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Abstract. We analyse the stability of the steady-state solutions of the compound system formed
by a single-longitudinal-mode semiconductor laser and an external reflector. Of the large number
of these external cavity modes (ECMs) created in pairs of modes and antimodes by moderate
feedback, the antimodes are always unstable, while the modes may be stable or unstable when
created. The ECMs that have a large positive frequency shift with respect to the emission
frequency of the solitary laser are unstable when created. In contrast, the ECMs that have a
large, negative frequency shift are stable on creation and remain stable over a relatively large
feedback range. For sufficiently large feedback an ECM that is created stable gives way to a
time-dependent solution (limit cycle or torus) that is localized in phase space around the ECM;
several time-dependent attractors may coexist. Approximating the dynamical equations, taking
into account terms up to second order, we obtain relations for the amplitudes of the oscillations
of the laser variables for these attractors. The external cavity length and the injection current are
key parameters which determine these amplitudes. Our approximations are in good agreement
with numerical simulations, and hold even far from the bifurcation points where these attractors
originate.

1. Introduction

Optical feedback from a short external cavity is commonly used to improve the spectral
properties of a single-longitudinal-mode semiconductor laser (to narrow the linewidth, to
reduce the intensity noise and to improve the frequency stability) [1]. In contrast, even
weak feedback (of the order of∼10−6–10−1% of the emitted intensity) from a long external
cavity leads to the excitation of many external cavity modes (ECMs). The ECMs are not
modes of the empty cavity (which form an infinite set), but a finite set of self-consistent
steady-state solutions of the compound system, formed by the laser and the external reflector.
We chose a model for the laser, which in the absence of feedback describes operation in
a single (longitudinal) mode, but this might be said to become multimode in the presence
of feedback, in the sense that it might operate on several external cavity modes. The
frequency of the solitary laser mode is slightly modified by the feedback, which in addition
introduces new modes (the ECMs), which are located in the frequency domain around the
solitary laser frequency. For very low feedback levels many of the ECMs are stable, and
competition among the steady-state solutions can occur. For larger feedback the mode
competition is suppressed and the laser operates in a single ECM, usually the ECM with
the lowest linewidth. Moderate feedback induces a periodic modulation of the laser output.
Even larger feedback induces a chaotic state, with a broadband emission, termed coherence
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collapse [2, 3]. The sensitivity of these systems to giving way to time-dependent solutions
may affect how lasers can be used in optical communications systems, where laser diodes
coupled to optical fibres are routinely employed and for which external reflections cannot
be completely avoided.

For weak and moderately strong feedback levels many features of the dynamics of
a semiconductor laser can be described by the Lang and Kobayashi model [4], which
consists of two rate equations, one for the slowly varying amplitude of the intracavity
complex electric field of a single longitudinal mode of the solitary laser and one for the
carrier density in the semiconductor medium. The external cavity is described by two
parameters: the strength of the feedback,γ , and the delay time,τ , which is proportional to
the external cavity length. The equation for the evolution of the field amplitude contains a
time-delayed term to describe the field reflected form the external mirror (multiple reflections
are neglected).

The external cavity modes are steady-state solutions of the Lang and Kobayashi
equations and their number increases with eitherγ or τ . The steady-state solutions appear
in pairs; in each pair one is called a mode (associated with constructive interference of
the field inside the laser cavity and the field returning form the external mirror) and
the other is called an antimode (associated with destructive interference). The stability
of a particular steady-state solution is determined by the real part of the roots of a
complicated transcendental equation for the complex growth rates of small perturbations
from that solution (see, for example, equation (41) of [5], where the effect of nonlinear gain
suppression was not included, or equation (2.15) of [6], where nonlinear gain suppression
was taken into account). Two distinct types of instabilities have been identified: saddle-
node instabilities and Hopf instabilities. In a saddle-node instability there is one positive
root, which means that the steady-state solution is an unstable fixed point (an ‘antimode’).
In a Hopf instability there are two complex-conjugate roots with positive real parts, and the
instability corresponds to the growth of periodic modulations about the steady-state solution
when it is perturbed (this is typically associated with the destabilization of the relaxation
oscillations around the ECM, as the feedback is increased).

