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Statistical complexity measures are used to detect noise-induced order and to quantify stochastic and coher-
ence resonances. We illustrate the method with two paradigmatic models, one of a Brownian particle in a
sinusoidally modulated bistable potential, and the other, the FitzHugh-Nagumo model of excitable systems.
The method can be employed for the precise detection of subtle signatures of noise-induced order in real-world
complex signals.
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Stochastic resonance �SR� �1� and coherence resonance
�CR� �2� refer to enhanced order in a nonlinear system via an
optimal amount of noise and are of major relevance in many
areas of physics and biology �3–5�. For observing SR, one
needs a bistable system, a noisy environment, and a sub-
threshold periodic signal �i.e., a small-amplitude signal that,
by itself, does not induce switchings�; for observing CR, one
needs an autonomous excitable system that emits noise-
induced pulses or spikes; the time interval between them
being the sum of an activation and an excursion time, which
depend differently on the noise intensity. Optimal conditions
for SR require a matching of the stochastic Kramers’ escape
time and the deterministic time scale of the applied signal;
optimal conditions for CR, the matching of the stochastic
activation, and excursion times.

The detection and the quantification of stochastic and co-
herence resonances can be a challenging task. SR can be
quantified in terms of the intensity of a peak in the power
spectrum or in terms of the intensity of several peaks in the
distribution of residence times �the time intervals between
consecutive switchings� �6�. The first method involves the
computation of the signal-to-noise ratio �SNR�, from power
spectra taken at a fixed frequency of the applied signal and
different noise levels; the resulting plot displaying a maxi-
mum of the SNR at a certain noise level �1�. For the second
method, one computes the intensity, Pn, of the nth peak of
the residence times distribution, which also displays a maxi-
mum at a certain level of noise. However, the noise levels
that maximize SNR and the different peaks of the residence
times distribution are not necessarily the same. Coherence
resonance can be quantified by the variance of the interspike
intervals �the time intervals between consecutive pulses�,
Rp=�Var�tp� / �tp�, and by the characteristic time of the auto-
correlation function �2�.

It would be desirable to characterize the response of non-
linear systems to noise in terms of more subtle measures than
those based on the power spectra and a probability distribu-
tion associated to the switching intervals or interspike inter-
vals. In particular, it would be very interesting to quantify

noise-induced temporal order. Several statistical complexity
measures have been proposed in the literature �7–9�, and to
the best of our knowledge, they have been overlooked for
quantifying the ordering role of noise. The aim of this Rapid
Communication is to show that they are suitable tools for
detecting subtle signatures of noise-induced temporal order
in nonlinear systems.

The statistical complexity measure is a functional that
characterizes the probability distribution P associated to the
time series generated by a dynamical system under study. It
quantifies not only randomness but also the presence of cor-
relational structures. The two extreme circumstances of �i�
maximum foreknowledge �“perfect order”� and �ii� maxi-
mum ignorance �or maximum “randomness”� can be re-
garded as “trivial,” and in consequence, the statistical com-
plexity measure must vanish for these cases. López-Ruiz,
Mancini, and Calbet �LMC� �7� introduced the product func-
tional form for a statistical complexity measure. Given a
probability distribution P, associated to the state of a system,
the LMC measure, is the product of the normalized Shannon
entropy, H�P�, times the disequilibrium, Q�P , Pe�, the latter
given by the Euclidean “distance” from P to Pe, the uniform
distribution. Martín and co-worker �8,9� proposed a modifi-
cation of the LMC measure, referred in the following as the
Martín, Plastino, and Rosso �MPR� complexity, C �see defi-
nition below�, that consisted in the redefinition of the dis-
equilibrium, replacing the Euclidean distance either by
Wootters’ statistical distance �8� or by the Jensen-Shannon
divergence �9�, which represent the distance between two
probability distribution in the probability space �. It was
recently shown �10� that the MPR complexity can distin-
guish time series generated by stochastic and by chaotic sys-
tems.

In this Rapid Communication we demonstrate that the
MPR complexity measure can also detect and quantify noise-
induced order. We illustrate the method with two paradig-
matic nonlinear dynamical systems: a Brownian particle in a
sinusoidally modulated double-well potential,
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dx

dt
= −

�V�x,t�
�x

+ ��t� = x − x3 + A sin��t� + ��t� , �1�

and the FitzHugh-Nagumo �FHN� model,

�
dx

dt
= x −

x3

3
− y,

dy

dt
= x + a + ��t� . �2�

In Eq. �1�, V�x , t�=−x2 /2+x4 /4−Ax sin��t�. In Eq. �2�, x is
the activation variable, y is the slow recovery variable, and �
and a are constants. In both models, � is a Gaussian noise
having zero mean, ���t���t���=2D��t− t��, with D being the
noise intensity.

