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Resumen

La sincronización es un fenómeno que emerge en sistemas que interactúan, por lo tanto,
caracterizarla es determinante para entender la dinámica colectiva. No obstante, la nece-
sidad de identificar y cuantificar las propiedades responsables de este fenómeno hacen de
esto una tarea ardua. En las últimas décadas se ha concentrado esfuerzos para caracterizar
este fenómeno representando tales sistemas como redes complejas y estudiando su evolu-
ción temporal desde aproximaciones numéricas. Motivados por la capacidad del análisis
topológico de datos para extraer información de datos complejos de alta dimensionalidad,
proponemos su uso para estudiar el fenómeno de sincronización. En particular, la homolo-
gía persistente, al estudiar la aparición y extinción de características topológicas permite
caracterizar estados de la dinámica de un sistema en términos de su estructura geométrica.
En este trabajo formulamos la entropía de persistencia normalizada, NPE, para caracteri-
zar sincronización al cuantificar la irregularidad promedio de los tiempos de vida de grupos
de homología. Para ello generamos conjuntos de datos emulando la evolución temporal de
osciladores de Kuramoto acoplados arreglados en red con conectividad tipo Erdös-Renyi,
Scale-Free y Aleatoria, y adicionalmente analizamos un conjunto de datos experimenta-
les, también en arreglo de red, con dinámica tipo Rössler. En ambos tipos de dinámica,
cuantificamos la sincronización en función de la intensidad de interacción de la red, contro-
lada por un parámetro de acoplamiento. Los resultados demostraron que la NPE permite
cuantificar sincronización e identificar la transición de estado asíncrono a sincronizado del
sistema en todos los tipos de red estudiados. Esta métrica es sensible a la cantidad de
interacciones de los nodos, la distancia entre los nodos, intensidad de acoplamiento, la
escala de análisis de los datos y la dimensionalidad de la nube de puntos, proporcionando
información complementaria al parámetro de orden y “phase locking value”. Por tanto, lo
resultados presentados en esta tesis demuestran que la NPE es una herramienta útil para
caracterizar sincronización en sistemas de osciladores dinámicos complejos.
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Capítulo 1

INTRODUCCIÓN, MOTIVACIÓN Y
OBJETIVOS

1.1. Introducción
Para entender el funcionamiento de muchos de los fenómenos que ocurren en la natu-

raleza es importante caracterizar asertivamente los procesos que en ella tienen lugar: de
esto se encarga del análisis de datos. Desde las diferentes disciplinas de la ciencia se ha
propuesto e implementado estrategias usando múltiples herramientas encaminadas a este
propósito. Quizá la estrategia más extendida ha sido separarla en sistemas como unidad
macro de análisis. Una vez definida dicha unidad macro, se identifican los elementos que
lo conforman (también denominados subsistemas), caracterizados por -a priori- participar
en el proceso bajo análisis, de tal forma que, a través de observaciones sistemáticas de
alguna característica, usando los métodos y técnicas pertinentes, sea posible caracterizarlo
y describirlo adecuadamente.

Pese a la carencia de consenso en adoptar una definición concreta debido a la variedad
de proposiciones dependiendo del contexto ([1] ofrecen una breve discusión al respecto), en
este trabajo se entenderá por sistema complejo al conjunto de elementos que interactúan
de manera autorganizada, retroalimentándose adaptativamente y estableciendo memoria
de sus eventos. Esto como consecuencia de intrincadas interacciones entre los subsistemas
que lo conforman, que combinado con sus procesos característicos individuales, propician
el intercambio de información, auto-modulando su dinámica [1, 2, 3, 4].

Desde el punto de vista práctico, caracterizar un sistema complejo consiste en estudiar
su comportamiento con base en observaciones del (los) proceso(s) de interés durante un
periodo de tiempo determinado. Al registro cronológico sistemático de estas observacio-
nes se denomina serie de tiempo, a partir de la cual, usando herramientas matemáticas
y estadísticas, es posible describirlo de forma cuantitativa. Un sistema será tan grande
como la perspectiva lo requiera, consecuentemente, cuanto más grande la perspectiva, más
complejo será caracterizarlo. Piénsese por ejemplo en el cerebro humano como un sistema
(complejo, por su puesto). Tal sistema está conformado por regiones cerebrales, las cuales
están integradas por grupos de áreas específicas, que a su vez corresponden a grupos de
neuronas y así sucesivamente. Ahora bien, el cerebro hace parte de la cabeza, un subsis-
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CAPÍTULO 1. INTRODUCCIÓN, MOTIVACIÓN Y OBJETIVOS 7

tema del cuerpo (un sistema más grande), que junto con las extremidades y el tronco,
conectados por un entramado de músculos, huesos, venas, arterias, tendones, nervios, etc.,
percibe, genera, transmite, procesa y retroalimenta información para su funcionamiento. El
cuerpo a su vez está inmerso en el ambiente físico (un sistema aún más grande) con el que
intercambia información. En tal sentido, la perspectiva (que depende de las necesidades
y/o alcance del proceso que se desea caracterizar) configura el tamaño del sistema.

Un sistema complejo integrado por varios subsistemas trae consigo retos de abstraerlo
en un modelo teórico que de forma realista se ajuste a su evolución temporal. Dependien-
do de sus características, representar un sistema como una red compleja [5, 6, 7], como se
ejemplifica en la Figura 1.1, resulta ser la manera natural de estudiarlo. Las redes com-
plejas son una estrategia de estudio de sistemas complejos basada en grafos, donde los
vértices son denominados nodos, representando los subsistemas; y los enlaces simbolizan
las interacciones que estos comparten. Dos subsistemas (nodos) de un sistema (red com-
pleja) se dicen adyacentes (están enlazados) cuando comparten una característica, de tal
forma pueden emplearse elementos matemáticos, computacionales y estadísticos de teoría
de grafos, así como los razonamientos físicos, biológicos, químicos, entre otros, inherentes
al proceso de interés, para emular de manera teórica el funcionamiento del sistema.

Dependiendo de las características de sus enlaces, una red compleja puede categorizarse
como no dirigida (Fig. 1.1[a]) o dirigida (Fig. 1.1[c], la dirección y color de la flecha
indican el sentido en que se establece el enlace). En las redes no dirigidas es irrelevante
la dirección en la que ocurre la interacción al suponer que la característica que los une
ocurre bidireccionalmente y con la misma magnitud, mientras que en las redes dirigidas
es posible la existencia de enlaces paralelos entre dos nodos, distinguiendo la magnitud
y dirección de la interacción o flujo de información (como se presenta ilustrativamente la
Figura 1.1[c]). Bajo la categorización de redes complejas basada en el tipo de enlace, estas
además pueden ser no dirigidas pesadas (Fig. 1.1[b]) y dirigidas pesadas (Fig. 1.1[d]), en
las cuales se asigna un “peso” como medida de la “fuerza” con la que se da la interacción
entre los nodos, simbolizada con el grosor de las líneas en las Figuras 1.1[b] y 1.1[d].

Otra forma de categorizar redes complejas es de acuerdo con la distribución de grado
de los nodos. El grado de un nodo (simbolizado como el tamaño de los nodos en la Figura
1.1) indica el número de enlaces (interacciones) que tiene, de tal manera que la distribución
de grado da razón de la conectividad de la red. Así por ejemplo, cuando los enlaces son
asignados aleatoriamente, se espera que el grado de los nodos sea similar. En el contexto de
redes aleatorias, Paul Erdös y Alfréd Rényi en 1959 introdujeron uno de los modelos más
representativos al establecer enlaces con una determinada probabilidad, la cual, para un
tamaño de red lo suficientemente grande, adopta una distribución de grado tipo Poisson,
con grado promedio bien definido [8]. Este modelo (Erdös-Rényi) ha mostrado ser de
utilidad práctica y ha proporcionado avances significativos para caracterizar y describir
algunos sistemas representados como red compleja [9, 10]. Otro modelo relevante en esta
categoría fue propuesto por Réka Albert, Hawoong Jeong y Albert-László Barabási en
1999 [11], cuya distribución de grado no presenta una escala característica, sino que sigue
una distribución tipo ley de potencia. A este tipo de redes se ha denominado Scale-Free,
caracterizadas por tener pocos nodos altamente conectados y muchos nodos con poca
conectividad, lo cual también ha posibilitado describir apropiadamente tanto sistemas
naturales como algunos hechos por el hombre [12, 13, 14, 15, 16, 17, 18].
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Figura 1.1: Ilustración de red compleja no dirigida y no pesada [a], no dirigida pesada [b],
dirigida no pesada [c], y dirigida pesada [d].

Además de las categorías de redes complejas mencionadas, existen otros tipos especiales
tales como las redes bipartitas ([19]) en la que el conjunto de nodos puede separarse en
dos grupos y no existe adyacencia (enlace) entre dos nodos cualesquiera del mismo grupo.
Las redes temporales [20], donde los enlaces se establecen de acuerdo con la interacción de
los nodos a través del tiempo, es decir, su conectividad no es estática. Las redes multicapa
o multiplex [21, 22]), una colección de redes o capas, cada una representando alguna
propiedad del sistema, por mencionar algunos.

Ahora bien, los sistemas naturales cambian su dinámica conforme evolucionan en el
tiempo puesto que las variables involucradas en sus procesos no son estáticas. Además, en
general, sus elementos no presentan proporcionalidad lineal en el sentido en que cambios
en alguno de sus componentes no necesariamente genera cambios (aumento/disminución)
de magnitud proporcional (lineales) en otros componentes, a lo que se denomina sistemas
complejos de dinámica no lineal. Esta condición genera retos importantes al momento de
encontrar un modelo que describa de forma fidedigna el sistema, pues, cuando se quie-
re analizarlo, es necesario restringir el alcance, como isolarlo para reducir el número de
subsistemas o elementos que lo componen, y particularizar en condiciones puntuales.

A este punto, es inferible que la evolución temporal de un sistema complejo implica una
dinámica colectiva entre los elementos que lo conforman. El equilibrio de tal colectividad
permite el funcionamiento del sistema y crea condiciones para la emergencia fenómenos
que codifican información clave para caracterizarlo. Uno de estos es la sincronización, un
fenómeno que emerge de forma espontánea cuando dos o más (sub)sistemas naturales (com-
plejos) evolucionan de manera coordinada [23, 24]. Este fascinante fenómeno ha atraído la
atención de investigadores en diferentes áreas no sólo por la belleza que genera en eventos
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naturales como el oleaje de destellos de luciérnagas en el campo en una noche oscura, el
vuelo coreográfico de cientos de aves o el de aleteo coordinado de miles de abejas en un
panal que de vez en cuando se viralizan en medios digitales, sino además porque codifica
información clave para describir diversos procesos, abarcando desde el funcionamiento de
las células en los organismos vivos hasta el movimiento de cuerpos celestes.

Es razonable pensar que para el funcionamiento adecuado de un sistema debe ha-
ber algún grado de sincronización entre sus elementos. Al tiempo, una sincronía total y
continua, que en algunos casos no es ni necesaria ni conveniente, toda vez que pude ser
ineficiente y demandante en términos energéticos. En campos como el control de sistemas
roboticos dentro de un proceso de manufactura, donde las diferentes estaciones (robots)
deben funcionar de manera coordinada siempre, la sincronización es imperativa. En tal
contexto, es inducida, e inducirla, aunque comúnmente laborioso, es relativamente sencillo
puesto que es un sistema programable. Sin embargo, en otros contextos, una completa
sincronización por periodos de tiempo prolongados puede causar efectos no deseables. En
el cerebro humano por ejemplo, se ha observado que durante una falla epiléptica, varias
regiones cerebrales o la totalidad de ellas funcionan de manera síncrona, de tal manera
que cuanto más tiempo dure esta actividad sincrónica, mayor será la duración de la falla,
llevando a aumentar el riesgo de daño y mayores tiempos de “renormalización” [25]. En este
último caso, el desafío para entender el padecimiento se centra en cuantificar el estado de
sincronización, enfrentando retos como la identificación de las variables fisiológicas que la
describen (qué medir), la regiones o áreas cerebrales involucradas (dónde medir), la reso-
lución de muestro de la actividad o variable descriptora (cada cuánto medir), la precisión
de medición (cuántas cifras son significativas), entre otros aspectos.

En general, las limitaciones para cuantificar la sincronización de un sistema radican
en la necesidad de identificar las propiedades responsables del comportamiento coordina-
do y registrar a la resolución correcta las variables que codifican la información con la
que eventualmente se pueda adaptar medidas cuantitativas para caracterizar y describir
el fenómeno, y en consecuencia, el sistema. En este contexto, los modelos teóricos son una
herramienta valiosa a través de la cual se puede dar aproximaciones realistas del comporta-
miento del sistema. Al ser un fenómeno colectivo en el que participan varios (sub)sistemas,
las redes complejas representan una forma natural de estudiar la sincronización en sistemas
complejos [26]. Para implementar esta estrategia, los (sub)sistemas son concebidos como
los nodos, los enlaces (líneas uniendo los nodos) como la interacción entre los nodos, y la
sincronización es modulada a través de un parámetro de acoplamiento.

Uno de los trabajos pioneros en el estudio del comportamiento colectivo en sistemas
complejos a través de modelos teóricos y cuantificación del grado de sincronización usando
la noción de redes complejas fue iniciado por Winfree en 1967 [27], quien propuso un sis-
tema no lineal compuesto por un conjunto de osciladores acoplados a través de sus fases,
en el que cada oscilador (nodo) se encuentra conectado al resto de los osciladores de la red
(a este tipo de redes se denomina redes completas o “all-to-all connected”), controlando el
grado de sincronización a través de un parámetro de acoplamiento. Esta idea fue refinada
por Kuramoto en 1975 [28], quien consiguió formular un sistema matemáticamente reso-
luble, donde no necesariamente la red es completa (como se esperaría en redes de sistemas
naturales), lo que significó avances importantes en entender el fenómeno de sincronización
en sistemas naturales usando redes complejas.
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La idea general desarrollada Kuramoto puede describirse así: supóngase un sistema
representado como una red compleja compuesta por un número finito de nodos (subsiste-
mas). Este sistema puede modelarse como un conjunto de osciladores, cuyas interacciones
(enlaces) son simbolizadas por líneas y por precticidad, asúmase una red no dirigida, no pe-
sada y sin auto-enlaces. Entonces la propiedad responsable de generar sincronización puede
simularse como un parámetro de acoplamiento λ que controla la intensidad con la que se
retroalimentan los nodos de la red, de tal manera que para cierto valor de λ, a través de ite-
raciones es posible generar un conjunto de valores (digamos xi(t), para t = 1, 2, 3, · · · , T ,
donde T es el número de iteraciones, representando la evolución temporal del sistema).
Para valores de acoplamiento λ por debajo de cierto umbral crítico (digamos λc), es decir
valores de λ < λc, la red no alcanzará la sincronización debido a que la fase de cada osci-
lador evolucionará independiente del resto y a su propia frecuencia natural. Sin embargo,
rebasado el umbral λc, es decir, para valores de λ > λc, la intensidad de retroalimentación
entre los nodos permitirá que la fase de cada oscilador tienda a una fase promedio (digamos
ψ), denominada la fase basal del sistema, dando paso a la emergencia de sincronización
de la red en términos de las fases de los osciladores. En este modelo (Kuramoto), es posi-
ble determinar la sincronización de la red a través del parámetro de orden. El modelo de
Kuramoto, aunque simple (lo cual también ha sido de ventaja práctica), ha facilitado y
motivado el uso del modelo para estudiar diversos sistemas complejos.