Several previous investigations have explored the asymptotic behaviour when the
relaxation oscillations are undamped. Using linear stability analysis Ritter and Haug
determined the location of the Hopf bifurcation points [6]. Similar results were obtained
by Erneuxet al [7] using asymptotic methods, in an approximation based on the small
value of the ratio of the photon and carrier lifetimes, and the assumption that the laser is
biased well above threshold. The criterion for a Hopf bifurcation for low values of the
pump current was examined in [8, 9] using singular perturbation methods. Levineet al
[10] proved that there always exists a feedback phase condition where a special ECM (one
which they call the maximum gain mode) is stable for arbitrarily large feedback strengths.
Increasing feedback levels destabilize relaxation oscillations around this mode, but before
this occurs, a new stable mode has appeared, which is the ‘new’ maximum gain mode.

By numerical simulation of the Lang and Kobayashi equations, we recently studied the
coexisting time-dependent attractors that develop locally in phase space from the ECMs as
the feedback strength is increased, for a laser biased well above threshold and subjected
to distant external reflection [11]. These ‘ECM attractors’ can be classified into distinct
categories, depending on the relation of the optical frequency,ωi , of the ECM from which
the attractor originates to the solitary laser optical frequency,ω0. When the laser operates on
an ECM withωi � ω0, the laser intensity is constant over a relatively large feedback range
(the maximum gain mode of [10] belongs to this category). In contrast, in our numerical
simulations we did not find any attracting solution that develops from ECMs withωi � ω0.
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When the laser operates on one of the ECMs with a frequency not much larger thanω0, as
the feedback increases a periodic or quasiperiodic modulation of the laser output appears
(i.e. the ECM attractor is a limit cycle or a torus). The so-called minimum linewidth mode,
which is the ECM in the deepest potential well of the ‘thermodynamic’ potential model
[12, 13], belongs to this category.

These previous studies raised the question: is it possible to observe the laser operating
on ECMs withωi � ω0? We have divided our analysis into two parts. In the first part
we study the stability of the external cavity modes, and in the second part, we analyse the
characteristics of the modulation induced by the external feedback.

We show analytically that these modes do not become unstable as the feedback increases,
but rather they are already unstable when they first appear. For increasing feedback the pairs
of steady-state solutions which haveωi � ω0 are both created unstable, one an unstable
mode and the other an unstable antimode. For these pairs the Hopf bifurcation occurs in the
antimodes. This bifurcation does not create a stable periodic behaviour because the fixed
point that undergoes the bifurcation has a positive real eigenvalue. However, experimentally
Mørk et al [14] found what appeared to be a similar type of subcritical Hopf bifurcation that
created stable periodic behaviour: at a certain feedback level an ECM becomes unstable and
a stable limit cycle appears, while at a higher feedback level, when another pair of complex-
conjugate eigenvalues acquire positive real parts, another stable limit cycle appears, which
is created from the fixed point (now unstable). The observation of bistability between limit
cycles evolved from the same ECM was explained theoretically in [15].

Ritter and Haug [16] showed that, near the Hopf bifurcation where the oscillations
originate, the relation between the amplitude of the limit cycle and the excess of the
feedback parameter above the bifurcation point is governed by the typical square-root law
of supercritical Hopf bifurcations. More recently, Alsinget al [17] derived a third-order
delay differential equation for the phase of the laser field (using asymptotic methods based
on the small ratio of the photon and carrier lifetimes, and on the relatively large value of
the linewidth enhancement factor). For this equation they proved that in a feedback region
in which only one ECM exists, there are coexisting periodic solutions that surround the
ECM, with amplitudes that are proportional to the roots of the Bessel functionJ1(x). The
limit cycle associated with the first root arises from a Hopf bifurcation of the ECM, while
the others arise from saddle-node bifurcations. The authors interpret the periodic solutions
surrounding the external cavity mode as a new set of external cavity modes, with a more
complicated time dependence.