The MPR statistical complexity can be cast as

C�P� = QJ�P,Pe� · H�P� . �3�

The probability distribution P= �pj ; j=1, . . . ,N	, with N be-
ing the number of possible states of the system, has associ-
ated the normalized Shannon entropy

H�P� = S�P�/Smax, �4�

where S�P�=−
 j=1
N pj ln�pj� and Smax=S�Pe�=ln N, with

Pe= �1 /N , . . . ,1 /N	 being the uniform distribution. Obvi-
ously, 0�H�1 with the limit 0 corresponding to a perfectly
predictable time series �i.e., one element of P, say pm, equals
unity and the remaining pj vanish�, and 1, to a fully random
one �pj =1 /N∀ j�.

The disequilibrium QJ is defined as �9�

QJ�P,Pe� = Q0 · JS�P,Pe� , �5�

where JS is the Jensen-Shannon divergence,

JS�P1,P2� = �S��P1 + P2�/2� − S�P1�/2 − S�P2�/2	 , �6�

and is a normalization constant, equal to the inverse of maxi-
mum possible value of JS�P , Pe�,

Q0 = − 2��N + 1

N
ln�N + 1� − 2 ln�2N� + ln N�−1

.

The disequilibrium QJ reflects the systems’s “architecture,”
being different from zero if there are “privileged” or “more
likely” states among the accessible ones.

We stress the fact that the above defined statistical com-
plexity is the product of two normalized entropies �the Sh-
annon entropy and Jensen-Shannon divergence� but is a non-
trivial function of the entropy because it depend of two
different probabilities distributions, the one corresponding to
the state of the system, P, and the uniform distribution, Pe. It
was shown in �11� that for a given value of H, there is a
range of possible values for C. Thus, evaluating the complex-
ity provides additional insight in the details of a system’s
probability distribution, which are not described by the en-
tropy �10,11�.

A critical point is finding a suitable probability distribu-
tion, P, associated to the time series under study,
�xs :s=1, . . . ,M	. This requires a partition of a
D-dimensional embedding space that will, hopefully, reveal
the ordinal structure of the time series �12�.

Here, for defining this partition and its associated prob-
ability distribution, we use the method proposed by Bandt

and Pompe �BP� �12�, which is based on a comparison of
neighboring values. The BP P-generating algorithm requires
that the system fulfills a weak stationary condition
�for k�D, the probability for xs�xs+k should not depend on
s� �12� and that enough data is available for a correct recon-
struction of the attractor.

Given an embedding dimension D	1, one is interested in
“ordinal patterns” of order D generated by

�s� � �xs−�D−1�,xs−�D−2�, . . . ,xs−1,xs� , �7�

which assign to each time s a D-dimensional vector of values
pertaining to the previous times: s ,s−1, . . . ,s− �D−1�. By
the ordinal pattern related to the time �s� we mean the per-
mutation 
= �r0 ,r1 , . . . ,rD−1� of �0,1 , . . . ,D−1� defined by
xs−rD−1

�xs−rD−2
� ¯ �xs−r1

�xs−r0
. In order to obtain a

unique result we consider that ri�ri−1 if xs−ri
=xs−ri−1

. Thus,
for all the D! possible permutations 
 of order D, the prob-
ability distribution P= �p�
�	 is defined by

p�
� = N�s�s � Y;�s� has type 
	/Y , �8�

where Y=M −D+1 and N�•	 stands for “number.”
Because the probability distribution, P, constructed in this

way takes into account the temporal structure of the time
series, not only the geometrical structure of the reconstructed
attractor but also causal information, is incorporated in the
partition process that yields P�� �with � the probability
space� �13�.

The selection of the embedding dimension, D, is relevant
for obtaining an appropriate probability distribution because
D determines not only the number of accessible states �equal
to D!� but also the length of the time series, M, needed to
have a reliable statistics �the condition M �D! must be sat-
isfied�. For practical purposes Bandt and Pompe use
3�D�7 �12�; here we use D=6 and analyze time series of
M =60 000 data points generated from numerical simulations
of the bistable model �Eq. �1�� and from the FHN model
�Eq. �2��. We verified that the results are robust with respect
to the value of D: similar results were found with D=4 and
5. For the bistable model, we analyze a sequence of M con-
secutive residence times; for the FHN model, a sequence of
M consecutive interspike intervals.

Let us first present the results of the analysis of residence
time intervals generated by the bistable system �Eq. �1��. As
discussed in the introduction, stochastic resonance occurs
when the stochastic switching time scale matches the deter-
ministic modulation time scale, and this condition can be
realized by varying the noise intensity, D, or the modulation
frequency, � �14�. For fixed �, the SNR and the periodic
response, �x� �1�, exhibits a maximum for an optimal noise
level, as shown in Fig. 1�a�; however, for fixed D, the reso-
nance with the modulation frequency is not observed with
these indicators, as shown in Fig. 2�a�. The resonances with
D and with � are both observable when plotting the ampli-
tude of the peaks of the residence times distribution �Figs.
1�b� and 2�b��. Let us consider the statistical complexity
measures, C and H. It can be seen in Figs. 1�c� and 2�c� that
resonantlike behavior is observed: the shape of the curves
obtained is consistent with the behavior of the conventional
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quantifiers, SNR and �x�. For instance, in Fig. 1�c� C �H� has
a global maximum �minimum� with D, while in Fig. 2�c�, C
�H� has a tendency to decrease �increase� with �. In both
figures there are smaller local peaks that can be attributed to
subtle resonantlike behavior. To further investigate this point,
we analyzed the original series of residence times intervals
but rearranged the data randomly. In Figs. 1�c� and 2�c� we
display the results with open symbols. The resonance curves
disappear, and the values for H and C are compatible with a
pure random process �H�0.999 and C�0.001�, confirming
in this way that the peaked structure observed in the two
information-theory quantifiers computed from the original
series can be attributed to noise-induced correlations in the
temporal sequence of the residence times.

