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Statistical complexity measures are used to quantify the degree of complexity of the
delayed logistic map, with linear and nonlinear feedback. We employ two methods
for calculating the complexity measures, one with the ‘histogram-based’ probability
distribution function and the other one with ordinal patterns. We show that these
methods provide complementary information about the complexity of the delay-induced
dynamics: there are parameter regions where the histogram-based complexity is zero
while the ordinal pattern complexity is not, and vice versa. We also show that the time
series generated from the nonlinear delayed logistic map can present zero missing or
forbidden patterns, i.e. all possible ordinal patterns are realized into orbits.

Keywords: nonlinear dynamics; time-delayed systems; complexity; time-series analysis

1. Introduction

Time-delayed systems have attracted wide interdisciplinary interest, as delays,
which arise from finite response and/or propagation times, are ubiquitous in
nature. Examples can be found in small-scale systems, such as nano-optical
resonators and micro-ring lasers, where many effects depend on the finite speed of
propagation of light along the cavity [1]; in large-scale systems, such as the brain,
where time delays play central roles in the dynamics of neural networks [2]; in
epidemic models, where delays are used to describe various immunity degrees
[3,4]; and in vehicular traffic models, where delays arise owing to finite reaction
times etc. [5].
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A delay adds memory to a system, as the future state of the system depends
on the past states over a finite interval of time. Moreover, the presence of delays
often results in patterns of oscillatory behaviour that repeat from time to time
and that strongly depend on the initial conditions, multi-stability being a well-
known feature in delayed systems [6,7]. In addition, time delays add new degrees
of freedom, which can result in the delayed system having a high-dimensional
dynamics similar to that of spatio-temporal systems [8–12].

These delay-induced features (memory, multi-stability, high dimensionality)
are characteristic of complex systems [13]. While phase portraits, power
spectra, Lyapunov exponents and fractal dimensions are very useful tools for
characterizing low-dimensional dynamics, they can fail to capture the patterns
and the correlations that are often present in high-dimensional systems.

The interplay of delay and nonlinearity plays a central role in self-organization
and complex phenomena that arise in small-scale (in interacting many-particle
systems, such as atoms, molecules and multi-electronic systems, in mesoscopic
systems such as quantum dots, etc.) as well as in large-scale systems (cellular
automata, neural networks, social sciences, etc.). Meaningful measures that
capture the complexity of these systems can shed light on the underlying
nonlinear interactions. While we all have an intuitive notion about complexity,
as an intermediate situation between full order (certainly) and full randomness
(complete unpredictability), there is no general definition of complexity, and its
quantitative characterization is a challenging task that has received considerable
attention. In the last three decades, many different complexity measures have
been proposed that capture various aspects of complex systems, and that are
based on data compression algorithms, optimal predictability, recurrence plots,
symbolic analysis, wavelet analysis, etc. [14–26].

Complexity measures have been shown to be powerful tools for detecting
dynamical changes in time series from epileptic patients [27] and in speech signals
[20,28], for distinguishing chaotic signals from stochastic ones, for distinguishing
among different degrees of stochasticity [29], for quantifying stochastic and
coherence resonances [30], and for classifying spatio-temporal patterns [31,32]
and neural networks [33,34] etc.

From the fundamental and applied perspectives, the quantification of patterns
and subtle correlations present in nano- and mesoscopic systems is of broad
interest. To mention just a few other examples, at the quantum level, complexity
measures computed using Hartree–Fock wave functions for neutral atoms in
the position and momentum spaces allow us to show the subshell pattern of
the periodic table [35]; complexity measures have been used to quantify the
disequilibrium associated with the quantum-mechanical probability density of
hydrogenic stationary states, allowing for a classification of orbital complexity in
terms of quantum numbers [36]. At the mesoscopic level, complexity measures
allow us to differentiate between protein-coding and non-coding RNA segments
in DNA sequences [37].

Although time-delayed nonlinear systems have received much attention, no
systematic quantification of the complexity exhibited by these systems has
been done so far to the best of our knowledge. In this article, we carry out
the first step towards this by considering a discrete-time nonlinear dynamical
system, specifically the delayed logistic map, and study the relationship between
nonlinearity, time delay and the complexity of the dynamics.
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Our motivation for focusing on the logistic map is twofold: first, because the
logistic map is a popular well-known example of how chaotic dynamics and
universal scaling laws arise in simple nonlinear dynamical systems and delayed
logistic maps; and, second, because one can perform long simulations, even in
the presence of long delays, with a great reduction in computational time and
memory requirements, when compared with delay-differential equation models.
At the small scale, nonlinearities are often fundamental to understand a system’s
behaviour, and the delayed logistic map can therefore be useful for studying the
interplay of delay and nonlinearity.