For a laser biased well above threshold and subjected to distant external reflection, we
found in [11] that when it operates in an ECM with a frequencyωi ≈ ω̄ (whereω̄ is slightly
larger thanω0), moderate feedback destabilizes the ECM, inducing a periodic modulation
over a wide range of feedback. The ECMs with frequency slightly larger thanω0, which
are the first to become unstable as the feedback increases, give rise to the most stable ECM
attractors (in the sense that the periodic solutions are the last to become destabilized by
the feedback). When the laser operates on ECMs withωi > ω̄ or ωi < ω̄ the periodic
modulation occurs in an extremely narrow feedback range, followed almost immediately by
a second Hopf bifurcation that gives rise to quasiperiodic modulation. The quasiperiodic
modulation has two clearly distinct stages: one of large, almost periodic oscillations (that
resemble the periodic modulation), and another of small oscillations. In the first stage
(which we call the relaxation-oscillation stage) the amplitudes of the modulations of the
laser variables are similar for each of the different ECM attractors, and the laser has a mean
optical frequency,〈ω〉, that is approximately equal tōω. In the second stage the evolution
occurs close to the unstable (steady-state) ECM, and therefore〈ω〉 ≈ ωi .
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In this paper we explain these numerical results by deriving analytical relations for the
amplitudes of the modulations of the laser variable in the relaxation-oscillation stage, and
an equation for〈ω〉 in this stage. Our results agree with those of [16] in the domain of its
validity, but also hold for feedback levels well above the onset of periodic oscillations.

The remainder of this paper is organized as follows. Section 2 contains a brief
description of the model and the stability analysis of the ECMs, modes and antimodes.
In section 2 we approximate the Lang and Kobayashi equations, taking into account terms
up to second order, and we derive relations for the amplitudes of the modulations of the
laser variables in the ECM attractors. We compare our results with numerical simulations
of the original rate equations. Section 4 provides a summary and conclusions.

2. Stability of the external cavity modes

Writing the slowly varying amplitude of the intracavity electric field asE(t) exp[i(ω0t +
φ(t))], whereE andφ are real andω0 is the laser frequency without feedback, the Lang
and Kobayashi rate equations are [4]
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= 1

2
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]
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)
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The modulus of the electric fieldE(t) is normalized such thatVcE(t)
2 is the total photon

number in the laser waveguide (whereVc is the volume of the active region).N(t) is the
carrier population.1φ(t) = φ(t) − φ(t − τ) is the phase change after one round trip in
the external cavity. The other parameters areτs, the carrier lifetime;τp, the photon lifetime
andG, the gain per unit timeG = GN(N − N0)

(
1− εE2

)
, whereGN is the modal gain

coefficient,N0 is the carrier density at transparency andε the nonlinear gain coefficient.α
is the linewidth enhancement factor andJ is the current density in carriers per unit volume
and unit time.

The steady-state solutions are obtained by substitutingE(t) = Es, φ(t) = (ωi − ω0)t

andN(t) = Ns in equations (1)–(3). Their frequenciesωi are the solutions of

f (ωτ) ≡ ωτ − ω0τ + γ τ
√

1+ α2 sin(ωτ + arctanα) = 0. (4)

The carrier density and field amplitude of a given solution are found by solving

Gs,i = GN(Ns,i −N0)
(
1− εE2

s,i

) = 1/τp− 2γ cos(ωiτ ) (5)

and

J −Ns,i/τs−Gs,iE
2
s,i = 0. (6)

Equation (4) admits several solutions and their number increases asC = γ τ√1+ α2

increases. Figure 1 illustrates a typical situation with a graphical solution of equation (4)
for γ = 1.5 GHz, τ = 5 ns,α = 4.4 andω0 = 6 rad. There are 21 steady-state solutions.
The stability of each stationary solution can be determined by a linear stability analysis of
the rate equations in the vicinity of the solution. The solutions with frequencies that satisfy

1+ γ τ
√

1+ α2 cos(ωiτ + arctanα) < 0 (7)
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Figure 1. Graphical solution of equation (4) forγ = 1.5 GHz, τ = 5 ns, α = 4.4 and
ω0τ = 6 rad. The circles indicate the modes, the squares the antimodes and the dotted line the
value ofω0τ .

have a real, positive eigenvalue and are therefore unstable saddle (‘antimodes’). The other
solutions are termed ‘modes’. The antimodes are the solutions for which the slope off (ωτ)

is negative. When a pair of solutions appears, one is always an antimode.
The feedback level at which a saddle-node bifurcation occurs and a pair of solutions of

frequencyωsn
i appears is [11]

γ sn
i =

−1

τ
√

1+ α2 cos(ωsn
i τ + arctanα)

(8)

whereωsn
i is a solution of

ωiτ − ω0τ = tan(ωiτ + arctanα). (9)

If ωRτ = (2m + 1)π (whereωR =
√
GN(J − Jth) is the relaxation-oscillation angular

frequency of the solitary laser), a good approximation of the feedback rate at which a Hopf
bifurcation occurs in the ECM with frequencyωi is [6, 10]

γ H
i =

−λR√
1+ α2 cos(ωiτ + arctanα)

(10)

whereλR =
[
1/τs+ (τp + ε/GN)ω

2
R

]
/2 is the damping rate of the solitary laser. (For this

feedback level, the ECM with frequencyωi has a pair of complex-conjugate eigenvalues
with zero real part,s = ±i�, with � ≈ ωR.)