Hasta aquí hemos introducido las nociones de sistemas complejos, redes complejas,
sincronización y hemos descrito un modelo de dinámica no lineal (el modelo de Kuramo-
to) para estudiar la sincronización en sistemas complejos ampliamente explorado ([29, 30,
31, 32]), cuya manera de medir el grado de sincronización se basa en estudiar el compor-
tamiento de las fases (una componente de las señales medidas del sistema de interés y
almacenadas como series de tiempo) a través del parámetro de orden, es decir, un modelo
teórico funcional para emular el comportamiento de un sistema. Sin embargo, dado que
los datos provenientes de sistemas naturales son ricos en información codificada en todas
las componentes del conjunto de registros, es imperativo adoptar estrategias óptimas y
robustas de análisis de datos que permitan estudiarlos de forma cada vez más completa.

Una de estas estrategias, que por su robustez teórica y adaptabilidad ha venido ganando
relevancia es el análisis topológico de datos, TDA, un conjunto de métodos que hacen uso
de elementos matemáticos como la topología algebraica y la topología computacional para
estudiar las propiedades geométricas de un objeto [33, 34, 35]. Una de las herramientas
más versátiles del TDA es homología persistente [36, 37, 38, 39, 40], que permite extraer
información de la estructura geométrica de un conjunto de datos. La homología persistente
consiste en estudiar diagramas de persistencia que contienen la información de nacimiento
y muerte (formación - extinción) de las clases de un grupo de homología formadas en un
complejo simplicial, una colección de invariantes topológicos denominados simplejos (tam-
bién llamados simplices), al efectuar una filtración a escala multiresolución a un conjunto
de datos configurados como una nube de puntos a través de alguna estrategia de embebi-
do que reconstruya el espacio en que “vive” el sistema del que provienen los datos. En el
espacio métrico, un complejo simplicial es una colección de poliedros, de tal forma que un
0−simplejo puede considerarse como un punto, un 1−simplejo puede ser visto como una
línea, un 2− simplejo puede interpretarse como un triángulo, y así sucesivamente con los
poliedros de dimensión superior, de tal forma que, grupos de homología de dimensión cero



CAPÍTULO 1. INTRODUCCIÓN, MOTIVACIÓN Y OBJETIVOS 11

(H 0) pueden ser interpretados como componentes conectados, los grupos de homología de
dimensión uno (H 1) como hoyos unidimensionales, extendiéndose a sus análogos de or-
den superior, también conocidos como características topológicas del complejo simplicial.
Los grupos de homología dan información de la estructura geométrica, lo cual representa
ventajas en cuanto a ganar información no trivial de diferente naturaleza del conjunto de
datos objeto de análisis.

Para analizar datos usando homología persistente se procede como sigue: suponga un
conjunto de datos (serie de tiempo) registrados mediante observaciones de un proceso de
interés en un sistema complejo. El primer paso es configurar dicho conjunto de datos como
una nube de puntos, siendo la estrategia de reconstrucción del espacio de estados de Takens
[41] comúnmente usada para esta tarea, de tal manera que la nube de puntos representa
el espacio fase en el “vive” el conjunto de datos. A partir de esta nube de puntos se calcula
la distancia entre cualesquiera dos puntos, obteniendo la matriz de distancias, cuyos lados
son de igual dimensión que la longitud de la serie de tiempo. La filtración consiste en
variar la distancia (digamos ϵ) a la que pueden formarse los simplejos en la nube de
puntos. La colección de todos los simplejos generados a cada valor de distancia conforman
un (sub)complejo simplicial, donde se generan y extinguen las clases de los grupos de
homología l(a cantidad de clases en un grupo de homología corresponde a su número de
Betti). La distancia a la que se genera cada clase en un grupo de homología se denomina
nacimiento y la distancia a la que se extingue se conoce como muerte, de tal forma que la
colección pares {(nacimiento,muerte)} corresponde al diagrama de persistencia de dicho
grupo de homología. La diferencia entre la muerte y el nacimiento de las clases de un
determinado grupo de homología es la persistencia de dicha clase en el complejo simplicial,
de tal manera que la colección de estas persistencias es el código de barras asociado al
diagrama de persistencia correspondiente. El código de barras contiene la información que
caracteriza la estructura geométrica de la nube de puntos que resulta de utilidad para
entender el conjunto de datos o serie de tiempo y por tanto el sistema del que provienen,
el lector puede ampliar aspectos detallados de esta descripción en [39, 42, 43].

Cuando se tiene conjuntos de datos de un sistema complejo en diferentes estados, es
razonable pensar que la “forma” de la nube de puntos será diferente y en consecuencia la
colección de tiempos de vida de sus grupos de homología también será distinta. El reto
siguiente es encontrar una forma de cuantificarlo y que tal métrica sea capaz de distinguir
entre los diagramas de persistencia generados en cada estado. En el contexto de sistemas
complejos, una manera de cuantificar la taza de generación de información en series de
tiempo es a través de la entropía de Shannon [44], que da razón del “grado de irregularidad”
de la función de distribución de probabilidad que siguen los datos. Rucco y colaboradores
en el 2014 extendieron esta idea para cuantificar el grado de irregularidad en la colección
de tiempos de vida de las clases en un diagrama de persistencia, a lo que se denominó
entropía de persistencia [45]. Esta métrica da una medida cuantitativa de la información
que en promedio genera el código de barras de un grupos de homología.

Debido a sus características, se ha usado homología persistente para estudiar series de
tiempo provenientes de sistemas complejos en diversos campos y disciplinas, incluyendo su
aplicación en sistemas computacionales ([46, 47]), biológicos ([48, 49, 50, 51, 52]), físicos
([53, 54, 55]), y el clima ([56, 57]), por mencionar algunos. A pesar de su amplio uso en
diferentes áreas, las aproximaciones al estudio de sincronización usando homología per-
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sistente se ha enfocado a la identificación de periodicidades ([58]) y grupos (clusters) en
redes ([59, 60]). Sin embargo, hasta donde es nuestro conocer, no existen investigaciones
en la literatura orientadas a identificar y distinguir entre estados asíncrono, de transición
y sincronizado de este fenómeno en sistemas cuyos elementos se retroalimentan, siendo
esta el área en el que incursiona este trabajo desde una aproximación numérica en el que
analizamos este fenómeno para redes de osciladores de Kuramoto acoplados, extendiéndolo
a un conjunto de datos experimentales.

1.2. Motivación
El estudio de sistemas complejos mediante aproximaciones basadas en datos, como lo

son las redes complejas y el análisis de series de tiempo, requiere de herramientas cada
vez más completas que permitan progresivamente extraer información con mayor confia-
bilidad. En particular, cuantificar el grado de sincronización de un sistema representado
como red es fundamental para entender el comportamiento colectivo en sistemas que se
retroalimentan. Gracias a su robustez teórica y adaptabilidad a sistemas de alta dimen-
sionalidad (complejidad), la homología persistente resulta ser una herramienta potente
para esta tarea. Entender por ejemplo la dinámica del cerebro (o las regiones involucra-
das) en una crisis epiléptica en el sentido de cuantificar de manera robusta y precisa la
sincronización de su actividad, puede ser clave en ayudar a identificar precursores de la
crisis, de tal forma que, identificada con anticipación, permita implementar acciones para
manejar el padecimiento. En redes eléctricas por ejemplo, pensando la demanda de una
ciudad (o país) como un nodo y un grupo de ciudades (escalable a países) como una red,
puede pensarse que, por las razones a las que haya lugar, habrá actividad sincrónica en la
demanda, de tal manera que estudiar este fenómeno puede ayudar a planear y proyectar
mejor la generación eléctrica (adaptable digamos) y de esta forma optimizar la produc-
ción como medida de mitigación al cambio climático. Lo común en estos dos ejemplos es
que tales sistemas pueden ser modelados como redes complejas. Ahora bien, la limitación
más importante de las estrategias existentes en la literatura para estudiar el fenómeno de
sincronización radica en que estas se restringen a interacciones a pares. Sin embargo, la di-
námica de un sistema puede involucrar la interacción simultánea entre una mayor cantidad
de sus elementos. Respecto de esta limitación, la característica de multidimensionalidad de
la homología persistente toma una relevancia fundamental para estudiar y entender tales
sistemas. Por otra parte, en la mayoría de contextos es común la carencia de datos para
estudiar tales sistemas, por lo que el modelo de Kuramoto se convierte en una forma rea-
lista de estudiar la dinámica colectiva en términos de sincronización. Motivados por en el
futuro responder algunas de las necesidades planteadas en los ejemplos anteriores, en este
trabajo dedicamos esfuerzos a sentar bases para estudiar el fenómeno de sincronización en
sistemas complejos de dinámica no lineal usando homología persistente.
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1.3. Objetivos

Objetivo General

Demostrar la utilidad del análisis topológico de datos, usando homología persistente,
para caracterizar estados de sincronización en redes complejas formadas por oscilado-
res acoplados, mediante el análisis de las series de tiempo que describen su dinámica.

Objetivos Específicos

Generar series de tiempo mediante el modelo de osciladores acoplados de Kuramoto,
organizados como red compleja, considerando distintas estructuras de conectividad
e intensidades de acoplamiento que generen diferentes estados de sincronización.

Formular una métrica que cuantifique cambios en la geometría de nubes de puntos,
formadas por series de tiempo de pares o triadas de osciladores acoplados, organiza-
dos como red compleja, ante variaciones en su estado de sincronización.

Caracterizar los estados de sincronización de las redes simuladas a partir del análisis
de las series de tiempo generadas con el modelo de Kuramoto, usando de la métrica
formulada, probando este cuantificador en datos experimentales, y comparándolo con
métricas convencionales.

El resto de esta Tesis está organizada como sigue: en el Capítulo 2 se asientan las
bases teóricas involucradas en el análisis topológico de datos. El Capítulo 4 describe la
metodología adaptada. El Capítulo 5 se presenta y disertan los resultados obtenidos, en el
Capítulo 6 se presentan las conclusiones y perspectivas, el Capítulo 7 contiene la biblio-
grafía consultada y finalmente el Capítulo 8 consta de una lista con los eventos académicos
relevantes en los que el autor participó durante el proyecto doctoral.



Capítulo 2

ANÁLISIS TOPOLÓGICO DE DATOS

El análisis topológico de datos, TDA, se refiere a una serie de métodos para estudiar las
propiedades topológicas de conjuntos de datos. Este es un campo relativamente reciente
cuyo auge inició en 2002 con los trabajos de Edelsbrunner y colaboradores en homología
persistente aplicada a ciencia de datos [36]. El TDA se fundamenta en elementos matemá-
ticos como la topología algebraica y la computación, para extraer información geométrica
de la estructura de un conjunto de datos de alta dimensionalidad, revelando información
no trivial que no es posible obtener mediante análisis convencionales [33, 35].

Este capítulo contiene el marco teórico de referencia con los fundamentos matemáticos
del análisis topológico de datos en la senda de homología persistente. La Sección 2.1 for-
maliza el concepto de topología y algunos términos asociados tales como homeomorfismo,
isotopía, homotopía y homología (Sección 2.1.1) y espacio métrico (Sección 2.1.2) como
espacio de particular interés de espacio topológico tratado en este trabajo. La Sección
2.2 introduce el concepto de homología persistente, definiendo los complejos simpliciales
(Sección 2.2.1), grupos de homología (Sección 2.2.2), persistencia 2.2.3, resúmenes de ho-
mología persistente (Sección 2.2.4) y entropía de persistencia (Sección 2.2.5), que son los
fundamentos teóricos de este trabajo. Finalmente, la Sección 2.3 es dedicada a la revisión
de algunos trabajos que son antecedentes en la aplicación de TDA en sistemas dinámicos y
sincronización, usando homología persistente. La mayor parte conceptos definidos en este
capítulo, particularmente las Secciones 2.1, 2.1.1, 2.1.2, 2.2, 2.2.1, 2.2.2, 2.2.3 y 2.2.4, están
basados en los trabajos [61], [62], [63], [39], [42], [64] y [65]. El lector puede consultar los
autores referidos para mayores detalles de las generalidades aquí mencionadas. Cuando
haya aportes de otros trabajos en específico, se indicará incluyendo la cita particular.

2.1. Topología
La topología estudia las propiedades invariantes de espacios cuando se someten a defor-

maciones continuas. En particular, la topología algebraica hace uso de objetos matemáticos
tales como grupos y formaliza los conceptos de “proximidad” y “conectividad” a través de
mapeos continuos para identificar homeomorfismos entre espacios topológicos equivalentes,
por lo que en principio es necesario definir algunos de los conceptos fundamentales en los
que se basa el análisis topológico de datos, iniciando por definir un mapeo.

14
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Definición 2.1.1 (Mapeo) Sea P un conjunto de puntos. Un mapeo es una regla f que
asigna una imagen I a cada punto x ∈ P , esto es: f : P → I.

Las características de un mapa son establecidas con base en el concepto de continuidad
conforme las necesidades impuestas por el tipo de mapeo. Por su parte, los aspectos de
“proximidad” y “conectividad” son formalizados en términos de la teoría de conjuntos,
específicamente referidos a conjuntos abiertos y cerrados definidos a continuación.

Definición 2.1.2 (Conjunto abierto) Sean X y O un espacio y subespacio, respectiva-
mente, tal que O ∈ X. O es un conjunto abierto si cada punto x ∈ O está enteramente
contenido en O.

Nótese de la definición 2.1.2 que, es posible seleccionar cualquier punto x ∈ O, tomar
pasos infinitesimales en cualquier dirección dentro X y encontrar otro punto, digamos
y ∈ O, dentro de O. Esta definición conduce intuitivamente a los conceptos de “proximidad”
y “conectividad”, toda vez que, si dos punto x, y ∈ O son infinitesimalmente próximos (bajo
alguna noción de proximidad, ya sea sobre conjuntos abiertos/cerrados o alguna métrica),
entonces x e y están conectados en O.

Los conjuntos abiertos en el espacio X (por convención, el conjunto vacío ∅ ∈ X)
cumplen con las siguientes propiedades:

i. ∅ es un conjunto abierto.

ii. X es un conjunto abierto.

iii. La unión de una colección finita de conjuntos abiertos es un conjunto abierto.

iv. La intersección de una colección finita de conjuntos abiertos, es un conjunto abierto.

Es posible ahora definir un conjunto cerrado con base en la definición de conjunto
abierto, de manera que:

Definición 2.1.3 (Conjunto cerrado) Sean X y C un espacio y un conjunto, respecti-
vamente. C es un conjunto cerrado si el complemento X − C es abierto.

Es importante mencionar que, de acuerdo con las definiciones 2.1.2 y 2.1.3 no necesa-
riamente un conjunto que no es abierto es cerrado, ni un conjunto no cerrado es necesaria-
mente abierto, pues, existen conjuntos que son ni abiertos ni cerrados y existen conjuntos
que son abiertos y cerrados. A partir de los conceptos de conjuntos abiertos y cerrados es
posible establecer una definición general de espacio topológico y topología.

Definición 2.1.4 (Espacio topológico) Un espacio topológico es el par (X, T ), donde
X es un conjunto y T es la topología de X.

Definición 2.1.5 (Topología) Una topología T de un conjunto X es una colección de
subconjuntos de X que satisfacen las siguientes propiedades:

i. El conjunto vacío ∅ y el espacio X son conjuntos de la topología T (∅, X ∈ T ).
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ii. La unión de cualquier colección de conjuntos en T está contenida en T .

iii. La intersección de cualquier colección finita de conjuntos en T está contenida en T .