Several authors have analysed the complexity of the logistic map, employing
various complexity measures [20,22,38,39], but no systematic study of the delayed
logistic map has been done.

We consider two ways of including a delay in the logistic map: with linear
feedback (‘echo’ type, referred to as ‘model A’ [40]) and with nonlinear feedback
(referred to as ‘model B’ [41]) .

In order to quantify the complexity of the time series {x(t)} generated from
the delayed logistic map, we employ two information theory tools: the normalized
Shannon’s entropy, H , and the MPR-statistical complexity, C , proposed by
Martín et al. [24]. To compute H and C , one needs to associate with the time
series {x(t)} a probability distribution function (PDF) that characterizes the time
series. Here, the PDF is calculated in two different ways: one is the ‘conventional’,
frequency count method, by which the PDF is calculated from the histogram of
the values of {x(t)}, and, thus, it does not take into account time correlations
arising from repeated oscillatory patterns present in the time series; the second
way is by first transforming the time series {x(t)} in a sequence of ‘ordinal
patterns’ [20,42], and then computing the PDF of the ordinal patterns. The PDF
constructed in this way characterizes the temporal correlations in the time series
{x(t)}, but neglects the absolute magnitude of the oscillations in the time series.

We show that the normalized entropy and the statistical complexity calculated
with histogram-based PDFs, Hhis and Chis, and with ordinal pattern-based PDFs,
HBP and CBP, give complementary information about the complexity of the
delayed logistic map: we find parameter regions where Chis ≈ 0 while CBP �= 0,
and also regions where Chis �= 0 while CBP ≈ 0. These results can be understood
by looking at the oscillations present in the time series generated by the delayed
logistic map.

This article is organized as follows. The delayed logistic map with linear
and nonlinear feedback is introduced in §2, where we also discuss the measures
employed, the normalized Shannon entropy and MPR-statistical complexity, and
the ordinal pattern methodology. In §3, we present the results, and analyse
the complexity of the time series generated by the delayed logistic map as a
function of the delay time and the feedback strength. We consider the value
of the logistic parameter such that the dynamics of the undelayed map is
periodic (an orbit of period 2) and, also, a value of the logistic parameter
such that the dynamics of the undelayed map is chaotic. We show that, in
both cases, the delay induces a highly complex dynamics, but it has different
features that can be captured by the complexity measures. We also show
that for long delays there is saturation as the normalized Shannon entropy
and the statistical complexity remain nearly constant. Our conclusions are
presented in §4.
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2. Methods

(a) Models and information theory quantifiers

We consider two schemes for including a time delay in the logistic map. The linear
scheme (model A) is

x(t + 1) = f (x(t)) − h[x(t − t) − x(t)], (2.1)

and the nonlinear scheme (model B) is

x(t + 1) = f (x(t)) + h[f (x(t − t)) − f (x(t))]. (2.2)

In equations (2.1) and (2.2), f (x) is the logistic map, f (x) = rx(1 − x) with
parameter r , t is a discrete time index, h is the strength of the feedback and
t is the delay time, t = 0, 1, 2, . . .. To generate a trajectory from equations (2.1)
and (2.2) one needs, as the initial condition, not only x(0) but also t past values
of x , i.e. one needs to specify x(−t), . . . , x(0). Thus, equations (2.1) and (2.2) are
t + 1-dimensional dynamical systems.

(b) Information theory quantifiers

Let us now present the information theory measures employed to analyse a
time series {x(t), t = 1, . . . , M } generated from either model A or model B.

Statistical complexity measures can be classified into three categories [19]:
(i) they grow with increasing disorder, (ii) they are small for large amounts of
either order or disorder, and display a maximum at some intermediate stage, and
(iii) they grow with increasing order. The MPR-statistical complexity employed
here belongs to the second family of complexity measures, and vanishes in the
two extreme situations of perfect order and complete randomness, as the two
situations possess no structure to speak of.

The MPR-statistical complexity is a modification of the complexity measure
proposed by Lopez Ruiz, Mancini and Calbet (LMC-statistical complexity, [17]).
The LMC-statistical complexity is the product of the normalized Shannon entropy
multiplied by a disequilibrum, C = H · Q. The disequilibrum, Q, is a function of
the probability distribution characterizing the system and captures the system’s
‘architecture’, being different from zero if there are ‘privileged’, or more probable,
states among the accessible ones.