Figure 2(a) shows, for the same parameter values as figure 1 andλR = 3.8 GHz, the
feedback levels at which saddle-node and Hopf bifurcations occur. Forγ = 1.5 GHz
(broken curve) we have five pairs of solutions with mode numberi < 0, five with i > 0
and thei = 0 mode. For the ECMs with mode numberi = −3,−4 and−5, γ H is greater
than 1.5 GHz, thus these modes are stable. The most unstable solution has mode number
i = 2 (the one which has lowestγ H).
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Figure 2. (a) Saddle-node and Hopf curves in the(ωτ, γ ) plane. The circles indicate where
pairs of ECMs appear, and the squares, where the ECMs undergo Hopf bifurcations. The
ECMs are labelled in accordance with figure 1. The parameters areτ = 5 ns, α = 4.4,
ω0τ = 6 rad andλR = 3.8 GHz. (b) Variation of the external cavity modes (modes and
antimodes) with negative mode number in the(tan(ωiτ ), γ ) plane. The saddle-node curve
(full) was calculated from equation (8), and the Hopf curve (broken) from equation (10). The
evolution of the ECMs in this plane (dotted) was calculated from equation (4). With increasing
feedback, the modes and antimodes separate in phase space. The modes move to the left and
the antimodes to the right. The circles indicate where a pair of ECMs appear, and the squares
indicate where a Hopf bifurcation occurs. (c) Evolution of the ECMs (modes and antimodes)
with positive mode number. The modes move to the right and the antimodes to the left with
increasingγ .

The bifurcation diagram is similar to that of a laser diode with monochromatic external
optical injection [18, 19]. In the (input field frequency, input field amplitude) plane, the
curve above which relaxation oscillations become undamped ‘touches’ the line below which
locking cannot be achieved in the positive frequency region, while it is above and almost
parallel to this line in the negative frequency region (see, for example, figures 4 and 5 of
[18], or figure 1 of [19]).
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Figure 2. Continued.

To display the stability of the steady-state solutions in more detail, figure 2(b) shows
the evolution in the(tan(ωiτ ), γ ) plane of the solutions withi < 0, and figure 2(c) shows
the evolution of the solutions withi > 0. On the saddle-node curve (full curve) pairs of
solutions appear. Asγ grows the modes and antimodes separate in phase space. The modes
with i < 0 move to the left, and the antimodes move to the right (figure 2(b)), while the
modes withi > 0 move to the right and the antimodes move to the left (figure 2(c)). (If γ
increases andω0τ is fixed, the amplitude of the sine term in (4) grows, and in figure 1 the
modes withi > 0 move to the right, decreasing their frequency, the modes withi < 0 move
to the left, increasing their frequency, while the frequency of the antimodes decreases.)

When a solution crosses the Hopf boundary (broken curve), two complex-conjugate
eigenvalues of the linearized system change the sign of their real parts. If the ECM is a
stable mode, relaxation oscillations around this mode become undamped and self-sustained
oscillations (of frequency approximately equal toωR) appear; if the ECM is unstable,
the mode remains unstable but the dynamical transient changes, giving evidence of the
Hopf bifurcation which adds complex-conjugate eigenvalues with positive real parts to the
eigenvalues with positive real parts.

We first consider the stability of the ECMs withωi < ω0. In figure 2(b), for
γ = 1.5 GHz (this value corresponds to figure 1 and is indicated by a chain curve) the
ECMs with i = −3,−4 and−5 are below the Hopf curve and therefore have not become
unstable yet; the other ECMs have already crossed the curve and lost stability.

The modes with large negative mode number (which appear for moderately strong
feedback) cross the Hopf curve at high feedback levels. This agrees with the stability
analysis of Levineet al [10]. (The maximum gain mode is the ECM with maximum
negative frequency shift with respect toω0; see figure 1 of [10].) However, numerical
simulations reveal that these ECMs have narrow basins of attraction [11].