The results in Figs. 1�c� and 2�c� seem to suggest that the
Shannon entropy and MPR complexity measure yield the
same information on the resonance; however, as explained

before, C is a nontrivial function of H, and for each value of
H there is a range of possible C values: Cmin�C�Cmax �the
procedure for calculating Cmin and Cmax is presented in �11��.
By plotting the results in the C-H plane, Figs. 1�d� and 2�d�,
we obtain a close loop curve �that in this case is almost a
line�, with the left extreme being the resonance condition:
maximum complexity and minimum entropy.

Figure 3 presents results of the analysis of interspike in-
tervals generated by the excitable FitzHugh-Nagumo model
�Eq. �2��. Figure 3�a� displays the usual quantification of
coherence resonance in terms of the normalized variance of
interspike intervals, Rp=�Var�tp� / �tp�, while Fig. 3�b� dis-
plays the MPR complexity and the normalized Shannon en-
tropy. Here we also observe that a resonance is detected by
the two introduced quantifiers. The noise level at which C is
maximum and H is minimum is larger than that where Rp is
minimum.

We interpret the above results in the following terms:
since the data under investigation consist of time intervals
between noise-induced switchings �for the bistable system�
and between noise-induced spikes �for the FHN model�, one
can expect that the two quantifiers are H�1 and C�0, cor-
responding to a probability distribution of ordinal patterns
very near to the uniform distribution �all ordinal patterns
being equally probable, appearing with the same probability
in the time series; see Figs. 1�c� and 2�c� with data rear-
ranged randomly�. However, at certain noise levels, corre-
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FIG. 1. �Color online� Quantifying stochastic resonance in the
bistable system for varying noise intensity and fixed modulation
frequency ��=0.0078�. �a� The standard indicators in arbitrary units
�the signal-to-noise ratio: squares; and the amplitude of the periodic
component of the system response, �x�: triangles� are plotted vs the
noise intensity, D. �b� Amplitude of the first three peaks of the
residence times distribution �P1: squares; P2: circles; and P3: tri-
angles� plotted vs D. �c� MPR statistical complexity, C, �filled tri-
angles� and the normalized Shannon entropy, H, �filled squares�
both in arbitrary units plotted vs D. The empty symbols display C
and H calculated using the data rearranged randomly, thus demon-
strating that the statistical complexity measures C and H quantify
temporal correlations. �d� C vs H �dots, red online�. The solid lines
indicate the boundary values, Cmax and Cmin.
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FIG. 2. �Color online� As Fig. 1, but the modulation frequency
is varied while the noise level is kept fixed �D=0.05�.
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sponding to the resonances, there is an enhancement of time
correlations, resulting in the probability distribution of the
ordinal patterns being different from the uniform distribu-
tion. Correspondingly, there is a decrease in the entropy �rev-
eling some degree of order� and also an increase in the sta-

tistical complexity measure. We identified this behavior as
the hallmark of resonantlike behavior. We stress that similar
results as those displayed in Figs. 1–3 for H and C were
found when using embedding dimensions D=4 and 5. Also,
when the total length of the time series was reduced to M
=30 000 �indicating that the probability distribution of the
ordinal patters was stationary, validating in this way the re-
quirement M �D!�.

In summary, we have shown that the information-theory
measures, the normalized Shannon entropy, and MPR statis-
tical complexity can be employed to detect and quantify
resonantlike behavior in the form of enhanced temporal or-
der induced by the variation in a system parameter or by the
variation in the noise level. The success of the method is
based on an appropriate reconstruction of the attractor and on
an appropriate partition of the phase space that results in
ordinal patterns having a probability distribution that fully
characterizes the temporal correlations in the system.

Our results suggest that information-theory complexity
measures can have potential for detecting subtle forms of
noise-induced resonances, such as aperiodic stochastic reso-
nance. It addition, the methodology proposed here can be
used for studying the effects of heterogeneities and corre-
lated noise in spatially extended systems �15�.
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FIG. 3. �Color online� Quantifying coherence resonance in the
FitzHugh-Nagumo model. �a� Normalized variance of the interspike
intervals, Rp, vs the noise intensity for two sets of parameters �filled
symbols: �=0.01 and a=1.05; empty symbols: �=0.1 and
a=1.005�. �b� MPR statistical complexity �triangles� and the nor-
malized Shannon entropy �squares� vs the noise intensity, D, for the
same parameters.
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