Es posible conocer las propiedades geométricas de un conjunto de puntos mediante
el estudio de las características invariantes de la topología asociada a dicho conjunto a
través de la comprobación de la existencia de homeomorfismos, cuyos conceptos asociados
se definen en la Sección 2.1.1.

2.1.1. Homeomorfismo, Isotopía, Homotopía y Homología

Dado que la topología trata con las propiedades geométricas de objetos o funciones
(representados como conjuntos de puntos) mediante el estudio de sus elementos invariantes,
es decir, elementos o características que no cambian bajo deformaciones, tales como la
“conectividad” entre una colección de n elementos (n − vertices) cercanos entre sí de un
conjunto de puntos, cuando estos son mapeados, de lo cual, si dos objetos pueden ser
topológicamente mapeados entre se sí, se dicen homeomórficos.

Dos espacios topológicos son homeomórficos si existe un homeomorfismo entre ellos,
de tal forma que, un homeomorfismo induce a una relación de equivalencia entre dichos
espacios topológicos y en consecuencia, estos se dicen topológicamente equivalentes.

Definición 2.1.6 (Homeomorfismo) Sean X e Y espacios topológicos. Un homeomor-
fismo es una biyección continua f : X → Y , cuya inversa f−1 : Y → X existe y es
continua.

En general, es más fácil probar que dos espacios topológicos son homeomorficos, es
decir, que son equivalentes, a probar que no lo son, para lo cual se recurre a deformaciones
tales como isotópicas, homotópicas y homológicas.

Definición 2.1.7 (Isotopía) Sean X e Y dos espacios topológicos. Una isotopía es una
deformación ξ : X × [0, 1] → Rb que conecta a X e Y a través de un mapeo continuo,
donde ξ(X, 0) = X, ξ(X, 1) = Y y para cada e ∈ [0, 1], ξ(·, t) es un homeomorfismo entre
X y su imagen {ξ(x, t) : x ∈ X}.

En otras palabras, supóngase que g = ξ(X, 0) = X y h = ξ(X, 1) = Y son defor-
maciones que mapean X a Y , si g permanece libre de puntos duplicados para todas las
posiciones durante el mapeo en el intervalo [0, 1], entonces X e Y se dicen isitopicamente
equivalentes.

Definición 2.1.8 (Homotopía) Sean g : X → Y y h : X → Y mapas. Una homotopía
es un mapeo H : X × [0, 1] → Y tal que H(·, 0) = g y H(·, 1) = h.

Nótese que la equivalencia homotópica de los espacios topológicos presenta una relaja-
ción respecto a la defición de equivalencia a través de la isotopía, toda vez que la homotopía
relaciona los espacios que pueden ser continuamente deformados sin que necesariamente la
deformación preserve el homeomorfismo, es decir, a diferencia de la isotopía, la deformación
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homotópica no requiere que no haya puntos duplicados en todas las posiciones interme-
dias del mapeo (no requiere biyectividad), sin embargo, esta preserva algunas formas de
conectividad.

Dado que algunos mapeos a través de deformaciones continuas no requieren biyectivi-
dad, toda vez que los mapeos de un espacio topológico a otro espacio topológico equivalente
conservan propiedades de conectividad, surge la noción generalizada de homeomorfismo,
es decir de equivalencia topológica: homología.

Definición 2.1.9 (Homología) Una homología es una equivalencia de dos (o más) es-
pacios topológicos cuya relación de equivalencia se establece mapeándolos a través de de-
formaciones continuas sin que necesariamente estas sean viyectivas, siempre que conserve
la conectividad de los espacios topológicos equivalentes.

2.1.2. Espacio Métrico

Un espacio métrico es un tipo de espacio topológico que facilita construir una idea
geométrica de la topología de un espacio, toda vez que este incluye la noción de distancia
o métrica que posibilita esquematizar de manera intuitiva la abstracción de un espacio
topológico que no necesariamente incluye un noción de distancia adjunta al espacio métrico
como se define a continuación:

Definición 2.1.10 (Espacio métrico) Un espacio métrico es un par (X, d), donde X
es un conjunto y d : X×X → R es una función de distancia que para cualesquiera puntos
p, q, r ∈ X satisface las siguientes propiedades:

i. d(p, q) = 0 si y sólo si p = q;

ii. d(p, q) = d(q, p), y

iii. d(p, q) ≤ d(p, r) + d(r, q).

De acuerdo con las propiedades de la función de distancia d de un espacio métrico,
puede notarse que d ≥ 0 para cada par p, q ∈ X, de tal forma que es posible construir
bolas métricas abiertas en X.

Definición 2.1.11 (Bola métrica) Sea X un espacio métrico. Una bola métrica abierta
B(c, r) centrada en c y de radio r es el conjunto de puntos tales que B(p, r) = {p ∈ X :
d(p, c) < r}, a partir de la cual es posible definir el espacio topológico métrico.

Definición 2.1.12 (Espacio topológico métrico) Dado un espacio métrico X, la co-
lección de todas las bolas métricas {B(p, r)|p ∈ X and 0 < r < ∞} y sus uniones confor-
man los conjuntos abiertos que definen una topología en X, es decir, un espacio topológico
métrico.

En este trabajo nos dedicamos a estudiar conjuntos de puntos en términos de análisis
topológico de datos embebidos en un espacio métrico a través de homología persistente.
En ese sentido, la sección siguiente es dedicada a detallar la forma en cómo funciona.
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2.2. Homología Persistente
Por su adaptabilidad para estudiar conjuntos de datos de alta dimensionalidad, la ho-

mología persistente [36, 38, 39, 40, 42, 37], se ha convertido en la herramienta más versátil
del TDA. A grandes rasgos, dado un conjunto de datos unidimensional, es decir una serie
de registros tabulados en una única columna y N filas representando las observaciones
del fenómeno de interés, la homología persistente consiste en configurar dicho conjunto de
datos como una nube de puntos de d columnas y T filas, de tal forma que las columnas
representen la dimensión en la que el conjunto de datos está embebido, interpretada como
su configuración geométrica en el espacio topológico al que pertenece, en tanto que las filas
representan la evolución temporal del estado en que se encuentra el fenómeno observado.
Una vez configurado el conjunto de datos como una nube de puntos se construye un com-
plejo simplicial compuesto por la colección de simplejos que surgen al realizar filtraciones
a escala multiresolución de la nube de puntos, dando lugar a la formación (nacimiento) y
extinción (muerte) de las clases de un grupo de homología, mismo que se generan durante
la filtración. Para cada grupo de homología a la colección de (nacimiento, muerte) de las
clases de un grupo de homología se denominada diagrama de persistencia, en tanto que la
colección de diferencias (muerte-nacimiento) corresponde a los tiempos de vida, también
conocidos como código de barras (“barcodes” en inglés). Tanto el diagrama de persisten-
cia como el código de barras almacenan la información geométrica de la nube de puntos
analizada, de tal manera que, desde el punto de vista de ciencia de datos, la tarea del
análisis topológico de datos a través de homología persistente consiste en encontrar las
propiedades geométricas características del conjunto de datos de origen y en consecuencia,
del fenómeno subyacente.

De acuerdo con lo anterior, la forma en como la homología extrae información geomé-
trica de una nube de puntos se basa en estudiar los grupos de homología formados por los
invariantes topológicos que conforman el complejo simplicial resultante de la filtración de
la nube de puntos, por lo que iniciaremos definiendo el complejo simplicial y de qué está
constituido.

2.2.1. Complejo Simplicial

Un complejo simplicial está conformado de simplejos (o simplices), siendo estos ele-
mentos los invariantes topológicos, por tanto, definiremos primero el concepto de simplejo
y posteriormente extenderemos la definición de complejo simplicial.

Definición 2.2.1 (Simplejo) Sea X un conjunto de puntos del espacio métrico. Un k−
simplejo o simplice σ = {x0, x1, · · ·xk} de dimesnión k es la cubierta convexa de k + 1
(∀xj ∈ X, 0 ≤ j ≤ k + 1) puntos afinmente independientes, es decir, el conjunto de todas
las combinaciones convexas {α0x0, α1x1, · · · , αkxk} donde α0 + α1 + · · · + αk = 1, que se
“conectan” entre sí a través de la noción de proximidad.

En el espacio métrico, esta noción de proximidad es la función de distancia Euclidea. Si
la distancia entre dos puntos xi y xj (i ̸= j) es menor o igual a cierto umbral de “máxima
distancia de enlazamiento”, digamos ϵ, (||xi, xj||2 ≤ ϵ) se establece un “enlace” entre tales



CAPÍTULO 2. ANÁLISIS TOPOLÓGICO DE DATOS 19

dos puntos, de tal forma que cualesquiera puntos xi, xj bajo esta condición forman un
simplejo. Así, en el espacio métrico, los simplejos son generalizaciones de triángulos. Parti-
cularmente, como se ilustra en la Figura 2.1, un 0− simplejo es un vértice (un punto), un
1−simplejo es un enlace (una línea uniendo dos puntos), un 2−simplejo es un triángulo,
un 3 − simplejo es un tetraedro, generalizándose así a sus análogos de mayor orden. La
dimensión de un simplejo σ es dim(σ) = k y σ′ es una cara de σ si es un conjunto no vacío
de σ ∈ X. Por definición, 0 ≤ k ≤ σ′ y σ es una cara de mismo.

0− simplejo 1− simplejo 2− simplejo 3− simplejo

Figura 2.1: Ilustración de simplejos o invariantes topológicos. En el espacio métrico un
0-simplejo es un punto, un 1-simplejo es una línea uniendo dos puntos, un 2-simplejo es
un triángulo canónico, un 3-simplejo es un tetraedro, extendiéndose sucesivamente a sus
análogos de mayor dimensión.

Definición 2.2.2 (Complejo simplicial) un complejo simplicial K = {σk} es una co-
lección finita de simplejos tales que: si σ′ es una cara de σ ∈ K, entonces σ′ ∈ K; y, la
intersección de una colección de cualesquiera simplejos de K es una cara común de cada
uno de ellos o un conjunto vacío.

La dimensión de un complejo simplicial K es la mayor dimensión de simplejos en el, de
manera que el espacio de un complejo simplicial es el espacio de todos los poliedros sobre
el cual se puede construir una abstracción de estos.

Definición 2.2.3 (Complejo simplicial abstracto) Es una colección finita de simple-
jos A tales que si α ∈ A y β ∈ α entonces β ∈ A.

La definición de complejo simplicial abstracto ha sido adaptada a una versión geomé-
trica en el espacio topológico métrico. En este trabajo, la filtración se realiza a complejos
simpliciales de V ietoris− Rips, mismos que están basados en el complejo simplicial abs-
tracto de Čech como se define a continuación.

Definición 2.2.4 (Complejo simplicial de Čech) Sea X = {x1, x2, · · · , xN} una co-
lección finita de puntos en Rd y sea B(x, r) = x + r una bola de centro x y radio r.
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El complejo de Čech de X es la colección de (sub)complejos simpliciales formada por la
intersección de todas las B(x, r), esto es: Čech = {σ ⊆ X| ∩x∈σ d(x, r) ̸= 0}.

Definición 2.2.5 (Complejo simplicial de Vietoris-Rips) El Complejo simplicial de
V ietoris−Rips es una relajación del complejo de Čech en el cual, el complejo simplicial
es formado por la intersección de las bolas B(x, r) con una distancia a lo más de dos veces
r, esto es: V ietoris−Rips = {σ ⊆ X|diam(σ) ≤ 2r}.

La Figura 2.2 bosqueja un complejo simplicial de Vietoris-Rips en R2. En términos sim-
ples, dada una nube de puntos conformada por la colección de valores {yi} = {(xi, xi+τ )},
donde τ es el retardo o delay de embebido (en este ejemplo la dimensión de embebido es
d = 2), e i = 1, 2, 3, · · · , se “dibuja” una bola de radio r centrada en cada punto como se ilus-
tra con la circunferencia dibujada. Todas las bolas que se intercepten entre sí conforman un
simplejo. En nuestro ejemplo existen once (11) 0−simplejos, {σ0} = {y1}, {y2}, · · · , {y11},
cinco (5) 1 − simplejos, {σ1} = {y1, y2}, {y3, y4}, {y3, y5}, {y4, y6}, {y7, y8}, un (1) 2 −
simplejo, {σ2} = {y5, y6, y7}, y un (1) 3− simplejo, {σ3} = {y8, y9, y10, y11}. Así, el com-
plejo simplicialK3 = {{σ0}, {σ1}, {σ2}, {σ3}} de dimensión 3 (esta es la máxima dimensión
de simplejos en el complejo simplicial), corresponde a la colección de todos los simplejos
formados bajo la condición ||yi, yj||2 ≤ r.

y1 y2

y3

y4

y5

y6

y7

y8

y9

y10

y11

a

b

H0

H0

H1

r

Figura 2.2: Ilustración de complejo simplicial abstracto. Corresponde a la colección de
simplejos que se forman al interceptarse los círculos de radio r de cualesquiera dos puntos.
En este ejemplo, para tal valor de r, el complejo simplicial contiene dos componentes
conectados [a] y [b], y este último contiene un hoyo unidimensional.

Ahora bien, el estudio de las propiedades geométricas de un conjunto de datos desde
la perspectiva de homología persistente se basa en el análisis de los grupos de homología,
mismos que describiremos a continuación.
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2.2.2. Grupos de Homología

Los grupos de homología, a menudo también llamados hoyos m-dimensionales en el
contexto de topología, son estructuras geométricas un poco más complejas (comparados
con los simplejos) que se forman en el complejo simplicial. Para tener un panorama más
claro al respecto, es necesario introducir primero conceptos tales como cadenas, fronteras,
ciclos y grupos de fronteras. Empezaremos por la primera.

Definición 2.2.6 (Cadena de complejos simpliciales) Una p − cadena c de un k −
complejo simplicial K con mp p − simplejos (σp ∈ K; 0 ≤ p ≤ k), es la suma formal
c =

∑
mp
aiσi, donde ai son los coeficientes modulo 2 (Z+2) para un simplice dado.

En la topología computacional los coeficientes modulo 2 toman valor 0 o 1 de acuerdo
con las siguientes reglas binarias de la operación de adición módulo 2, Z+2 : 0 + 0 = 0;
0 + 1 = 1; 1 + 1 = 0. La adición de una colección de p-cadenas forman una nueva cadena.
En particular, si dos p-cadenas c =

∑
mp
aiσi y c′ =

∑
mp
a′iσi son adicionadas, c + c′ =∑

mp
(ai+a

′
i)σi, formarán una nueva p−cadena. Las p−cadenas con operación Z+2 forman

un grupo Cp(K) donde la cadena identidad es c =
∑

mp
0σi.

Los p− grupos de cadenas están relacionados por un operador de frontera ∂p, tal que,
para un p− simplejo σ formado por p puntos σ = {x0, · · · , xp}, la operación de frontera
∂p sobre σ ∂pσ =

∑
p{x0, · · · , x̃i, · · ·xp} (x̃i simboliza la exclusión del vértice xi en la suma

sobre x), envía a σ a una (p − 1) − cadena cuyos coeficientes ai distintos de cero son las
(p − 1) − caras (fronteras) de σ. Extendiendo el operador de frontera ∂p a p − cadenas
Cp, ∂p : Cp → Cp−1, genera un homeomorfismo, para un k− complejo simplicial tal que

Cp+1
∂p+1−→ Cp

∂p−→ Cp−1
∂p−1−→ · · ·C1

∂1−→ C0
∂0−→ C−1 = 0.