Next we analyse the stability of the ECMs withωi > ω0. As shown in figure 2(c),
the ECMs with large positive mode number (which appear for moderately strong feedback)
are created unstable, because when they first appear they are above the Hopf curve. For
increasingγ the modes move to the right and the antimodes to the left. Therefore, the
antimodes cross the Hopf curve and undergo a Hopf bifurcation. We have found these
bifurcations numerically, by integrating equations (1)–(3). A fourth-order Runge–Kutta



526 C Masoller and N B Abraham

Table 1. Parameter values used in the numerical simulations.

α 4.4
ω0τ 6 rad
τp 0.0014 ns
τs 1 ns
J/Jth 2
ωR 42 GHz
GN 839× 10−24 m3 ns−1

1J 1.23
ξ 1.40
ε 2× 10−24 m3

ε′ 0.0048
ε′1J 0.0058
ε′′ 0.05

Figure 3. Numerical simulation of equations (1)–(3). (a) Initial conditions in antimodei = 10
(indicated with a square),γ = 2.68 GHz. (b) Initial conditions in modei = 10 (indicated with
a circle),γ = 2.68 GHz. (c) Initial conditions in antimodei = 10, γ = 2.69 GHz. (d) Initial
conditions in modei = 10, γ = 2.69 GHz.

method was used (with an integration step1t = 0.001 ns) with the laser parameters of
table 1, which are the same as in [11]. We have taken the external cavity parameters to
be τ = 5 ns andγ slightly below and above the Hopf bifurcation point. As an example,
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figure 3 shows the results for initial conditions in the mode and antimode with mode number
i = 10 (γ H

10 = 2.684 GHz). Both the antimode and the mode are already unstable belowγ H
10,

and after a transient, the trajectory leaves the vicinity of these modes (figures 3(a) and (b)).
Above γ H

10 they are also unstable, but the transient is different, suggesting the existence of
a new unstable quasiperiodic solution (figures 3(c) and (d)).

3. Relaxation-oscillation phenomena

Next, we study the characteristics of the modulation induced by moderate feedback levels,
when the laser operates on ECM attractors with frequencies nearω0. As an example, figure 4
shows four coexisting attractors of equations (1)–(3). The external cavity parameters are
γ = 1.2 GHz andτ = 10 ns. The variablese andn are defined below, in equation (20).
From ECM modesi = −1, 1 and 6, quasiperiodic tori have developed (figures 4(a), (b)
and (d)); from modei = 3 a limit cycle has developed (figure 4(c)).

The feedback levels above which relaxation oscillations around these modes become
undamped areγ H

−1 = 1.017, γ H
1 = 0.885, γ H

3 = 0.844 andγ H
6 = 0.973 GHz. Therefore,

the feedback levelγ = 1.2 GHz is 18%, 35%, 42% and 23% aboveγ H
−1, γ

H
1 , γ

H
3 andγ H

6 ,
respectively. Note, however, that in the four ECM attractors the relaxation-oscillation stage
is similar, almost an ellipse in the phase space, and that the amplitudes of the oscillations
are almost equal.

Figure 4. Coexisting ECM attractors, forγ = 1.2 GHz, τ = 10 ns. Thex-axis represents the
carrier densityn(t), they-axis the phase delay1φ(t), and thez-axis the electric field 1+ e(t).
(a), (b) Quasiperiodic tori developed from ECMsi = −1 andi = 1; (c) limit cycle developed
from ECM i = 3; (d) quasiperiodic torus developed from ECMi = 6.
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Our goal is to obtain relations for the amplitudes of the oscillations and mean values of
the laser variables in the relaxation-oscillation stage. We rescale the variables by introducing

E =
√

1
2τsGN E 1N = 1

2τpGN(N −Nth) (11)

whereNth is the threshold current density. The gain function can be written as

G
(
1N,E2

) = 1

τp
+ 21N

τp
− ε′

(
1

τp
+ 21N

τp

)
E2 (12)

whereε′ = 2ε/τsGN . Equations (1)–(3) can be re-written as

dE

dt
= 1NE

τp
− ε′

2τp
(1+ 21N)E3+ γE(t − τ) cos(ω0τ +1φ) (13)

dφ

dt
= α1N

τp
− αε

′

2τp
(1+ 21N)E2− γ E(t − τ)

E(t)
sin(ω0τ +1φ) (14)