Given a PDF, P associated with the time series {x(t)}, the normalized Shannon
entropy is

H [P] = S [P]
Smax

, (2.3)

where S [P] = − ∑N
i=1 pi log pi , with Smax = S [Pe] = log N and Pe = {p(e)

i = 1/N ;
i = 1, . . . , N } is the equilibrium uniform distribution.

The disequilibrium functional, Q[P, Pe], for the complexity measure proposed
by LMC, is the Euclidean ‘distance’ from P to Pe. Martín et al. [24] redefined
the disequilibrium, replacing the Euclidean distance by the Jensen–Shannon
divergence, which is the symmetric form of the Kullback–Leiber relative entropy
[43]. The main idea underlying this notion of distance is that of adequately taking
into account statistical fluctuations inherent to any finite sample. The concept
of statistical distance originates within the field of quantum mechanics [44]: as a
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result of the inherent statistical errors, the observed frequencies of occurrence of
the various possible outcomes typically differ from the actual probabilities, with
the result that, in a given fixed number of ‘trials’, two ‘states’ are indistinguishable
if the statistical difference between the actual probabilities is smaller than the size
of a typical fluctuation.

Therefore, the MPR-statistical complexity calculated as in Martín et al. [24]
and Rosso et al. [29] is

C [P] = H [P] · QJ [P, Pe], (2.4)

where QJ [P, Pe] = Q0 · {S [(P + Pe)/2] − S [P]/2 − S [Pe]/2}, with Q0 a normal-
ization constant (0 ≤ QJ ≤ 1) that reads Q0 = −2{((N + 1)/N ) ln(N + 1) −
2 ln(2N ) + ln N }−1.

(c) Ordinal patterns methodology

Various methods can be employed to define a PDF that characterizes the time
series {x(t), t = 1, . . . , M }. The standard procedure is by computing the histogram
of the continuous variable x(t), 0 ≤ x ≤ 1, which defines the PDF P(x). This can
be useful, but it has the drawback that time correlations are lost, i.e. the causal
order by which the different values appear in the sequence {x(t), t = 1, . . . , M } is
not taken into account.

An alternative approach is based on computing the PDF of ‘ordinal patterns’.
The method, originally proposed by Bandt & Pompe (BP, [20]), is based on the
comparison of neighbouring values in the time series. The method is powerful
but rather new, and, therefore, we present in this section a discussion of the
main ideas.

The first step is to divide the time series {x(t), t = 1, . . . , M } into M − D
overlapping vectors of dimension D. Then, each element of a vector is replaced
by a number from 0 to D − 1, in accordance with the relative strength of the
element in the ordered sequence (0 corresponding to the shortest and D − 1 to
the longest value in each vector). Each vector then has an associated ‘ordinal
pattern’ composed of D symbols.

For example, with D = 3, the sequence {x(t), x(t + 1), x(t + 2)} = {5, −1, 10}
gives the ordinal pattern (1 0 2), as x(t + 1) < x(t) < x(t + 2).

The number of different ordinal patterns of dimension D is D! and can be
labelled with an index n = 1, . . . , D!. For D = 3, the six possible ordinal patterns
can be labelled as (0 1 2) = 1, (0 2 1) = 2, (1 0 2) = 3, (1 2 0) = 4, (2 0 1) = 5 and
(2 1 0) = 6.

In this way, the time series of M real numbers {x(t), t = 1, . . . , M } is
replaced by a sequence of M − D integers, {n(t), t = 1, . . . , M − D, 1 ≤ n(t) ≤ D!},
representing the ordinal patterns.

By counting the number of times a pattern ni appears in the sequence
{n(t), t = 1, . . . , M − D}, one can compute the PDF of the ordinal patterns. Since
the number of possible ordinal patterns is D!, to be statistically correct one must
have a long time series, such that (M − D) � D!.