Bajo la operación de frontera pueden identificarse ciclos (“loops”) en una cadena de
complejos simpliciales. Una p − cadena c es un p − ciclo si ∂c = 0, es decir, una cadena
que tiene una frontera vacía es un ciclo. La colección de todos los p − ciclos adicionados
mediante Z+2 formando un p − grupo Zp. El conjunto de (p − 1) − cadenas que puede
ser obtenido al aplicar el operador de frontera ∂p a p − cadenas forma un subgrupo de
(p− 1)− cadenas llamado (p− 1)− grupo de frontera Bp−1 = ∂pCp, de manera que Bp−1

es la imagen del homeomorfismo, dando paso a los los grupos de homología.

Definición 2.2.7 (Grupos de homología y números de Betti) Un p−grupo de homología
Hq (p ≥ 0), es el grupo cociente Hq = Zp/Bp , para el cual el número de Betti βp es la
dimensión de Hq, βp = dimHq.

Informalmente, para un complejo simplicial en el espacio métrico, un 0 − grupo de
homología H0 es un 0− ciclo que representa los componentes conectados, un 1− grupo de
homología H1 es un 1−ciclo (hoyos) que encierran un área, un 2−grupo de homologíaH2 es
un 2− ciclo (cavidades) que encierran un volumen, extendiéndose a sus análogos de mayor
dimensión. En el ejemplo ilustrativo de la Figura 2.2 existen dos grupos de homología
de dimensión cero (H0), formando los (sub)complejos [a] y [b], los cuales representan los
componentes conectados que existen en el complejo simplicial, así mismo, el (sub)complejo
(b) contiene un grupo de homología de dimensión 1 (H1) que se genera al haber una frontera
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vacía (que encierra un área) entre los puntos conectados que conforman esa sección del
complejo simplicial.

Matemáticamente hablando, la homología caracteriza objetos cuya “forma” está bien
definida, es decir, que poseen una cantidad de números de Betti exactos, por ejemplo, un
circulo consiste de exactamente β0 = 1 componentes conectados, β1 = 1 hoyos unidimen-
sionales, y βp = 0 ∀ k > 1, un toro tiene β0 = 1 componentes conectados, β1 = 2 hoyos
unidimensionales, β2 = 1 cavidades, y βp = 0 ∀ k > 2. Sin embargo, en razón a que la
forma de los conjuntos de datos no necesariamente se ajusta a la de un objeto matemá-
tico bien definido, se ha recurrido a identificar las características topológicas (estructura
geométrica) de estos al variar el parámetro de distancia r, a este proceso se denomina
filtración, de tal manera que r representa la longitud máxima de enlace, referido también
como parámetro de filtración, ϵ. En la filtración se generan (nacen) y extinguen (mueren)
grupos de homología y la distancia que tarda en “morir” un grupo homológico desde su
“nacimiento” se denomina persistencia. A fin de precisar este procedimiento, a continuación
se definen formalemnete este y otros conceptos relacionados a la persistencia de grupos de
homología.

2.2.3. Persistencia

Para un objeto X, una clase de homología (homomeorfismo) ζ ∈ Hq(X) nace en Xai

si ζ ∈ Hai
p pero ζ /∈ Hi−1

q , de forma análoga, una clase de homología ζinHq(X) muere en
Xaj si ζ /∈ Haj

q pero ζ ∈ Haj−1
q , 0 ≤ i, j ≤ n = rank(βp).

Una vez identificados el nacimiento b y la muerte d de una clase de grupo de homología
ζ, a la diferencia ℓ = b − d se denomina persistencia de ζ. ℓ es conocido además como
el tiempo de vida que tiene una dicha clase desde su aparición (nacimiento) hasta que se
extingue (muere) en la filtración de un complejo simplicial.

Hasta este punto, la teoría introducida se refiere a analizar los grupos de homología
en un complejo simplicial generado a partir de una nube de puntos para estudiar sus
propiedades geométricas. Esto requiere de variar el parámetro de filtración ϵ entre ciertos
valores tales que 0 ≤ ϵ <∞ y analizar las persistencias de los grupos de homología que se
generan y extinguen en la medida en que ϵ cambia, es decir, filtrar el complejo simplicial.

Definición 2.2.8 (Filtración) Sea K un complejo simplicial finito. Una filtración es una
secuencia anidada de subcomplejos (complejos simpliciales o caras de menor o igual orden)
Ki ∈ K tales que: ∅ = K0 ⊆ K1 ⊆ · · · ⊆ Km = K (∀0 ≤ i ≤ m).

Esta filtración da como resultado la colección de todos los grupos de homología a través
de una escala y su “duración”, es decir, su persistencia (o tiempo de vida) formados a partir
de la nube de puntos, proporcionando información acerca de la estructura de esta, y en
consecuencia del fenómeno subyacente.

A fin de brindar una noción esquemática de una filtración, en la Figura 2.3 ilustramos
este procedimiento aplicado a un conjunto de datos arbitrarios. Partiendo de la nube
de puntos conformada por la colección de valores {yi}, la filtración consiste en cons-
truir (sub)complejos al variar los valores de distancia ϵ [0 ≤ ϵ < ∞). En este ejemplo
el (sub)complejo simplicial es mostrado en los paneles superiores, y el código de barras
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representando la persistencia de los grupos de homología en los paneles inferiores. En esta
representación, cuando un grupo de homología, a determinado valor de filtración ϵ aun
no muere, se representa con la barra a la mayor longitud (cabe aclarar que, teóricamen-
te, el grupo de homología, a ese determinado valor de filtración, vive infinitamente). Por
convención, cuando ϵ = ϵa = 0 (Figura 2.3[a]), el complejo simplicial está conformado
por los puntos (0 − simplejos), y cada punto representa un componente conectado, H0,
por tanto, ningún componente conectado muere a ese valor de filtración. Cuando ϵ = ϵb
(Figura 2.3[b]), se genera el 1− simplejo {y1, y2}, así como la colección de 1− simplejos
{y3, y4}, {y3, y5}, {y4, y5}, {y5, y6}, {y6, y7}, {y7, y8}, {y8, y9} {y9, y10}, {y10, y11}. Así, los
antiguos componentes conectados que nacieron en [a] a ϵ = ϵa y murieron en [b] a ϵ = ϵb,
persistieron hasta ℓ = d− b = ϵb− ϵa, de tal manera que el nuevo (sub)complejo simplicial
está compuesto por dos componentes conectados, incluyendo un grupo de homología de
dimensión 1, H1, conformado por el ciclo de simplejos {y7, y8}, {y7, y9}, {y8, y9} {y9, y10},
{y10, y11}. Cuando ϵ = ϵc (Figura 2.3[c]), debido a la generación de los 1 − simplejos
{y6, y7}, {y7, y9}, {y7, y10} y {y8, y10}, el H1 generado a ϵ = ϵb se extingue, de tal suerte
que persistió durante ℓ = ϵc − ϵb y el complejo simplicial sigue teniendo dos compoenen-
tes conectados“vivos”, por lo que sigue habiendo dos barra azules con la máxima longitud
posible. Finalmente, a una distancia de ϵ = ϵd (Figura 2.3[d]), el complejo simplicial con-
siste en un único componente conectado que persistirá hasta infinito (representada como
la única barra azul con longitud máxima en el código de barras), y que además contiene
los (sub)complejos formados a menor valor del parámetro de filtración, ϵ.
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Figura 2.3: Filtración de una nube de puntos. La fila superior muestra el complejo simpli-
cial y la fila inferior el código de barras de la filtración conforme aumenta la distancia ϵ de
construcción de simplejos. En [a], cada punto es un componente conectado que aún no se
extingue. En [b], se han extinguido 9 componentes conectados y nace un hoyo unidimen-
sional que “vive” hasta [c], donde sólo dos componentes conectados conforman el complejo
simplicial. En [d], sólo “sobrevive” un componente conectado que “vivirá” hasta ϵn → ∞.

En general, la colección de clases de los diferentes grupos de homología que se generan
en la filtración son “almacenados” en los denominado resúmenes de homología persistente,
mismos que describiremos a continuación.
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2.2.4. Diagrama de Persistencia

Los resúmenes de homología persistente tienen por objetivo dar una representación de
la información geométrica extraída de una nube de puntos. En tal sentido, estos son formas
de (cualitativamente) reconocer las características topológicas de tal conjunto de datos. El
resultado de la filtración de un conjunto de puntos es una colección de pares ordenados
de nacimiento-muerte (b, d) que indican la coordenada en que se genera y eventualmente
se extingue la clase de un determinado grupo de homología (característica topológica) de
cierta dimensión, de tal manera que habrá un arreglo de tamaño (n, 2), donde n es la
cantidad de elementos (clases) de un grupo de homología de cierta dimensión. Quizá el
resumen más reconocido de la colección nacimiento-muerte de los grupos de homología
resultantes de una filtración es el gráfico de dispersión de nacimiento vs muerte para
cada una de las características topológicas que tuvieron lugar. A este tipo de gráfico se le
denomina diagrama de persistencia. En este resumen, los valores están ubicados por encima
de la diagonal del gráfico, toda vez que ninguna muerte es menor que el nacimiento. Al
inicio de una filtración (cuando ϵ = 0.00), cada punto de la nube de puntos representa un
componente conectado del complejo simplicial, esto implica que cuando un componente
conectado se extiende (conteniendo otro componente conectado también ya existente por
definición), muere el que se generó de último, así, toda muerte de las clases de un grupo de
homología serán mayor que cero. En consecuencia de lo anterior, ningún grupo grupo de
homología de dimensión uno nacerá en ϵ = 0.00. La Figura 2.4 ilustra la representación de
un diagrama de persistencia para la nube de puntos de la Figura 2.3, donde los símbolos de
triángulos representan las clases del grupo de homología de dimensión cero, H0, mientras
que los círculos representan las clases del grupo de homología de dimensión uno, H1.

nacimiento

m
u
er

te

H0
H1

Figura 2.4: Diagrama de persistencia. Consiste en un gráfico de dispersión de “nacimien-
to” versus “muerte” de los elementos (clases), ejemplificado para grupos de homología de
dimensión cero (símbolos azules) y uno (símbolos rojos) en esta ilustración.
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Otro tipo de resumen de homología persistente es la representación del arreglo como
código de barras simbolizando la persaistencia o tiempo de vida asociado a cada clase
de un grupo de homología de cierta dimensión, tal como los ilustrados en los paneles
inferiores de la Figura 2.3. Un tipo de resumen de persistencia adicional es el de perfiles de
persistencia, que incluye un arreglo distinto de los elementos del diagrama de persistencia
de los considerados de código de barras antes descritos, que si bien no se presentan en este
trabajo, se mencionan como contexto general. El lector puede consultar las referencias [66,
67, 68, 69] para detalles de estos resúmenes de homología persistente.

Los diagramas de persistencia son una representación cualitativa de la información ge-
nerada durante la filtración. Sin embargo, como consecuencia del marco teórico en el que
se fundamenta la homología persistente esta es una tarea retadora. Pese a estas limitacio-
nes, a partir de los diagramas de persistencia se ha desarrollado elementos a través de los
cuales es posible aplicar estadísticas y otros elementos matemáticos para acceder de for-
ma cuantitativa la información de la estructura geométrica extraída de la nube de puntos
(véase por ejemplo [70, 67]) en términos de la “distribución” del diagrama de persistencia.
En la siguiente sección introduciremos la forma de cuantificar información en diagramas
de persistencia usada en este trabajo.

2.2.5. Entropía de Persistencia

Los diagramas de persistencia resultantes de filtrar un conjunto de datos provenientes
del muestreo de objetos sin forma matemática bien definida no presentan una distribución
probabilística conocida. Por supuesto este aspecto se extiende y acentúa en conjuntos de
datos originados a partir de observaciones de algún fenómeno, es decir, datos empíricos
o series de tiempo. Tal aspecto es uno de los retos para cuantificar la información de la
estructura geométrica de series de tiempo a través de homología persistente (véase por
ejemplo [71, 72, 73] para una breve discusión al respecto). En razón a ello, en este trabajo
nos dedicamos a estudiar la “irregularidad” de diagramas de persistencia en términos de la
heterogeneidad promedio que mide la entropía en el contexto de teoría de la información.

En este sentido, una manera natural de cuantificar la heterogeneidad de las persis-
tencias (o código de barras) de un diagrama de persistencia es a través de la entropía.
Considere un diagrama de persistencias PD = {Hq} con la colección de grupos de homo-
logía Hq = {(b1, d1), · · · , (bN , dN)} de dimensión q = 0, · · · , k, dotado con N = 1, 2, · · ·
clases (números de Betti). El código de barras B(Hq) = {ℓ1, · · · , ℓN} es la colección de
persistencias {ℓj} (1 ≤ j ≤ N) de tal grupo de homología en el diagrama de persistencia.
Así, la heterogeneidad del código de barras es cuantificada en términos de la entropía de
persistencia introducida por Rucco y Colaborades en el 2014 como una extensión de la
entropía de Shannon en el contexto de homología persistente definida como [45, 74]:

PE = −
N∑
j=1

p(ℓj) log[p(ℓj)], (2.1)

donde p(ℓj) = ℓj/L, y L =
∑N

j=1 ℓj. La Ecuación 2.1 mide la heterogeneidad promedio
del diagrama de persistencia en cuestión, al cuantificar la contribución de incertidumbre
generada por las j-ésima persistencia del código de barras asociado.
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2.3. Antecedentes: Aplicaciones del Análisis Topológico
de Datos

Existe en la literatura una variedad de estrategias (adaptadas según sea el caso de
uso) para extraer la información de la estructura geométrica de una nube de puntos a
partir de los diagramas de persistencia generados, algunas de estas estrategias aplican
técnicas estadísticas para establecer conjuntos de confianza en cierto tipo de diagramas
de persistencia (véase [75]), otras basadas en distancia entre dos grupos de homología
(fijando uno de estos como referencia) Hq de dimensión q usando por ejemplo distancias
de Wasserstein (véase [40]), distancia de cuello de botella ([35]), entre otras herramientas
(véase adicionalmente [76, 77, 50] para una revisión más amplia), a fin de cuantificar la
información contenida en los diagramas de persistencia. El desarrollo de estas herramientas,
que constituyen el marco estadístico cuantitativo de homología persistente, ha posibilitado
su uso en diferentes contextos. A continuación, describiremos brevemente algunos de los
trabajos que se han desarrollado respecto al uso de homología persistente en el estudio
de sistemas complejos de dinámica no lineal, incluyendo aproximaciones en el estudio del
fenómeno de sincronización en sistemas dinámicos relevantes para este trabajo.

El trabajo pionero de Edelsbrunner y colaboradores en homología persistente publicado
en 2002 [36] marcó el inicio del uso de la topología algebraica en el análisis de datos de
alta dimensionalidad, que junto con los importantes aportes de los trabajos realizados por
Zomordian y Carlsson en 2004 [37], Bubenik y Kim en 2007 [70], Edelsbrunner y Harer
en 2008 [39], Ghrist en 2008 [78], Epstein y colaboradores en 2011 [79], Edelsbrunner
y Morozov en 2013 [40], Perea y Harer en 2013 [80], entre otros, contribuyeron en la
construcción las bases de este campo, mismo que sigue en desarrollo desde el punto de
vista de aplicación a series de tiempo con contribuciones importantes como las presentadas
en los trabajos de Athe y colaboradores en 2019 [77], Atienza y colaboradores en 2020 [81],
Ravishanker y Chen en 2021 [69], entre otros mencionados en lo que va de este escrito,
fortaleciendo desde diferentes disciplinas el análisis topológico de datos con herramientas
y perspectivas que posibilitan su uso en diferentes contextos.