τs
d1N

dt
= 1J −1N − (1+ 21N)E2+ ε′(1+ 21N)E4 (15)

where1J = τpτsGN(J − Jth)/2= τpτsω
2
R/2. Making another change of variables

E =
√
1J(1+ e) φ = ϕ − ω0t n = 1N

ωRτp
(16)

and assuming that1J 6= 0 leads to
1

ωR

de

dt
= n(1+ e)− ε′′(1+ 2ωRτpn)(1+ e)3+ γ ′[1+ e(t − τ)] cos(1ϕ) (17)

1

ωR

dϕ

dt
= ω0

ωR
+ αn− αε′′(1+ 2ωRτpn)(1+ e)2− γ ′ 1+ e(t − τ)

1+ e(t) sin(1ϕ) (18)

1

ωR

dn

dt
= −ξωRτpn− e − 2ωRτpne − 1+ 2ωRτpn

2
e2+ ε

′1J
2

(1+ 2ωRτpn)(1+ e)4 (19)

whereγ ′ = γ /ωR, ξ = (1+ 21J)/21J , ε′′ = ε′1J/(2ωRτp) and1ϕ = ϕ(t)− ϕ(t − τ).
The original variablesE(t) andN(t) are related to the new variablese(t) andn(t) by

E(t) =
√
τp(J − Jth)[1+ e(t)] = Esol[1+ e(t)] N(t) = Nth+ 2ωR

GN

n(t) (20)

where(Esol, Nth) is the steady state of the solitary laser neglecting nonlinear gain effects.
The temporal evolution of the laser variables (shown in figure 5 for the limit cycle

developed from the ECMi = 3) is quasi-sinusoidal with an angular frequency� ≈ ωR. The
phase difference betweene(t) andn(t) is close toπ/2, while the phase differences between
n(t) andω(t), and betweene(t) and1φ(t), are small. Since we consider moderate feedback
levels (such that the oscillations in the relaxation-oscillation stage are nearly harmonic), we
restrict ourselves to trying to find solutions of the form

e(t) = ē + e sin(ωRt)

n(t) = n̄+ n[cos(ωRt)− ξωRτp sin(ωRt)]

ϕ̇ = ω̄ + ω cos(ωRt)+ ω2 sin(ωRt)

1ϕ(t) = S1φi + ω0τ + 2ω

ωR
sin(ωRt)− 2ω2

ωR
cos(ωRt).

(21)

ē, n̄, ω̄ and S1φi + ω0τ are the mean values of the variables in an oscillation period. If the
ECM attractor is a torus, they are time dependent, but we are describing the relaxation-
oscillation stage where their time evolution is slow compared with the oscillation period,
and they can be considered nearly constant.
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Table 2. Values ofē, n̄, ω̄, S1φi, e, n, ω andω2 used in figures 5 and 6.

i ē n̄ ω̄ − ω0 S1φi e = n 2ω/ωR ω2/ωR mod( S1φi + ω0τ)

−1 −0.01 0.055 1.46 −7.71 0.181 1.593 −0.145 4.573
1 −0.01 0.055 1.46 4.85 0.183 1.610 −0.147 4.567
3 −0.01 0.055 1.46 17.42 0.182 1.602 −0.146 4.570
6 −0.01 0.055 1.47 36.27 0.179 1.575 −0.144 4.571

Figure 5. Temporal evolution of the laser variables (a) 1+ e(t), (b) ω(t) = dφ/dt , (c) n(t) and
(d)1φ(t) for the limit cycle of figure 4(c) (full curve). The dotted curve represents equation (21)
with the values of̄e, n̄, ω̄, S1φi, e, n, ω andω2 given in table 2 for modei = 3.

Although we could have included as additional variables the phases of the oscillations
of e, n andϕ̇, we prefer to keep the analysis relatively simple and easy to follow rather than
precise. We choose the phases such that the phase difference between the carrier and the
electric field oscillations is the one derived by Ritter and Haug [16] in the vicinity of the Hopf
bifurcation (20N/ωR in equation (2.11) of [16] corresponds toξωRτp =

(
1/τs+GNE

2
sol

)
/ωR

in our paper). This approximation is rather good for moderate amplitudes, as can be
seen in figure 5, where the dotted curve represents equation (21) with the values of
ē, n̄, ω̄, S1φi, e, n, ω andω2 given in table 2 for the ECMi = 3.