Figure 1 presents the results of analysing two trajectories generated from model
A, starting with random initial conditions (the details of the simulations will
be presented §3). In figure 1a, we show a small part of one trajectory, and, as
examples, we mark with squares three consecutive values that give the ordinal
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Figure 1. Results for the linear feedback-delayed logistic map, with parameters r = 3.2, h = 0.8 and
t = 6. We present results for two random realizations of the initial conditions. (a,d) A small part
of the time series is shown, and, as examples with dimension D = 3, the following ordinal patterns
are identified: (a) (1 2 0) (squares) and (2 0 1) (circles); (d) (1 2 0) (squares) and (2 1 0) (circles).
(b,e) The PDF-BP is calculated with ordinal patterns of dimension D = 3. (c,f ) For comparison,
we also present the histogram-based PDF.

pattern (1 2 0) = 4, and with circles three consecutive values that give the ordinal
pattern (2 0 1) = 5. Figure 1b displays the PDF of the D = 3 ordinal patterns (for
comparison, figure 1c shows the histogram-based PDF of the same time series)
and one can see that the ordinal pattern (2 1 0) = 6 has probability zero. The
patterns that are not observed in a time series are referred to as ‘missing patterns’
and will be discussed in §3. It has been shown that piecewise monotone one-
dimensional maps always have ‘forbidden patterns’, which are permutations that
do not appear in any trajectory obtained by iterating the map, starting from
any point in the interval [45,46]. Basic or minimal forbidden patterns, which are
those for which any proper consecutive subpattern is allowed, have been studied
for various maps [47]. Forbidden patterns can, therefore, be used to distinguish
random sequences, where every permutation appears with some probability, from
deterministic sequences produced by iterating a one-dimensional map [48].

In figure 1d–f, we present results for a second trajectory, obtained with a
different realization of the random initial conditions. One can notice that the
ordinal pattern (2 1 0) = 6 appears in this time series (see the consecutive values
indicated with circles in figure 1d). Moreover, comparing the PDFs of the two
trajectories one can notice that both the ordinal pattern PDF (figure 1b,e) and
the histogram-based PDF (figure 1c,f ) are very different, suggesting that the
trajectories evolve in different attractors. As was discussed in §1, multi-stability
can be expected as it is a typical feature of time-delayed systems.

The ordinal pattern method of associating a PDF with the time series
{x(t), t = 1, . . . , M } has the main advantage that it takes into account the time
correlations in the sequence of values; however, it also has two drawbacks. First,
the information about the absolute value of the variable x(t) is neglected, as
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it only takes into account the relative strength of x(t) in the sequence of D
consecutive values. Second, equal values in the time series are not accounted
for, because such values appearing in the sequence, either in a periodic or in a
non-periodic way, are neglected. It is in principle possible to use a small random
perturbation to break the equality; however, this can be a strong distortion if
there is a large number of consecutive equal values [26].

3. Results

In this section, we present the results of calculating the normalized Shannon
entropy and the MPR-statistical complexity of the time series generated from
the delayed logistic map, employing the two methods discussed previously for
associating a PDF with the time series: one is referred to as ‘histogram-based’,
where Hhis and Chis are calculated according to equations (2.3) and (2.4),
with P computed in terms of the histogram of values of x(t); the other one
is referred to as ‘ordinal pattern based’, where HBP and CBP are calculated
according to equations (2.3) and (2.4), but with P computed from ordinal patterns
(BP methodology).

Time series of length M = 106 were generated from models A and B, with
initial conditions [x(−t), . . . , x(0)], such that x(−t) is chosen randomly in
the interval (0,1) and then the map evolves without feedback in the first t
iterations. In each run, the first 2 × 106 iterations were disregarded in order to
let transients disappear.

Figure 2 for model A and figures 3 and 4 for model B display results of
simulations for varying delay time, t, and feedback strength, h. In figures 2 and 3
the logistic parameter is r = 3.2, and, thus, the dynamics of the non-delayed map
is periodic, in a limit cycle of period 2. For the linear feedback model A, r and h
cannot be too large in order to have trajectories that remain in the interval [0, 1];
large values of r or h result in run away trajectories. With nonlinear feedback,
model B, one can explore a wider parameter region. In figure 4, which is for
model B, we choose r = 4.0, and, thus, the dynamics of the undelayed logistic
map is chaotic.

Panels (a,b) of figures 2–4 display typical bifurcation diagrams when (a) t or
(b) h increase. It can be seen that the delay induces complex dynamics, and it
can also be seen that the orbit of period 2 is stable for h small and t even, while
the fixed point is stable for h and t small and t odd.