La homología persistente se ha consolidado como la herramienta más versátil del aná-
lisis topológico de datos, toda vez que ha mostrado ser capaz de revelar información no
trivial de algunos sistemas dinámicos que exhiben comportamiento complejo, caracterís-
tica que ha posibilitado su uso en una variedad de áreas. A continuación presentamos un
(corta) revisión de trabajos en este campo. Perea y Harer en 2013 [80] por ejemplo usa-
ron homología persistente para analizar periodicidades en la expresión de genes, para lo
cual propusieron un método basado en ventaneos deslizantes denominado SW1PerS que
permite identificar periodicidades en una gran variedad de series de tiempo.

Maletić, Zhao y Rajković en 2016 [82] usaron homología persistente para analizar dife-
rentes sistemas dinámicos tales como mapa logístico, Lorez y Rössler, describiendo algunas
de sus propiedades bajo condiciones establecidas. Algunos de estos sistemas también fueron
estudiados por Garland y colaboradores en 2016 [83].

Stolz y colaboradores en 2017 [58] usaron homología persistente para analizar cambios
en los patrones de sincronización (temporal) usando osciladores de Kuramoto acoplados
y redes de imágenes de resonancia magnética funcional obtenida de datos registrados de
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sujetos realizando tareas motoras de aprendizaje para analizar fluctuaciones estructurales
de la conectividad funcional en el cerebro. Los autores sostienen que la posición (aparición)
de los grupos de homología en la filtración puede representar un rol más importante que
las persistencias en la interpretación de las características topológicas del conjunto de
datos. Así mismo, reportan la posibilidad de detectar patrones de cambios en los patrones
temporales de sincronización en los datos, reportando además que para casos particulares,
las características persistentes parecen estar relacionadas a la red a través de sincronización
débil intra comunidades.

Chung y colaboradores en 2020 [50] usaron homología persistente para clasificar estados
de vigilia y sueño a través del análisis de la variabilidad del ritmo cardiaco a través de
estadísticas extraídas de diagramas de persistencia. Los autores sostienen que el uso de
homología persistente es más efectivo en la clasificación de los estados de vigilia y sueño
que los reportados en la literatura.

Lombardi y colaboradores en 2020 [52] evaluaron la sincronización funcional en el es-
pacio fase de series de tiempo registrados en imágenes de resonancia magnética funcional
en estado de reposo para descubrir macroescalas de organización del cerebro así como los
nodos más importantes en la red, reportando que la organización topológica de la sincro-
nización temporal basada en la conectividad de la red muestra una organización modular
más fina de la que se identifica con métricas convencionales tales como el coeficiente de
correlación de Pearson y la coherencia espectral.

Bois y colaboradores en 2022 [51] aplicaron análisis topológico de datos para analizar
series de tiempo de marcha para estudiar la esclerosis múltiple. Sus hallazgos sostienen
que es posible estimar la severidad y la evolución de la enfermedad.

Dunton en 2016[60], como parte del desarrollo de su trabajo doctoral analizó redes de
osciladores de Kuramoto acoplados a través de sus fases para identificar patrones de agru-
pamiento (clusters) como función de la evolución temporal del acoplamiento, encontrando
que es posible identificar regiones con acoplamiento particular que se agrupan conforme
avanza el tiempo.

En el contexto de redes, Horak, Maletić y Rajković [84] estudiaron redes aleatoria,
Erdös-Rényi y Scale-Free usaron homología persistente para analizar algunas de sus carac-
terísticas, sugiriendo que la construcción de complejos simpliciales sobre grafos de redes
complejas es una configuración para analizar atributos topológicos de forma cualitativa.

Donato y colaboradores en 2016 [53] analizaron transiciones de fase el modelo de campo
medio y el modelo de cuadrícula ϕ4. Los autores reportan que para ambos modelos que
para cierto subcolector en la configuración del espacio, tanto las transiciones de fase como
las características topológicas son completamente conocidas, lo cual supone la homología
persistente es capaz de recuperar información de la dinámica de los colectores.

Myers y colaboradores en 2019 [85] usaron homología persistente para estudiar series de
tiempo representadas como grafos construidos con criterio de vecinos cercanos, mostrando
su utilidad para distinguir estados periódicos y caóticos de sistemas simulados con dinámica
tipo Rössler.

Aktas y colaboradores (2019) [86] ofrecen una revisión del contexto general de análisis
de redes usando homología persistente. El lector puede consultar sobre aplicaciones en
distintos campos pueden en los trabajos [87, 88, 33, 89, 90, 38, 91, 43, 66, 92, 39, 36, 42],
por mencionar algunos.



Capítulo 3

SINCRONIZACIÓN

3.1. Contexto Histórico
En la Sección 1.1 presentamos una descripción resumida del fenómeno de sincronización

en un panorama general, conectando tales generalidades con el contexto de redes complejas
y su importancia para estudiar la dinámica colectiva en sistemas complejos, mencionando
el modelo de Kuramoto como caso de interés. En este Capítulo ampliamos este panorama,
particularizando nuestro enfoque en cómo se ha desarrollado el estudio de este fenómeno
en conjuntos de osciladores acoplados arreglados en red, gobernados por dinámicas de tipo
Kuramoto y Rössler, siendo estas las dinámicas estudiadas en este trabajo.

La palabra sincronización tiene sus orígenes etimológicos en el griego σὺγ χρóνoζ,
lo cual significa “compartir tiempo en común”, que adaptado a una traducción de las
palabras Syn (lo mismo) y Chronos (tiempo) puede interpretarse como “cosas” (procesos)
que ocurren al mismo tiempo. Se trata de un fenómeno que emerge de manera espontánea
como resultado de la dinámica colectiva entre dos o más sistemas cuando estos intercambian
información de su evolución temporal.

Los primeros reportes documentados del fenómeno de sincronización se remontan al
siglo XVII con las investigaciones del suizo Christian Huygens, quien al poner dos relojes
de péndulo oscilantes, sostenidos por un soporte común, observó que al cabo de aproxi-
madamente una hora, los péndulos oscilaban a la misma frecuencia (misma cantidad de
oscilaciones por unidad de tiempo) y en fase [93]. Este fenómeno atrajo de tal forma la aten-
ción, que se desarrollaron numerosos experimentos para develar el mecanismo responsable
de tal dinámica de sincronización (véase por ejemplo [94] para una revisión ampliada). Sin
embargo, desde tiempos remotos, la sincronización ha sido objeto de investigación en la
evolución temporal de sistemas dinámicos, como lo describe Blekhman en una colección de
ejemplos clásicos que van desde el destello luciérnagas, el canto unísono o silencio absoluto
automodulado en algunos organismos, entre otros [95].

Desde una perspectiva histórica, la sincronización fue concebida como un fenómeno que
podía provocar comportamientos tanto exóticos y de belleza en la naturaleza, como “extra-
ños” en sistemas hechos por personas (a menudo referidos en la literatura como “sistemas
artificiales”), como es el caso de la sincronización de péndulos, algunas máquinas, etc. Más
allá de tales características que resultan en eventos fascinantes, este fenómeno despertó

28



CAPÍTULO 3. SINCRONIZACIÓN 29

interés en investigadores de diversas disciplinas dedicadas al estudio de sistemas complejos
de dinámica no lineal, puesto que es puede proporcionar información indispensable para
entender su evolución temporal colectiva [23].

En el contexto de sistemas dinámicos, particularmente referido al campo de sistemas
caóticos (sistemas dinámicos cuya evolución temporal es altamente sensible a sus condicio-
nes iniciales y donde pueden coexistir la aleatoriedad y la auto-organización), se ha descrito
diversos tipos de estados de sincronización, incluyendo sincronización completa o idéntica,
que consiste en un traslape cuasi perfecto en la trayectoria de dos o más (señales)sistemas
y que se mantiene sobre el tiempo [96, 97]; sincronización parcial, que ocurre cuando un
grupo de elementos (variables) de un sistema se sincronizan con el correspondiente grupo
de elementos en otro(s) sistema(s) [98]; sincronización generalizada, que emerge cuando
cuando se asocian dos (o más) sistemas completamente distintos a través de una función
que asocia los resultados de ambos [99]; sincronización de fase y sincronización de lag,
donde los elementos del sistema se sincronizan a través de sus fase y/o con un retardo
temporal (lag o delay) de simultaneidad [29, 100], por mencionar algunos de relevancia
para este trabajo, el lector puede consultar las referencias [7, 30, 31, 32] para una revisión
exhaustiva de varios tipos de sincronización, incluyendo los ya mencionados.

3.2. Sincronización en Redes Complejas
En las últimas dos décadas, el estudio de sincronización se ha enfocado en caracterizar

sistemas complejos de dinámica no lineal representados como redes puesto que ofrecen
una aproximación natural para entender la dinámica colectiva de tales sistemas ([101, 102,
103]), en el sentido de analizar la forma en cómo interactúan los elementos del sistema, así
como los mecanismos responsables de la emergencia de sincronización. Arenas y colabo-
radores [26] ofrecen una extensiva revisión de redes de osciladores acoplados, incluyendo
el modelo de Kuramoto, así como varios ejemplos de aplicabilidad en campos como la
biología, neurociencia, ingeniería, ciencias computacionales, economía y ciencias sociales,
donde el análisis de estructuras locales en la conectividad de la red, tales como los es-
fuerzos hechos por Gómez-Gardeñes, Moreno y Arenas ([104]), ha cobrado importancia,
toda vez que tienen el potencial de revelar información a nivel local del estado del sistema,
ofreciendo la posibilidad de anticipar su comportamiento comparado con la información
obtenida analizando la red completa.

En tal sentido, el enfoque de estudio del fenómeno de sincronización en redes complejas
ha girado entorno a sistemas simulados en los cuales es posible controlar el “mecanismo”
responsable de la sincronización. La idea principal consiste en considerar un conjunto de
osciladores acoplados configurados como una red y establecer la conectividad de acuerdo
con algún algoritmo de generación de grafos. Así, los osciladores emulan los componentes
del sistema y representan los nodos de la red, mientras que los enlaces simbolizan una ca-
racterística compartida entre tales elementos. En los casos reales, los enlaces son definidos
con base en una relación funcional entre los nodos. Teniendo la estructura de conecti-
vidad de la red, se elige la dinámica que seguirán los nodos, donde es posible controlar
la intensidad con la que los nodos se “transmite” información a través de un parámetro
de acoplamiento, que permite la emergencia de sincronización. Esta dinámica convencio-
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nalmente es un modelo matemático que emula el comportamiento de un proceso físico,
biológico, social, ingenieril, etc., cuyas propiedades están bien caracterizadas. Conociendo
de antemano la estructura de conectividad de la red y los estados de sincronización que
emergerán al variar el parámetro de acoplamiento, la tarea siguiente es caracterizar cuan-
titativamente los estados de sincronización a través de alguna métrica. Uno de los modelos
que por sus características de adaptabilidad, tractabilidad matemática y practicidad ha
sido extensivamente para simular este tipo de procesos es el modelo de Kuramoto [28] (los
detalles de este modelo son presentados en la Sección 3.3). Así mismo, aunque con una
mayor dimensionalidad, gracias a la posibilidad de reproducir experimentalmente su di-
námica usando circuitos electrónicos, el modelo de Rössler [105] también se ha convertido
en una herramienta para estudiar el fenómeno de sincronización en redes de osciladores
acoplados.

En esta dirección, el grupo de trabajo de Javier Buldú y colaboradores (véase detalles
de este grupo en el enlace: https://gestion2.urjc.es/pdi/grupos-investigacion/scff. Fecha
de último acceso: 14/05/2025), en conjunto con el grupo de trabajo de Sevilla-Escoboza
y colaboradores del Centro Universitario de los Lagos de la Universidad de Guadalajara,
México, han generado varios conjuntos de datos experimentales a partir de configuración
de circuitos eléctricos con dinámica tipo Rössler operando en régimen caótico, destinados
a evaluar sincronización en sistemas dinámicos y probar estrategias de inferencia de co-
nectividad de redes (véase por ejemplo los conjuntos de datos reportados en las referencias
[106, 107]).

En cuanto la primer destinación de estos datos (evaluar sincronización en sistemas diná-
micos), en este trabajo usaremos uno de estos conjuntos de datos, los cuales describiremos
en la Sección 4.2.2. En cuanto a la segunda destinación (probar estrategias de inferencia de
conectividad de redes), igual de laboriosa que importante, tiene por objetivo descubrir y
reconstruir las interacciones que tienen los elementos de un sistema configurado como una
red, dependiendo de su estado de sincronización. En este empeño, trabajos como el realiza-
do por Forero-Ortiz, Tirabassi, Masoller y Pons ([108]), quienes estudiaron la posibilidad
de inferir la estructura de conectividad de un conjunto de osciladores de Kuramoto y de
Rössler acoplados arreglados como una red empleando filtros de Kalman; otro trabajo en
este campo corresponde al realizado por Almendral, Leyva y Sendiña-Nadal ([109]), quie-
nes usaron métodos de transición ordinal para inferir la estructura de conectividad global
en redes de osciladores caóticos de Rössler, obteniendo resultados prometedores en esta ta-
rea; así como el trabajo desarrollado por Aristides, Cerdeira, Masoller y Tirabassi ([110]),
quienes indagaron respecto de la posibilidad de predecir la estructura de conectividad de
redes de osciladores de Kuramoto acoplados, así como un conjunto de datos experimentales
correspondiente a circuitos electrónicos gobernados por una dinámica caótica tipo Rössler,
logrando inferir la conectividad de tales redes a partir de observar una única variable del
sistema.

Nuestra propuesta para caracterizar diferentes estados de sincronización consiste en es-
tudiar las propiedades topológicas de grupos de estructuras de conectividad local formadas
por nodos adyacentes entre sí en una red compleja. Las características de tractabilidad ma-
temática y adaptabilidad práctica del modelo de Kuramoto prevalecieron en la elección de
modelo teórico adecuado para tales fines. Por tanto, a continuación definimos formalmente
este modelo.

https://gestion2.urjc.es/pdi/grupos-investigacion/scff
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3.3. El Modelo de Kuramoto
Para analizar el fenómeno de sincronización de una manera tractable, Kuramoto [28]

([32] ofrecen una discusión ampliada de este modelo) consideró una población dotada de
N osciladores de fase de ciclo limite acoplados, donde la evolución temporal de la fase θ̇j(t)
del j-ésimo oscilador al tiempo t es conducida por su frecuencia natural ωj elegida a partir
de una densidad de probabilidad g(ω), y la retroalimentación de las fases resultante de la
interacción con el resto osciladores en el tiempo anterior, modulada por el parámetro de
acoplamiento λ, que representa la “fuerza” de interacción o la intensidad con la que los
osciladores retroalimentan sus fases en todo el sistema, esto es:

θ̇j(t) = ωj +
λ

N

N∑
l=1

sin(θj(t)− θl(t)). (3.1)

La expresión de la Ecuación 3.1 describe la evolución temporal de las fases de osciladores
acoplados. Tal formulación considera una configuración de conectividad en la cual cada
oscilador interactúa con el resto de osciladores (a este tipo de conectividad de red se le
conoce como“all-to-all connected”). Sin embargo, cuando se trata con casos reales, es de
esperarse que los sistemas representados como red no necesariamente sigan este tipo de
patrones de conectividad, donde no todos los nodos son adyacentes entre sí. Ello implica
ajustar la Ecuación 3.1 para en el contexto de redes complejas, transformándose en la
expresión de la Ecuación 3.2 [111]:

θ̇j(t) = ωj +
λ

N

N∑
l=1

Aj,l sin(θj(t)− θl(t)), (3.2)

donde A es la matriz de adyacencia, un arreglo simétrico de dimensiones N × N , que
representa la estructura de conectividad de la red, en la que Aj,l = 1 si los osciladores j y
l son adyacentes, es decir, hay un enlace entre ellos, y Aj,l = 0 si j y l no son adyacentes.