First, we treat the rate equation forn. Our numerical simulations have shown that even
far from the Hopf bifurcation̄e ≈ O(−2), n̄ ≈ O(−2), e, n ≈ O(−1). SinceωRτp ≈ O(−2)
and ε′1J ≈ O(−3) we neglect terms inωRτpne but keep terms ine2 and equation (19)
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becomes
1

ωR

dn

dt
= −ξωRτpn− e − 1

2
e2+ ε

′1J
2

. (22)

We approximate.

e2(t) ≈ 1
2e

2+ 2ēe sin(ωRt). (23)

Inserting (21) and (23) into (22) and equating coefficients we obtain

ξωRτpn̄+ ē + 1
4e

2 = 1
2ε
′1J (24)

−ξωRτpn = −ξωRτpn (25)

−n+ e + ēe = 0. (26)

The advantage of the choice of the phase difference between the carrier and the electric
field oscillations is now evident since equation (25) is trivial. We have assumed thatξ is
not too large and neglected terms inξ2ω2

Rτ
2
p (this approximation is valid when the laser

operates far from the solitary laser threshold).
Next, we consider the rate equations fore andϕ. Taking into account thatε′′ ≈ O(−2)

andγ ′ ≈ O(−2), we approximated equations (17) and (18) as

1

ωR

de

dt
− n(1+ e)+ ε′′(1+ 3e) = γ ′[1+ e(t − τ)] cos(1ϕ) (27)

1

ωR

dϕ

dt
− ω0

ωR
− αn+ αε′′(1+ 2e) = −γ ′[1+ e(t − τ)− e(t)] sin(1ϕ). (28)

If ωRτ = (2m+ 1)τ ,

e(t − τ) = ē − e sin(ωRt). (29)

Expanding the feedback terms in equations (27) and (28) in Bessel functions [20] gives

[1+ e(t − τ)] cos(1ϕ) ≈ [1− e sin(ωRt)]

[
xJ0

(
2ω

ωR

)
− 2yJ1

(
2ω

ωR

)
sin(ωRt)

]
≈
[
xJ0

(
2ω

ωR

)
+ eyJ1

(
2ω

ωR

)]
+ sin(ωRt)

[
−2yJ1

(
2ω

ωR

)
− exJ0

(
2ω

ωR

)]
(30)

[1+ e(t − τ)− e(t)] sin(1ϕ) ≈ [1− 2e sin(ωRt)]

[
yJ0

(
2ω

ωR

)
+ 2xJ1

(
2ω

ωR

)
sin(ωRt)

]
≈
[
yJ0

(
2ω

ωR

)
− 2exJ1

(
2ω

ωR

)]
+
[

2xJ1

(
2ω

ωR

)
− 2eyJ0

(
2ω

ωR

)]
sin(ωRt)

(31)

where

x = cos( S1φi + ω0τ) y = sin( S1φi + ω0τ). (32)

We approximate

n(t) e(t) ≈ nē cos(ωRt)+ n̄e sin(ωRt). (33)

Inserting equations (21), (30), (31) and (33) into (27) and (28) and equating coefficients
yields

−n̄+ ε′′ = γ ′
[
xJ0

(
2ω

ωR

)
+ eyJ1

(
2ω

ωR

)]
(34)

e − n− nē = 0 (35)
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ξωRτpn− n̄e + 3ε′′e = γ ′
[
−2yJ1

(
2ω

ωR

)
− exJ0

(
2ω

ωR

)]
(36)

ω̄

ωR
− ω0

ωR
− αn̄+ αε′′ = −γ ′

[
yJ0

(
2ω

ωR

)
− 2exJ1

(
2ω

ωR

)]
(37)

ω

ωR
= αn (38)

ω2

ωR
+ αξωRτpn+ 2αε′′e = −γ ′

[
2xJ1

(
2ω

ωR

)
− 2eyJ0

(
2ω

ωR

)]
. (39)

The first-order approximation of equations (26) and (35) gives

e ≈ n. (40)

Inserting equations (38) and (40) into equations (34) and (36) yields

(ξωRτp+ 2ε′′)
ω

αωR
= −2γ ′J1

(
2ω

ωR

)
sin( S1φi + ω0τ). (41)