Panels (c–e) and (f –h) of figures 2–4 display the averaged values of the
normalized Shannon entropy and of the statistical complexity respectively: panels
(c,f ) correspond to H and C calculated with the BP method (ordinal patterns
of dimension D = 6); panels (d,g) correspond to H and C calculated with the
histogram method. In order to check for delay-induced multi-stability, for each
set of parameters (h, t), 50 trajectories were generated with different random
initial conditions. We computed the standard deviations of H and C (sH ,his,
sH ,BP, sC ,his, sC ,BP), and considered that multi-stability occurred if any s value
was larger than a certain threshold. In figures 2–4, panel (e) displays the regions
of multi-stability. Also in figures 2–4, panel (f ) displays the average number of
forbidden patterns, in the sense that ‘missing’ patterns do not appear in the
time series.
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Figure 2. Results for the linear feedback-delayed logistic map, with the logistic parameter being
r = 3.2, and, thus, the dynamics is periodic (a limit cycle of period 2) in the absence of delay.
Bifurcation diagrams for varying (a) delay time and (b) (h = 0.2, t = 15) feedback strength. (c–e)
Two-dimensional plots of the normalized Shannon entropy calculated (c) with ordinal patterns (BP
method), and (d) with the histogram of x values. (e) The regions of mono-stability (black) and
multi-stability (white). (f –h) Two-dimensional plots of the statistical complexity calculated (f )
with the BP method, and (g) with the histogram method. (h) The number of forbidden patterns
in the time series. The black lines in the two-dimensional plots indicate the variation in t or h

corresponding to the bifurcation diagrams shown.

In figures 2–4 one can see that the normalized entropy and the statistical
complexity vary with h but tend to saturate with t; for t longer than a few
units, H and C remain nearly constant with increasing t. This saturation effect
is seen when H and C are computed with histograms and with ordinal patterns,
and is in agreement with the behaviour seen in other time-delayed systems.
For example, in the Mackey and Glass model for blood production [49], in
the Ikeda ring-cavity model [50] and in the Lang and Kobayashi model for a
semiconductor laser with optical feedback [11], with increasing delay a linear
increase in the Lyapunov dimension is observed while the metric entropy remains
nearly constant.
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Figure 3. Same as figure 2 but for nonlinear delayed feedback. Bifurcation diagrams for varying
(a) delay time and (b) (h = 0.2, t = 15) feedback strength. (c–e) Two-dimensional plots of the
normalized Shannon entropy calculated (c) with ordinal patterns (BP method), and (d) with the
histogram of x values. (e) The regions of mono-stability (black) and multi-stability (white). (f –h)
Two-dimensional plots of the statistical complexity calculated (f ) with the BP method, and (g)
with the histogram method. (h) The number of forbidden patterns in the time series. The black
lines in the two-dimensional plots indicate the variation in t or h corresponding to the bifurcation
diagrams shown.

In the linear model A, multi-stability (figure 2c) occurs for large enough h;
an example of two trajectories evolving in coexisting attractors was presented in
figure 1. As discussed in relation to figure 1, these attractors can be distinguished
by different PDFs, and they can have different ‘forbidden’ patterns. One can
observe in figure 2e that the number of forbidden patterns tends to decrease with
increasing h and also seems to saturate with increasing t.

For small h and t, the bifurcation diagrams shown in figure 2a reveal that
the trajectories are either orbits of period 2 for even delays, or a stable point
for odd delays. Because of the drawback of the BP method discussed in §2, i.e.
that it does not take into account identical values, numerical noise can have a
strong influence on the values of HBP and CBP in the parameter region where the
trajectory evolves in a periodic orbit or stays at the fixed point, while it leaves
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Figure 4. As figure 2, but for nonlinear delayed feedback. r = 4.0, and, thus, the dynamics of the
map is chaotic in the absence of delay. Bifurcation diagrams for varying (a) delay time and
(b) (h = 0.2, t = 15) feedback strength. (c–e) Two-dimensional plots of the normalized Shannon
entropy calculated (c) with ordinal patterns (BP method), and (d) with the histogram of
x values. (e) The regions of mono-stability (black) and multi-stability (white). (f –h) Two-
dimensional plots of the statistical complexity calculated (f ) with the BP method, and (g) with
the histogram method. (h) The number of forbidden patterns in the time series. The black lines
in the two-dimensional plots indicate the variation in t or h corresponding to the bifurcation
diagrams shown.

rather unaffected Hhis and Chis. For the non-delayed logistic map, the influence of
noise was analysed by Bandt & Pompe [20], who showed that observational noise
(noise added to the time series) causes only a small increase in entropy, while
dynamical noise, added to x(t) during each step of the iteration, results in the
entropy being a smoother function, approximating the entropy of the undisturbed
time series for small noise level. For the delayed logistic map, it will be interesting
to study the influence of noise, as the interplay of noise and delay could result in
peculiar dynamical features.