En su trabajo inicial, Kuramoto consideró la función de distribución de frecuencias
naturales g(ω) de tipo unimodal y simétrica (g(ω) = g(−ω)), centrada en ω = ω = 0,
propiciando las simplificaciones que hacen funcional el modelo de la Ecuación 3.2 de una
forma más realista en el sentido en que se asemeja a la conectividad real de algunos sistemas
reales que pueden ser representados como una red compleja para estudiarlo.

La Figura 3.1 muestra una representación a modo ilustrativo del modelo de Kuramoto
considerando una población de N = 5 osciladores. La red es conectada, es decir, no existen
nodos isolados y para efectos prácticos consideramos una red no dirigida, no pesada y sin
auto enlaces, en la que la intensidad de interacción o de propagación de información es con-
trolada por el parámetro de acoplamiento λ. Las series de tiempo generadas en del tiempo
cero al tiempo t corresponden a las fases del osciladores, obtenidas mediante simulaciones
numéricas que emulan la evolución temporal del sistema, cuyos detalles computacionales
se presentan en la Sección 4.2.1.
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Figura 3.1: Ilustración de una red de osciladores tipo Kuramoto. Los círculos simbolizan los
osciladores (nodos), representando los elementos del sistema en la red. La serie de tiempo
asociada a cada oscilador corresponde a la fase (señal) θj registrada desde la iteración
inicial (θj(0)), hasta la iteración final (θj(t)), emulando la evolución temporal del sistema
cuyos nodos se retroalimenta con la misma intensidad λ.

3.4. Cuantificación de Sincronización
En esta Sección describimos dos métricas existentes en la literatura (el parámetro de

orden y el phase locking value) convencionalmente usados para cuantificar sincronización,
e introducimos la métrica propuesta en este trabajo para cuantificar este fenómeno en
redes de Kuramoto usando homología persistente.

3.4.1. Parámetro de Orden

En la formulación de su modelo, Kuramoto proporcionó una medida para cuantificar
el grado de sincronización global entre la población de osciladores en cierto instante de
tiempo t para una intensidad de acoplamiento λ dada, conocido como el parámetro de
orden, R, calculado de acuerdo con la siguiente expresión [28]:

Reiψ(t) =
1

N

N∑
j=1

eiθj(t), (3.3)

cuya propiedad de mayor interés es que puede interpretarse como el centroide de un conjun-
to de N puntos (osciladores) con la forma eiθj(t) (en esta expresión así como en la Ecuación
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3.3 i simboliza la notación de número complejo) distribuidos en un circulo unitario en el
plano complejo, es decir, una representación geométrica del sistema. En la Figura 3.2 se
esquematiza de manera ilustrativa esta propiedad para las fases de cinco osciladores θ1,
θ2, θ3, θ4, y θ5. Cuando el acoplamiento sea cero (λ = 0.0), las fases estarán distribuidas
de manera uniforme en el perímetro del círculo en el intervalo [0, 2π] (Figura 3.2[a]) y R
tomará valores cercanos a cero (R ≈ 0), significando asincronía entre los osciladores, mien-
tras que cuando el conjunto de puntos se encuentren próximos entre sí, rotando en alguna
región del perímetro del circulo y formando un clúster con fase cercana a la fase promedio
ψ, lo cual ocurre cuando la fase de cada oscilador es cuasi igual a la fase promedio del
conjunto de osciladores (esto es, θj ≈ ψ ∀ 1 ≤ j ≤ N), como se ilustra en la Figura 3.2[b],
entonces R tomará valores cercanos a uno (R ≈ 1), significando sincronía (en términos de
sus fases) de los osciladores.

θ1
θ2
θ3
θ4 θ5

a

θ1
θ2
θ3
θ4 θ5

b

Figura 3.2: Ilustración de sincronización en osciladores de Kuramoto. El panel [a] ilustra
el caso de estado asíncrono o incoherente de los osciladores representados como los puntos
ubicados sobre el círculo, cuyas fases (representadas como arcos con líneas punteadas que
finalizan a intersección con la flecha correspondiente) están aleatoriamente dispersas sobre
el perímetro del círculo. En el panel [b] se ilustra el estado sincronizado, para el cual las
fases de los osciladores se concentran en una región del perímetro del círculo. Tal región
corresponde a la fase promedio o basal del sistema.

Bajo estas condiciones es posible calcular un valor de fuerza de acoplamiento crítico,
λc a partir del cual se espera comience a haber sincronización de todos los osciladores
considerados en el sistema, de acuerdo con la siguiente expresión [28, 32, 112, 113]:

λc =
2

πg(0)
(3.4)

En resumen, la Ecuación 3.2 describe la evolución temporal de las fases de un con-
junto de osciladores acoplados configurados como una red compleja, cuya conectividad
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no necesariamente es “all-to-all”, en la que la fuerza de acoplamiento es modulada por el
parámetro de acoplamiento λ. En tal configuración. Si el parámetro de acoplamiento, λ,
es mayor que el valor de acoplamiento crítico, λc (Ecuación 3.4), es decir, λ ≥ λc, la fase
de los osciladores en la red se sincronizará; mientras a valores de acoplamiento menores
que el valor crítico (λ < λc), la fase de los osciladores en la red se mantendrá incoherente.
El “nivel” de sincronización en este modelo se mide con el parámetro de orden, R (Ecua-
ción 3.3). Si R ≈ 0, la red está en estado incoherente, si R ≈ 1, la red está en estado
síncrono. Este modelo, aunque sencillo, resulta de gran utilidad por su tractabilidad, y ha
posibilitado el estudio de diversos sistemas con dinámica distinta en diferentes disciplinas,
cuyas características lo convierten en un modelo adecuado para estudiar el fenómeno de
sincronización desde la perspectiva que se aborda en esta tesis.

3.4.2. Phase Locking Value

El phase locking value (PLV ) mide las diferencias de fase promedio entre dos señales
cualesquiera x(t), y(t). Esta métrica fue formulada por Lachaux y colaboradores en 1999
([114]) para medir la variabilidad de diferencias de fase de señales cardíacas registradas a
través de electrocardiogramas. En su formulación original, el PLV es calculado según la
siguiente expresión:

PLVt =
1

N

∣∣∣∣∣
N∑
j=1

eiϕ(t,n)

∣∣∣∣∣ , (3.5)

donde PLVt es el phase locking value al tiempo t, ϕ(t, n) = θx(t, n)−θy(t, n) es la diferencia
instantánea de fase al tiempo t entre las señales x e y, a la repetición n (1 ≤ n ≤ N).

En la práctica, para determinar las fases instantáneas de las señales se puede recurrir
al concepto de la señal analítica z(t), calculada como [30]:

z(t) = x(t) + ix̃(t) = A(t) · eiθx(t), (3.6)

donde x(t) es la señal, i es la notación de número complejo y x̃(t) corresponde al conjugado
de la transformada de Hilbert de x(t). z(t) es equivalente además al producto de la amplitud
A(t) de x(t) con la exponencial de su fase θx(t). Así, para las señal x(t) con una única
realización al tiempo t, la fase instantánea es calculada así [30, 115]:

θx(t) = arctan

(
Im{z(t)}
Re{z(t)}

)
= arctan

(
x̃(t)

x(t)

)
. (3.7)

Por defecto θ(t) en la Ecuación 3.7 varía en el intervalo −π ≤ θ(t) ≤ π. Sin embargo, en
los algoritmos de librerías de Pytnon como Numpy, la tangente inverso está implementada
como la función numpy.arctan2() y arroja valores de las fases en el intervalo 0 ≤ θ(t) ≤
2π. Usando de forma análoga la Ecuación 3.7 a y(t), se puede calcular de forma fácil la
diferencia de fase ϕ(t) = θx(t) − θy(t) y calcular el PLV de forma alternativa de acuerdo
con la siguiente expresión:
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PLV =


[
1

N

N∑
j=1

sin(ϕ(t))

]2

+

[
1

N

N∑
j=1

cos(ϕ(t))

]2


1/2

, (3.8)

La Ecuación 3.8 proporciona el PLV promedio de las señales analizadas.

3.4.3. Entropía de Persistencia Normalizada

Por una parte, del parámetro de orden R como cuantificador de la sincronización “ad
hoc” para redes de Kuramoto, puede notarse que este será informativo cuando en el cálculo
se involucren todos los nodos que conforman la red, y no necesariamente para analizar el
estado de sincronización en grupos de nodos. De otro lado, nótese que el PLV , aunque
también es una métrica basada en cuantificar sincronización en términos de las fases de
la señal, este está limitado a interacciones a pares, así como métricas basadas en entropía
tales como la información mutua [116] o la entropía cruzada de muestra [117], común-
mente usadas en sistemas complejos para estudiar el intercambio de información entre dos
señales (sistemas). De tal manera que a partir de estas métricas no es posible analizar la
sincronización en grupos de nodos adyacentes entre si en la conectividad. Por lo que fue
necesario formular una métrica que superara estas limitaciones.

Las propiedades geométricas de un conjunto de datos al que se trata mediante homolo-
gía persistente se encuentran codificadas en el diagrama de persistencia. El reto es extraer
de manera cuantitativa dicha información, para describir el estado subyacente del sistema.
Basados en los trabajos de Rucco y colaboradores [45], Chintakunta y colaboradores [74],
y Myers y colaboradores [85], formulamos la métrica que hemos denominado entropía de
persistencia normalizada, NPE, calculada como el cociente entre la entropía de persis-
tencia y el acumulado de tiempos de vida del diagrama de persistencias de un grupo de
homología, esto es:

NPE(Hq) = PE(Hq)/L(Hq), (3.9)

donde PE(Hq) es calculada de acuerdo con la Ecuación 2.1, y L(Hq) =
∑N

j ℓj(Hq) es la
suma de las persistencias de las clases del grupo de homología Hq de dimensión p. La NPE
mide la heterogeneidad promedio de las persistencias del grupo de homología al cuantificar
la incertidumbre promedio de la colección de timpos de vida de las clases de dicho grupo
de homología, donde el denominador, L(Hq), puede interpretarse como una modulación
geométrica respecto de la “forma” de la nube de puntos.

Dado que PE = −∑N
j p(ℓj) log[p(ℓj)], y p(ℓj) = ℓj/L, si la colección de persistencias

{ℓj} son igualmente “probables” (en este contexto no se habla propiamente de probabilidad
sino más bien de contribución de la persistencia ℓj al diagrama de persistencia), es decir,
que todas las persistencias (tiempos de vida) son distintas, de manera que el diagrama de
persistencias es completamente heterogéneo, entonces p(ℓj) = (L/n)/L = 1/n, y PE =

−∑N
j (1/n) log[(1/n)] = log[n] es la máxima entropía.



Capítulo 4

METODOLOGÍA

Este Capítulo es dedicado a describir la metodología adoptada en este trabajo para el
análisis de datos usando homología persistente como herramienta. La primer parte (Sec-
ción 4.1.1) es destinada a describir la estrategia de análisis en términos de configuración
de las señales (series de tiempo) implementada para caracterizar los conjuntos de datos
estudiados. La segunda parte (Sección 4.2) es dedicada a describir la forma como genera-
mos series de tiempo mediante simulaciones numéricas y se describe el conjunto de datos
experimentales objeto de análisis. Por último, en la Sección 3.4, se describen algunos cuan-
tificadores de sincronización existentes en la literatura, así como la métrica propuesta para
identificar y cuantificar este fenómeno.

4.1. Estrategia de Análisis

4.1.1. De Series de Tiempo a Nube de Puntos

La ventaja fundamental de la homología persistente es que permite procesar conjuntos
de datos multidimensionales de alta complejidad. A fin de disernir un poco la sentencia
anterior, piénsese por ejemplo cuando se mide la temperatura ambiental. Para ello, es
necesario, registrar la medición de la observación, hecha con un termómetro por ejemplo.
Adicionalmente, se requiere conocer la ubicación (coordenadas) del lugar donde se hace
la observación, de tal suerte que la medición consta de la variable (temperatura) y las
coordenadas (latitud, longitud y altitud), por lo que en realidad son necesarias cuatro
dimensiones para registrar la medición. Ahora bien, suponga que se requiere medir en más
de un sitio la variable de interés para analizar su comportamiento de forma simultánea en
lugares distintos, es decir, se deben analizar múltiples series de tiempo para caracterizar el
proceso. A esto hace referencia la multidimensionalidad del conjunto de datos. Tal aspecto
no es un problema para la homología persistente, puesto que, a diferencia de la mayoría
de estrategias de análisis de datos convencionales, su algoritmo de procesamiento no está
limitado por la dimensión de los datos. Por otra parte, es de esperarse que la dinámica del
proceso observado contenga no linealidades en su evolución temporal, siendo esto (aunque
no única o necesariamente) a lo que se hace referencia con el término complejidad de los
datos, y es ahí donde la característica invariante de los simplejos cobra importancia para
estudiar sistemas conformados por múltiples elementos que evolucionan simultáneamente,

36
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puesto que permiten combinar estrategias de cuantificación (como las basadas en entropía
en el contexto de teoría de la información) para caracterizar el proceso. Estas son las
razones principales por las que dedicamos este trabajo doctoral a caracterizar el fenómeno
de sincronización usando homología persistente.

En la práctica, el uso de homología persistente requiere la configuración del conjun-
to de puntos objeto de análisis bajo alguna estructura, convencionalmente llamada nube
de puntos. En el contexto de sistemas complejos, debe configurarse dicha nube de pun-
tos de tal manera que los datos (registros) estructurados de esa forma asegure recuperar
la configuración correcta del espacio del que son medidos tales registros, y que además
corresponda a la dinámica “real” del proceso subyacente, de tal manera que al estudiar
la estructura geométrica de la nube de puntos a través de homología persistente, pueda
develarse información respecto del estado (incoherente o sincronizado, por ejemplo) en el
que se encuentra el sistema.

Una de las técnicas aplicadas extensivamente para la configuración de nube de puntos
de un sistema es a través de la reconstrucción de los vectores de su espacio fase. Esta
idea fue asentada por Takens en 1981 ([41]) y ha sido exitosamente aplicada en diferentes
áreas. A modo general, el espacio fase de un sistema representa la convergencia de dicho
sistema alrededor todos los posibles estados que pudiera adoptar. Esto es, dada una serie
de registros indexada temporalmente que captura las propiedades de un sistema, el espacio
fase representa el conjunto de valores a los cuales tiende tal sistema conforme su dinámica
avanza en el tiempo. Esta noción está relacionada con la existencia de atractores ([118,
119, 120]), es decir, un (o varios) centro(s) de referencia alrededor del cual se ubica el
espacio fase de un sistema y que genera su “estructura geométrica”. En otras palabras, el
espacio fase es la configuración sobre la cual el sistema adquiere una “forma”.