Inserting equations (38) and (40) into equations (34) and (37) yields

ω̄

ωR
− ω0

ωR
= −γ ′

{
α

[
xJ0

(
2ω

ωR

)
+ 2eyJ1

(
2ω

ωR

)]
+
[
yJ0

(
2ω

ωR

)
− 2exJ1

(
2ω

ωR

)]}
(42)

which in the limit e = n = ω = 0 reduces to equation (4). Similar relations, but
derived near the Hopf bifurcation, were found in [16] (aI /Ī , aN, aφ of [16] correspond to
2e, 2ωRn/GN, 2ω/ωR in our paper; equations (2.12), (2.21) and (2.34) of [16] correspond

Figure 6. Relaxation-oscillation stage, for the same ECM attractors and parameters as figure 4.
The full curve represents the numerical simulation, and the broken curve equation (21) with the
values ofē, n̄, ω̄, S1φi, e, n, ω andω2 given in table 2.
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to equations (40), (42) and (38) of our paper). In the limit of a large value ofα, from
equation (41) the value of 2ω/ωR is a root of the Bessel functionJ1(x), in agreement with
the results of [17].

We arrive at seven equations (equations (24), (34), (38)–(42)) which have eight
unknowns (̄e, n̄, ω̄, S1φi, e, n, ω and ω2). To solve this system of equations, we proceed
as follows: from the numerical simulation we estimate the value ofn. Then, from
equations (38) and (40) we calculate the values ofe andω; from equation (41) we find the
value of S1φi , and from equation (34), we then find the value ofn̄. From equation (24) we
calculate the value of̄e; from equation (39), we find the value ofω2, and from equation (42),
we finally determine the value of̄ω.

In figure 6 we compare our results with numerical simulations of the original rate
equations. The full curve represents the trajectory in the relaxation-oscillation stage from
the numerical simulation (for the same ECM attractors shown in figure 4), while the broken
curve represents equation (21) with the values ofē, n̄, ω̄, S1φi, e, n, ω and ω2 given in
table 2. There is relatively good agreement, even for those ECM attractors in which the
feedback level is much larger than the critical feedback where the excitation of relaxation
oscillations occurs. The values ofē, n̄, ω̄, e, n, ω andω2 are almost the same for all the
ECM attractors.

4. Summary and conclusions

In summary, we have studied the stability and modulation properties of a single-longitudinal-
mode semiconductor laser biased well above threshold and subjected to optical feedback
from a distant reflector. We have found that for moderately strong feedback, there are
some pairs of external cavity modes that are both unstable when they are created (one is an
antimode, and the other is an unstable mode). Since the antimodes are usually associated
with destructive interference (between the field inside the laser cavity and the delayed field
returning from the external cavity), and the modes, with constructive interference, it is a
surprising result that some modes are unstable when they first appear.

The unstable modes have a large positive frequency shift with respect to the operating
frequency of the solitary laser, and they are located in phase space on the opposite side of
the high power modes, which are stable, but which have very narrow basins of attraction.

The fact that pairs of modes and antimodes might appear both initially unstable, seems
not to have been reported previously. They might have applications in the use of laser
diodes with optical injection which are also under the influence of optical feedback. If
there is a large positive frequency shift of the injected field fromω0, locking might not
be achieved because there might be no attracting points in that frequency region. This
phenomenon may also be useful in chaos-preventing techniques in which the key point is
choosing an initially stable external cavity mode (see, for example, [21]).

We have also studied in detail the modulation characteristics when the laser operates on
ECM attractors which have mean optical frequencies nearω0. Moderately strong optical
feedback induces a modulation that is either periodic or quasiperiodic, depending on the
frequency of the ECM from which these attractors originate. For quasiperiodic modulation,
there is a stage which is almost periodic. We studied analytically this nearly periodic stage,
and found that a first-order Fourier expansion of the laser variables is enough to describe the
dynamics accurately. The amplitude of the oscillations of the electric field, carrier density
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and optical frequency are related by

E(t)

Esol
− 1= GNNth

2ωR

[
N(t)

Nth
− 1

]
= ω(t)

αωR
(43)

which is independent of the particular ECM attractor. This suggest that the individual ECM
attractors may have their full identity masked from identification by measurements of their
intensity fluctuations. Our results were derived assumingωRτ = (2m+ 1)τ , but numerical
simulation reveal that these results hold even if this condition is not fulfilled (as long as the
delay time is long, with respect to the oscillation period). Our results are valid when the
laser is operated well above threshold, since we assumed a small value ofξωRτp.
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