For model B, in figure 3, which is shown for r = 3.2 as in figure 2, one can see
that, for strong nonlinear feedback (h close to 1), H and C present different
behaviours, depending on whether they are computed with histogram-based
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Figure 5. Time series generated for model B with r = 3.2. (a) t = 6, h = 0.96; (b) t = 7, h = 0.96;
(c) t = 7, h = 0.99.

PDF or with ordinal pattern-based PDF. For h ≈ 1, Hhis ≈ 0 and Chis ≈ 0
regardless of t, while HBP, CBP > 0.4. Multi-stability also occurs for even delays
and h ≈ 1.

The different behaviour of (HBP, CBP) and (Hhis, Chis) can be understood when
looking at the time series {x(t)}. Typical examples are presented in figure 5,
where one can see that a peculiar delay-induced dynamics occurs: the orbit
is periodically switching between two values, but the switching is such that,
with a certain periodicity, a ‘switch’ is skipped or missed. This behaviour is
robust and we have observed it for other values of r , such that the dynamics
of the undelayed logistic map is periodic. The periodicity of the skippings
seems to be related to both the delay time and the ‘natural’ period of the
orbit of the undelayed logistic map. Clearly, time series such as those shown
in figure 5 have very simple histogram-based PDFs, resulting in Hhis ≈ 0 and
Chis ≈ 0, but have structured ordinal pattern PDFs, resulting in HBP and CBP
different from zero.

In figure 4, which is shown for nonlinear feedback and r = 4, we also see a
parameter region where Chis ≈ 0 while CBP �= 0 and Hhis ≈ 1, whereas HBP �= 1,
which can also be interpreted as being due to the fact that the PDF-BP has a
non-trivial structure, which results in values of HBP and CBP different from 1 and
0, respectively, while the PDF histogram is closer to the uniform distribution,
giving Chis ≈ 0 and Hhis ≈ 1.

In figure 4h one can see that, for large enough h and delays longer than a few
units, the number of forbidden patterns is equal to zero, i.e. all the possible ordinal
patterns (for D = 6, 720 patterns) are in fact present in the time series. This is in
agreement with the fact that, in this region, HBP ≈ 1 and CBP ≈ 0, revealing that
the PDF of the ordinal patterns is close to the uniform distribution.

As discussed in §2, Amigó and colleagues [42,45,46,48] have shown that, for
deterministic maps, not all ordinal patterns can be materialized in the orbits,
not even if the dynamics is chaotic, which makes these patterns ‘forbidden’. For
example, in time series generated by the undelayed logistic map with r = 4, if we
consider patterns of length D = 3, the ordinal pattern (2 1 0) is forbidden. That
is, the pattern [x(t + 2) < x(t + 1) < x(t)] never appears in the time series [48].

We can see that in the delayed logistic map, with nonlinear feedback and r = 4
(figure 4h), the number of forbidden patterns decreases with h and t, and it
can even be zero for large h. This is a very interesting observation that merits
further investigation.
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4. Conclusions

To summarize, we studied the complexity of the time series generated from
the delayed logistic map, calculating the normalized Shannon entropy and the
MPR-statistical complexity. We employed two methods for associating a PDF
with the time series, the first one based on a ‘histogram PDF’, and the second
one based on an ‘ordinal pattern PDF’. We found that these methods give
complementary information about the complexity of the delay-induced dynamics:
we found parameter regions where the histogram-based complexity is close to
zero while the ordinal pattern complexity is not, and also parameter regions
where the ordinal pattern complexity is close to zero while the histogram-based
complexity is not. We have shown that the normalized entropy and the statistical
complexity vary with h but tend to saturate with t, i.e. for delays longer than a
few units, H and C remain nearly constant with increasing t. This is similar to
the saturation that occurs in delay differential equations (e.g. in the Mackey and
Glass model, in the Ikeda model and in the Lang and Kobayashi model): with
increasing delay there is a linear increase in the Lyapunov dimension while the
metric entropy remains nearly constant [11,49,50]. We analysed the time series
generated from different realizations of the random initial conditions (and the
same model parameters) and identified them as evolving on different attractors,
which were characterized by different histogram PDFs and ordinal pattern PDFs.
Multi-stability of coexisting attractors is also a well-known feature of delayed
systems. We also showed that, for strong feedback and nonlinearity, the time series
generated from the nonlinear delayed logistic map presents the very interesting
feature that it has zero forbidden patterns, i.e. there are no missing or unobserved
patterns and all possible ordinal patterns are effectively realized into orbits.
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