La estrategia de reconstrucción del espacio fase propuesta de Takens puede describirse
de manera general como sigue: dada una serie de tiempo (una colección de registros)
unidimensional {x(t)} = x(1), x(2), · · · , x(t) del sistema X, que es observado durante
cierto periodo de tiempo, obteniendo T observaciones (1 ≤ t ≤ T ) con incremento temporal
constante (∆t = constante), el vector de reconstrucción del espacio fase deX tiene la forma
⃗x(t) = x(t), x(t + τ), · · · x(t + (m − 1)τ) (∀ 1 ≤ t ≤ T − (d − 1)τ), donde m representa

la dimensión del sistema, también llamada dimensión de embebido, es decir, el número de
coordenadas que debe tener cada punto del sistema en cada vector del espacio fase, y τ es
el delay o retardo temporal de no traslape entre un vector y otro que reconstruye el espacio
fase. El sistema X es entonces configurado por el arreglo de dimensión (t− (m− 1)τ ×m)
que puede representarse como:

X =


x(1) x(1 + τ) · · · x(1 + (m− 1)τ)
x(2) x(2 + τ) · · · x(2 + (m− 1)τ)

...
...

...
...

x(t) x(t+ τ) · · · x(t+ (m− 1)τ)

 (4.1)

Para la determinación de los parámetros m y τ se han propuesto e implementado varias
metodologías. En el caso de la elección adecuada de la dimensión de embebido m se ha
consolidado el método de falsos vecinos cercanos como uno de los más acertados ([121,
122, 123]); mientras que la determinación del retardo temporal τ se basa en estimación del
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primer pico local de autocorrelación cuando se trata de series de tiempo unidimiensionales
([124, 125]). Dado que gran parte de los procesos desarrollados en sistemas naturales con-
tiene no linealidades, es conveniente estimar el retardo temporal a través de métricas que
consideren este tipo de dinámicas, siendo la información mutua la métrica que ha mostra-
do ser de mayor utilidad ([126]). Esta estrategia está pensada para reconstruir el espacio
fase de una señal, es decir, el conjunto de registros (serie de tiempo) de las observaciones
del proceso de interés. Aunque formulada en principio al caso caso unidimensional, esta
idea es fácilmente adaptable a señales multidimensionales teniendo en cuenta que si dos
o más señales provienen de un mismo sistema, entonces estas tendrán el mismo orden de
reconstrucción del espacio fase.

La reconstrucción del espacio fase en esencia tiene por objetivo dos aspectos relevantes.
El primero es reconstruir la geometría del espacio en el que “vive” el sistema; y el segundo
es recuperar la dinámica “real” de dicho sistema. Estos dos aspectos aseguran teóricamente
la geometría y dinámica del estado en el que se encuentra el sistema. Ahora bien, estra-
tegias de reconstrucción del espacio fase de acuerdo con lo descrito en el párrafo anterior,
parten del supuesto de que la serie de tiempo (unidimensional o multidimensional) es re-
gistrada a partir de las observaciones que caracterizan el proceso a resolución temporal
(el tiempo transcurrido de observación a observación) adecuada, suficiencia de observación
(cantidad de observaciones), y quizá la asunción de mayor relevancia: que el proceso se
haya observado en un espacio representativo del sistema estudiado y con las condiciones
de frontera definidos.

Para poner esto último en perspectiva, considere por ejemplo que se requiere caracteri-
zar la temperatura de un lugar. Uno podría pensar en inicialmente generar una cuadricula
uniforme (lo más fina posible, suponga por ejemplo cuadrículas de 100 metros de lado, que
eventualmente se pudiera optimizar según las necesidades) en un área de tal superficie que
abarque el lugar de interés, y emplazar sensores (estaciones de medición de la variable) en
cada intersección de las “líneas” de la cuadrícula. Si se conoce la resolución temporal del
proceso de interés, se establece tal resolución para la medición de la variable y el almacena-
miento de cada observación, por ejemplo, si se desea caracterizar el comportamiento de la
temperatura durante el día, podría pensarse en resoluciones desde 30 segundos hasta una
hora, y medir durante varios años, de este modo, el valor medio en la resolución temporal
elegida, para un día específico, tendrá suficientes datos para que sea representativo (nótese
que cuanto más alta sea la resolución de medición, es posible recuperar comportamientos
del proceso a mayor escala). Así, se analizaría hasta dónde llega (geográficamente hablan-
do) algún tipo de “uniformidad” en el comportamiento de la variable y en dónde comienza
a haber transición (es decir, la frontera) a condiciones distintas. De tal manera que la reso-
lución de observación corresponden al “retardo” (“delay”, τ) real, el periodo de observación
sería la cantidad de años que se observa se mide la variable, y el área geográfica representa
el espacio en el que el sistema está embebido.

A partir del ejemplo anterior, es evidente que caracterizar un sistema no es una tarea
trivial, de hecho, es la razón de que en la actualidad existan muchos frentes de investi-
gación activos buscando maneras de hacerlo en las diferentes disciplinas y con diferentes
herramientas, de tal suerte que sean adecuadas a los casos particulares, y que por supuesto,
es una de las razones que motivan este trabajo. Concretamente, nos interesamos por carac-
terizar el fenómeno de sincronización, puesto que este codifica información indispensable
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para describir el estado de un sistema en el que colectivamente intervienen varios elemen-
tos (subsistemas). Dadas las ventajas que ofrece la homología persistente en el sentido de
analizar simultáneamente varias series de tiempo, nuestro razonamiento para abordar el
problema es el siguiente: suponga un sistema complejo conformado por varios elementos,
relacionados de tal manera que cada elemento tiene al menos una “conexión”, de modo que
el sistema puede representarse como una red compleja, donde los nodos corresponden a
los elementos del sistema y los enlaces simbolizan la característica que comparten. Dado
que existen relaciones entre los elementos, que puede verse como un tipo de “comunicación
local”, habrá una dinámica colectiva, y que a causa de dicha dinámica, emerja la sincroniza-
ción. Es razonable pensar además que en grupos de elementos que están “enlazados” entre
sí, se propague la “información” más “rápido”, comparado con la “rapidez” a la que ocurre
en el resto de la red, así, estos elementos pueden ayudar a identificar etapas tempranas del
estado de sincronización que tendrá la red.

Con base en lo anterior, nuestra estrategia de análisis consiste en generar series de
tiempo de osciladores configurados como una red, controlando el estado de sincronización
a través de un parámetro de acoplamiento, construir nubes de puntos bidimensionales y
tridimensionales conformadas por las series de tiempo de pares y triadas de osciladores,
respectivamente, y formular una métrica capaz de caracterizar el estado de sincronización
de la red con base en las persistencias (tiempos de vida) de grupos de homología durante
la filtración, recuperando la información generada a diferente resolución de filtración, por
su puesto comparando los resultados obtenidos con las estrategias de cuantificación de
sincronización convencionales existentes en la literatura. Ciertamente es una tarea, tem-
poralmente hablando, ambiciosa para un proyecto doctoral. Por ello, en esta etapa nos
concentramos en estudiar conjuntos de datos generados a partir del modelo de Kuramoto,
donde es posible controlar el estado de sincronización a través del parámetro de acopla-
miento, probando nuestra aproximación sobre un conjunto de datos experimentales.

4.1.2. Análisis a Pares (Bidimensional)

La forma convencional de estudiar el estado de sincronización de una red cuyos nodos
siguen cierta dinámica, es a pares, observando la evolución de la métrica que indica el
estado del sistema (red) conforme varía el parámetro de acoplamiento que controla la
sincronización. Adoptamos esta aproximación como punto de partida para estudiar la
“influencia” que tienen nodos altamente conectados a nodos también altamente conectados,
nodos poco conectados a primer vecino, y nodos a cierta distancia (en términos de la ruta
con la distancia más corta o shortest path length en inglés) en la vecindad de la red.
En tal sentido, en la primer etapa de este proyecto nos concentrándonos en caracterizar el
estado de sincronización de una red de osciladores acoplados estudiando el comportamiento
entre pares de osciladores adyacentes (formando un enlace) y de la distancia de longitud
de ruta más corta, abordando aspectos como la influencia del grado de los nodos y la
distancia entre estos, respecto de la intensidad con la que se propaga la información en la
red, modulada por el parámetro de acoplamiento. Para ello, suponga dos series de tiempo
como las ilustradas en la Figura 4.1[a], que corresponden a la evolución temporal de dos
nodos formando un enlace en una red de osciladores acoplados siguiendo cierta dinámica
y en un estado sincronización definido por el parámetro de acoplamiento. La nube de
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puntos es configurada según se ilustra en la Figura 4.1[b], a partir de la cual se calculan
las persistencias (código de barras) de las clases de grupos de homología de dimensión cero
(H0) y uno (H1) a partir de los cuales se calcula la métrica (la entropía de persistencia
normalizada, NPE, que introduciremos formalmente en la seción 5.2.1) que cuantifica el
estado de sincronización, como se representa en la Figura 4.1[c].

tiempo

xa

xb

a

xa

x
b

b

H
0

NPE(H0)

persistencia

H
1

NPE(H1)

c

Figura 4.1: Ilustración de análisis a pares. Dadas las series de tiempo xa(t) y xb(t) ilustra-
das en [a], que representan la evolución temporal de los nodos de una red de osciladores
acoplados, se configura la nube de puntos como xa(t) vs xb(t) y se construye el complejo
que genera el código de barras con las persistencias las clases de los grupos de homología,
ilustrados en [c] para dimensiones cero (H0) y uno (H1), con las cuales se cuantifica el
estado de sincronización a través de la entropía de persistencia normalizada, NPE.

A continuación definimos formalmente la estrategia de construcción de nube de puntos
para la aproximación de análisis a pares.

4.1.2.1. Nube de Puntos Bidimensional

Considere las series de tiempo xa(t) y xb(t) que corresponden a la evolución tem-
poral de los osciladores xa y xb, respectivamente, que hacen parte del sistema (red)
X = {xa, · · · , xN} formada por N osciladores, la nube de puntos bidimensional se de-
fine como PC(xa, xb) = {(xa(t), xb(t)}, ∀ xj : 1 ≤ j ≤ N , y 1 ≤ t ≤ T , donde T es el
número de observaciones de cada nodo (oscilador) xj, que corresponde a un arreglo bi-
dimensional (T × 2) conformado por xa(t) y xb(t), de tal manera que la Ecuación 4.1 se
convierte en:

PC =


xa(1) xb(1)
xa(2) xb(2)

...
...

xa(T ) xb(T )

 (4.2)

A partir de la Ecuación 4.2 es posible analizar el fenómeno de sincronización a pares
estudiando las propiedades geométricas de la nube de puntos generada por las series de
tiempo de los nodos involucrados, usando homología persistente. Esta configuración de
nube de puntos permitirá comparar nuestros resultados con métricas usadas convencional-
mente en la literatura para estudiar sincronización.
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4.1.3. Análisis a Triadas (Tridimensional)

En razón a la hipótesis de que grupos de nodos (más de dos) adyacentes entre sí inter-
cambiarán información de forma más “rápida” comparado con la rapidez a la que lo harán
con el resto de los nodos que no hacen parte de tales estructuras en la red, estudiamos el
estado de sincronización de la red a triadas, donde la nube de puntos corresponde a un
arreglo tridimensional conformado por las series de tiempo de los tres nodos. En este senti-
do, quizá la mayor novedad que proponemos incluyó estudiar el fenómeno de sincronización
a triadas cerradas (triángulos) conformados por tres nodos adyacentes en la estructura de
conectividad de la red (algunos trabajos recientes han encontrado utilidad estas nociones
para caracterizar series de tiempo, véase por ejemplo [127, 128, 129]) y recuperando la
información de formación y extinción de las clases de un grupo de homología. Para esta
aproximación nos concentramos únicamente en estudiar el estado de sincronización del
sistema analizando grupos de homología de dimensión cero H0. La Figura 4.2 ilustra de
manera general el procedimiento.
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Figura 4.2: Ilustración de análisis a triadas. Dadas las series de tiempo xa(t), xb(t) y xc(t),
asociadas a los osciladores xa, xb y xc, respectivamente, como se ilustra en [a], configuramos
la nube de puntos tridimensional según se muestra en [b]. A partir de la nube de puntos,
se determina la distancia máxima rmax entre cuales quiera dos puntos y se segmenta en
n partes, de tal forma que 0.00 ≤ ϵl ≤ rmax (1 ≤ l ≤ n). A continuación se filtra la
nube de puntos a cada valor ϵl y se recupera el código de barras asociado, que contiene la
información geométrica de la nube de puntos hasta tal valor de filtración.

4.1.3.1. Nube de Puntos Tridimensional

En nuestra aproximación de análisis a triadas, la nube de puntos se define formalmente
así: suponga tres nodos xa, xb y xc en una red de osciladores acoplados representando
el sistema X = {xa, · · · , xN} formada por N osciladores. Si existen los enlaces (xa, xb),
(xa, xc) y (xb, xc) en la conectividad red, es decir, xa, xb y xc son adyacentes entre sí,
entonces xa, xb y xc forman un triangulo (una estructura de conectividad local, en la Figura
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4.6[a] ilustramos los triángulos de la red resaltando en diferente color los enlaces y nodos
que los conforman). Para este caso, la nube de puntos PC(xa, xb, xc) = {(xa(t), xb(t), xc(t)}
(1 ≤ t ≤ T ) corresponde a un arreglo tridimensional de tamaño (T × 3) conformado por
las tres series de tiempo (xa(t), xb(t) y xc(t) que representan la evolución temporal de los
respectivos nodos (osciladores) del sistema (red). Así, la Ecuación 4.1 adopta la forma:

PC =


xa(1) xb(1) xc(1)
xa(2) xb(2) xc(2)

...
...

...
xa(t) xb(t) xc(t)

 (4.3)

La configuración de la nube de puntos según la expresión de la Ecuación 4.3, permite
no sólo estudiar triángulos, sino también tripletas (tres nodos que no son adyacentes entre
sí) para comparar si realmente los triángulos son capaces de proporcionar información
“privilegiada” comparado con analizar cualesquiera tres nodos aleatorios dentro de la red.

4.1.3.2. Resolución de Filtración

Comúnmente, para filtrar una nube de puntos se procede así: se calcula y ordena
ascendentemente las distancia entre todos los puntos que la conforman, estas distancias
son valores de filtración finitos; luego, tomando cada valor de distancia como longitud
máxima de enlace, se construyen los simplejos que formarán el (sub)simplejo a ese valor de
filtración, al incrementar la distancia, el nuevo (sub)complejo contiene los (sub)simplejos
formados a menor distancia; finalmente, a cada valor de distancia se cuantifica las clases
de los grupos de homologías que se extinguieron y nacieron. Es preciso mencionar que,
aunque se tomen los valores de distancia entre los puntos de la nube de puntos como
valores finitos de filtración, el parámetro de filtración (denotado convencionalmente como
ϵ) por definición puede tomar valores 0 ≤ ϵ <∞.

