.01
(c)

ISI (in units of T
0
)

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

0 5

FIG. 7. �Color online� Probability density function of interspike
intervals for fixed noise �D=0.01� and varying feedback. �a� With-
out feedback, �b�,�c� with positive feedback ��=0.0001 in �b�, �
=0.0005 in �c�� and a delay value such that the feedback decreases
the firing rate ��=T0 /2�. In �a� the inset displays in detail the first
five peaks of the distribution.

0 5 10 15 20
0

0.2

0.4
(a)

0 5 10 15 20
0

0.04

0.08

(b)

0 5 10 15 20
0

0.04

0.08

(c)

0 5 10 15 20
0

0.04

0.08
(d)

ISI (in units of T
0
)

P
ro

ba
bi

lit
y

di
st

rib
ut

io
n

FIG. 8. �Color online� Probability density function of interspike
intervals for fixed negative feedback ��=−0.001� and varying
noise. The delay value is such that there is an irregular alternation
of spikes and subthreshold oscillations ��=4.7T0; a spike train is
shown in Fig. 3�d��. Without noise �a� and D=0.001 �b�, 0.005 �c�,
and 0.01 �d�.

MASOLLER, TORRENT, AND GARCÍA-OJALVO PHYSICAL REVIEW E 78, 041907 �2008�

041907-6



degraded spike temporal precision. Our results shed light on
the interplay of electrical “autaptic” delayed feedback and
noise, when the neuron displays intrinsic subthreshold oscil-
lations. It would be of interest to extend this study to con-
sider the case of chemical synaptic coupling, where delays
due to neurotransmitter release and binding would be even
more evident. It would also be interesting to extend this
study to spiking neurons that display, in the absence of feed-
back or noise, deterministic spike patterns, such as tonic
spikes or bursting.
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APPENDIX

To explain the influence of feedback on the amplitude and
on the frequency of the subthreshold oscillations, here we
consider a simple model, consisting of a limit-cycle oscilla-
tor. In the literature, several authors have studied the influ-
ence of linear and nonlinear delayed feedback on a limit-
cycle oscillator �see, e.g., �32,39,40� and references therein�.
Feedback-induced phenomena such as multistability, phase
slips, chaos, and excitability are well known. Here we limit
ourselves to consider the influence of feedback when it is a
small perturbation to the oscillator and show how, depending
on the sign of the feedback and its delay time, the amplitude
and the frequency of the oscillator are modified. The rate
equation for a limit-cycle oscillator is

ż = �1 + i
0 − �z�2�z + �z�t − �� , �A1�

where z is a complex variable, � is the feedback coefficient,
which is assumed real, and � is the delay time.

In the absence of feedback the amplitude of the limit
cycle is A0=1 and its frequency is 
0 �the natural oscillation
period being T0=2� /
0�. In the presence of feedback, both
the amplitude A and the frequency 
 change with � and �, as
displayed in Fig. 7. For ��0 the amplitude �Fig. 9�a�� ex-
hibits local minima at �= �n+1 /2�T0 with n=0,1 , . . .. For
�
0 local maxima are the ones located at �= �n+1 /2�T0
with n=0,1 , . . ., Fig. 9�c�. For � larger than one or two natu-
ral periods periods, the frequency varies with � in a piece-
wise linear way, exhibiting discontinuous jumps at �= �n
+1 /2�T0 for positive feedback, Fig. 9�b�, and at �=nT0 for
negative feedback, Fig. 9�d�. A similar entrainment of the
basic period of oscillations by time delay was reported in
Ref. �33�, which studied the effect of delayed feedback on
noise-induced motion in a self-oscillator near an Andronov-
Hopf bifurcation and in a threshold system.

The influence of feedback on the neuronal model consid-
ered here is expected to be more complex, because the feed-
back acts only on one variable �the membrane potential� and
the model has additional variables, the conductance currents,
that present different relaxation time scales �there are two
fast and two slow currents�. Nevertheless, it can be seen in
Fig. 1 that for negative feedback spikes occur in windows
centered at �= �n+1 /2�T0, and this agrees with the limit-
cycle model since for those values the amplitude of the limit
cycle exhibits local maxima. For positive feedback, in Fig. 5
it can be observed that noise-induced firings are suppressed
in windows centered at �= �n+1 /2�T0, and this agrees quali-
tatively with the limit-cycle model, since for those delay val-
ues, the oscillation amplitude is minimum. An important dif-
ference should be noticed, and it is that in the limit cycle the
effects of positive and negative feedback are symmetric �see
Fig. 9�, but they are not symmetric in the neuron model,
where negative feedback increases the oscillation amplitude,
while positive feedback decreases the oscillation amplitude,
for all �. We speculate that this difference arises because in
the neuron model there is feedback only in the rate equation
for the membrane potential.
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FIG. 9. �Color online� Amplitude �a�,�c� and frequency �c�,�d� of
the limit-cycle oscillator, Eq. �A1�, with positive feedback, �=0.1
�a�,�b� and with negative feedback, �=−0.1 �c�,�d�. 
0=1.
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