Pese a que la información de la estructura geométrica de la nube de puntos está con-
tenida en el diagrama de persistencia, por la naturaleza de las distancias con las que se
efectúa la filtración, es difícil identificar a qué valor de distancia se generan cambios en
el estado del sistema del que provienen los datos, de tal manera que el diagrama de per-
sistencia global puede enmascarar información relevante para caracterizar tales cambios.
Nuestra propuesta en este contexto, es recuperar la información que se genera a diferentes
escalas de los datos variando el parámetro de filtración (conforme se ilustra en la Figura
4.2[c]), al segmentar la distancia máxima de enlace, digamos rmax en múltiples valores ϵ
tal que 0.00 ≤ ϵ ≤ rmax.

Los algoritmos computacionales como el implementado en la librería Gudhi usada para
generar los diagramas de persistencia en este trabajo, por defecto toman como distancia
máxima de enlace la máxima distancia entre cualesquiera dos puntos de la nube de puntos.
Dependiendo de la capacidad de cómputo (en este trabajo usamos una máquina de 16GB en
RAM y 512GB en memoria del SSD para los cálculos), para conjuntos de datos pequeños,
digamos T ≤ 29, donde T es el número de puntos, esto no sería mayor problema. Sin
embargo, cuando se debe analizar múltiples conjuntos de datos, con mayor cantidad de
registros, los cálculos pueden demandar días o semanas, lo cual es una limitante para

https://gudhi.inria.fr/
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explorar y probar el comportamiento de los datos bajo diferentes enfoques, además de
consumir una gran cantidad de recursos en términos computacionales y de electricidad.

A fin de disminuir el costo computacional, seleccionamos adaptativamente la distancia
máxima de enlace bajo la condición de garantizar que a tal valor el complejo simplicial
sea un único componente conectado, para lo cual es suficiente verificar que una red cuyos
nodos están enlazados bajo ese criterio sea conectada. En una nube de puntos, la distancia
a la cual se genera el complejo simplicial formado por un único complejo no necesariamen-
te es la distancia máxima entre cualesquiera dos puntos de la nube de puntos. Observe a
modo ilustrativo presentado en la parte inferior de la Figura 4.2[c] que el complejo sim-
plicial a la distancia máxima de enlace ϵn es un único componente conectado, al tiempo
que es fácil notar que hay puntos que distan más que ϵn, sin embargo, la variación del
complejo simplicial ya no genera información relevante en términos geométricos para tal
nube de puntos. En tal sentido, y adicinalmente para efectos de comparación, se verificó
esta condición y se unificó un valor de distancia máxima de enlace, rmax. En relación con
el enmascaramiento de información por efectos de la filtración, para recuperar información
a micro, meso y macro escalas, filtramos la nube de puntos a una distancia máxima de
enlace ϵ tal que 0.00 ≤ ϵ ≤ rmax, y calculando la entropía de persistencia normalizada
(NPE, los detalles de cómo se calcula se presentan en la Sección 5.2.1), a cada valor de
longitud máxima de filtración ϵ. Para efectos de este trabajo, con base en lo antes descrito,
se unificó rmax = 0.150, segmentándolo a incrementos ∆ϵ de 10−3, lo que correspondió a
realizar 150 filtraciones para cada nube de puntos analizada.

En resumen, nuestra estrategia de análisis se basa caracterizar el estado de sincroniza-
ción cuantificando cambios en la geometría de la nube de puntos (bidimensional o tridimen-
sional) formada por las series de tiempo emulando la evolución temporal de un conjunto
de nodos (dos o tres para el caso bidimensional y tridimensional, respectivamente) de una
población de osciladores acoplados simulando elementos de un sistema representado como
una red compleja. Cuando el parámetro de acoplamiento que controla la sincronización de
la red cambie, cambiará la geometría de la nube de puntos.

4.2. Datos
Para aplicar la estrategia de análisis de datos propuesta, en este trabajo usamos datos

conjuntos de datos. El primero corresponde a datos numéricamente a partir del modelo de
Kuramoto, que por sus características teóricas resulta ser uno de los modelos más decuados
para analizar el fenómeno de sincronización en sistemas complejos arreglados como red.
Por su parte, el segundo conjunto de datos corresponde a una base de datos generadas
experimentalmente para fines de prueba de métricas en el contexto de sincronización.
Ambos conjuntos de datos se describen a continuación.

4.2.1. Datos Generados con el Modelo de Kuramoto

Hasta ahora hemos descrito las bases teóricas para extraer información de la estructura
geométrica de un conjunto de datos usando homología persistente. Ahora bien, dado que
el objetivo global de este trabajo es caracterizar el fenómeno de sincronización en series
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de tiempo provenientes de sistemas complejos a través de esta herramienta del análisis to-
pológico de datos, a continuación describiremos las simulaciones realizadas en este trabajo
usando el modelo de Kuramoto para generar las series de tiempo de los nodos configurados
como una red compleja acoplada (usando varias estructuras de conectividad), a partir de
las cuales se caracterizó la sincronización como función del parámetro de acoplamiento,
analizando la estructura geométrica del complejo simplicial generado, cubriendo así nuestro
primer objetivo particular.

Las simulaciones computacionales se efectuaron de acuerdo con la Ecuación 3.2 pa-
ra un conjunto X = {x1, · · · , xN} de N = 30 osciladores (nodos), donde xj = cos(θj)
(1 ≤ j ≤ N). Para tales simulaciones, se efectuaron 10 repeticiones sobre tres (3) tipos
de red: Erdös-Rényi (ilustrada la Figura 4.3[a], véase [8] para detalles teóricos) con gra-
do promedio < k >= 3.2, Scale-Free (ilustrada la Figura 4.3[b], véase [12] para mayor
información) con un número de E = 56 enlaces, y una red Aleatoria con grado prome-
dio de conectividad < k >= 2.7, cuya conectividad no sigue algún patrón de adyacencia,
pero en la que se asegura conexión de la red, como se ilustra en la Figura 4.3[c]. En los
tres casos, los grafos asociados a cada tipo de conectividad fueron generados con los mó-
dulos erdos_renyi_graph, scale_free_graph, respectivamente, de la librería NetworkX,
implementada en Python. Para estas redes, se consideró un intervalo de acoplamiento
0 ≤ λ ≤ 4.00 con incrementos ∆λ = 10−2, seleccionando condiciones iniciales de frecuen-
cias naturales de cada oscilador y para cada valor de acoplamiento de una distribución
normal de media cero y desviación estándar de 0.20, es decir, f(ω) = N (0.00, 0.20), en
cada repetición realizada para cada tipo de red. Bajo estas condiciones, el acoplamiento
crítico (véase Ecuación 3.4) promedio para las redes generadas ronda un valor λc ≈ 0.28.
La simulación numérica fue realizada para 1 ≤ t ≤ 214 pasos temporales. Posteriormente,
a fin de disminuir la densidad de datos manteniendo la dinámica subyacente al estado co-
rrespondiente, se muestreo las series de tiempo iniciales a los indices temporales en factor
de 23, generando las series de tiempo finales de longitud T = 211. Así, cada oscilador xj, a
cada valor de acoplamiento, consta de una serie de tiempo de T = 211 registros de su fase.

A fin de ilustrar la dinámica asociada a estos datos, en la Figura 4.4 se presenta la
evolución temporal del coseno xj = cos(θj) de las fases θj asociadas a los osciladores
a = 3, b = 6 y c = 17 para la red Erös-Rényi (fila superior), a = 1, b = 3 y c = 4 para la
red Scale-Free (fila central) y a = 1, b = 2 y c = 3 para la red Aleatoria (fila inferior) a
valores de acoplamiento λ = 0.00 (columna de la izquierda), λ = 0.25 (columna de central)
y λ = 1.50 (columna de la derecha), representando a con símbolos negros, b con símbolos
azules y c con símbolos verdes, que forman un triángulo en la red.

Puede notarse de la Figura 4.4 que las redes en estado incoherente (λ = 0.00, paneles
[a], [d] y [g], para Erös-Rényi, Scale-Free y Aleatoria, respectivamente), la actividad de los
osciladores (cos(θ)) es conducida de manera independiente de acuerdo con la frecuencia
natural asociada a cada uno. Cuando inicia el acoplamiento (λ = 0.25), puede verse para
las redes Erdös-Rényi (panel [b]) y Scale-Free (panel [e]), que la actividad de los nodos
empieza evolucionar coordinadamente, sin embargo, la red Aleatoria (panel [h]) sigue en
estado incoherente. El acoplamiento es alto (λ = 1.50), tanto para la red Erdös-Rényi
(panel [c]) y Scale-Free (panel [f]), la actividad de los nodos es coordinada, mientras que
para la red Aleatoria (panel [i]), sólo dos de los tres nodos están sincronizados.

https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.directed.scale_free_graph.html
https://networkx.org/
https://www.python.org/
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Figura 4.3: Representación gráfica de las redes simuladas. En la fila superior se representan
las redes y en la fila inferior el histograma de frecuencia del grado de los nodos para Erdös-
Rényi [a], Scale-Free [b] y Aleatoria [c], respectivamente.
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Figura 4.4: Evolución temporal de las redes simuladas. Se ejemplifica evolución temporal
del coseno xj = cos(θj) de las fases θj de los osciladores a = 3, b = 6y c = 17 para la red
Erös-Rényi ([a]-[c]), a = 1, b = 3 y c = 4 para la red Scale-Free ([d]-[f]) y a = 1, b = 2
y c = 3 para la red Aleatoria ([g]-[h]) a valores de acoplamiento λ = 0.00 ([a], [d] y [g]),
λ = 0.25 ([b], [e] y [h]) y λ = 1.50 ([c], [f] y [i]).
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A partir de la evolución temporal ilustrados en la Figura 4.4 es inferible que la actividad
de los osciladores no es trivial, sugiriendo además que dependiendo de la configuración
de conectividad global de la red, estos se comportan distinto en cuanto a sincronización
se refiere. A fin de ponerlo en perspectiva de homología persistente, en el sentido de la
estructura geométrica que generan los osciladores, la Figura 4.5 muestra la nube de puntos
bidimensional (fila superior) y tridimensional (fila inferior) a valores de acoplamiento λ =
0.00 (columna de la izquierda), λ = 0.25 (columna de central) y λ = 1.50 (columna de la
derecha), para la red Scale-Free como caso representativo de las redes simuladas.
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Figura 4.5: Nube de puntos de las series de tiempo simuladas. Se ejemplifica la nube de
puntos bidimensional ([a]-[c]) y tridimensional ([d]-[f]) formadas las series de tiempo del
coseno xj = cos(θj) de las fases θj de los osciladores a = 1, b = 3 y c = 4 que forman un
triángulo para la red Scale-Free, como caso representativo de las redes simuladas a valores
de acoplamiento λ = 0.00 ([a] y [d]), λ = 0.25 ([b] y [e]) y λ = 1.50 ([c] y [f]).

Puede notarse de la Figura 4.5 que la nube de puntos tridimensional (paneles [d]-[f]) que
la estructura geométrica de la nube de puntos tiene una “forma” mejor definida comparado
con el caso bidimensional (paneles [a]-[c]) en todos los estados de la red (incoherente,
λ = 0.00; parcialmente sincronizado, λ = 0.25; y sincronizado, λ = 1.50), lo cual sugiere
que la configuración a triadas (tridimensional), puede recuperar información adicional
comparado con la configuración a pares (bidimensional).

4.2.2. Datos Experimentales de Circuitos Electrónicos Caóticos

El segundo conjunto de datos estudiado corresponde a los registros del experimento 1
realizado por Sevilla-Escoboza y Baldú en 2016 [107]. Los registros corresponden a voltajes
de 28 circuitos electrónicos arreglados como una red ilustrada en la Figura 4.6[a], cuya
dinámica sigue un sistema de ecuaciones de osciladores de Rössler, acoplados a través
de la variable y, cuya sincronización es controlada por el parámetro de acoplamiento κ
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(0.00 ≤ κ ≤ 1.00, con incrementos ∆κ = 10−2). Este conjunto de datos, para cada
oscilador y a cada valor de acoplamiento contiene 3× 104 registros. A fin de evitar efectos
de borde, en este trabajo seleccionamos un segmento de 211 registros, tomados entre los
indicies temporales 13296 y 16024, garantizando suficiencia de datos y representatividad
de la dinámica.

A modo general, los nodos (osciladores) que conforman la red experimental (Figura
4.6[a]), tiene un máximo de interacciones (grado) de hasta siete conexiones (siendo este el
caso del oscilador 2), las interacciones decrecen de manera lineal de tal suerte que en la red
hay un oscilador con siete interacciones (enlaces), dos osciladores con seis interacciones,
tres osciladores con cinco interacciones, cuatro osciladores con cuatro interacciones, cinco
osciladores con tres interacciones, seis osciladores con dos interacciones y siete osciladores
con 1 interacción como se ilustra en la Figura 4.6[b]. Esta configuración genera un entrama-
do complejo en la red en cuanto al intercambio de información de un oscilador a otro, toda
vez que existen osciladores periféricos (con una única interacción) que están influenciados
a primer vecino por osciladores con múltiples interacciones, esto permite que los nodos con
mayor cantidad de interacciones jueguen un rol de “moduladores” en la retroalimentación
del acoplamiento en la red. Lo anterior implica que la distribución de grado de la red
también presente decrementos lineales, tal como se aprecia en la Figura 4.6[c].

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15
16

17

1819

20

21

2223

24

25

26

27

28

a

1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

oscilador

0

1

2

3

4

5

6

7

g
r
a
d
o

b

7654321
grado

0.00

0.05

0.10

0.15

0.20

0.25

f
r
a
c
io
n
d
e
n
o
d
o
s

c

Figura 4.6: Representación gráfica de la red experimental. [a]: estructura de la conectividad
de la red; [b]: grado de cada nodo en la red; [c]: histograma de frecuencia del grado de los
nodos. A modo ilustrativo, los nodos y sus respectivos enlaces coloreados hacen parte de
un triángulo en la red.

En la Figura 4.7 se presenta a modo ilustrativo un segmento de las señales (series de
tiempo) de este conjunto de datos para los osciladores xa = 2 (símbolos negros), xb = 9
(símbolos azules) y xc = 12 (símbolos verdes), a valores de acoplamiento κ = 0.00 (panel
[a]), κ = 0.02 (panel [b]) y κ = 0.10 (panel [c]). Note que en estado incoherente (κ = 0.00,
panel [a]), la señal de los nodos oscilan de manera independiente. Aún estado asíncrono,
pero con intensidad de interacción mayor que cero (acoplamiento, κ = 0.02), la evolución
temporal de los osciladores ya no es por completo aleatoria, de tal forma que cuando la
intensidad de interacción es relativamente grande (acoplamiento, κ = 0.10), la actividad
de los osciladores (aunque no completamente) evoluciona de manera coordinada.
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Figura 4.7: Evolución temporal de la red experimental. Se ejemplifica la evolución temporal
(señal) de los osciladores xa = 2 (símbolos azules), xb = 9, xc = 12 de la red experimental
a acoplamiento [a]: κ = 0.00; [b]: κ = 0.02; y [c]: κ = 0.10, respectivamente.

La evolución temporal de este conjunto de datos evidencia que se trata señales comple-
jas que depende además de la intensidad de interacción de los osciladores. Adicionalmente,
con intención de ponerlo en perspectiva de homología persistente en el sentido de confi-
guración geométrica, la Figura 4.8 se ejemplifica este aspecto representando las nubes de
puntos bidimensional (fila superior) y tridimensional (fila inferior) de los xa = 2, xb = 9 y
xc = 12 de este conjunto de datos a acoplamientos κ = 0.00 (paneles [a] y [d]), κ = 0.02
(paneles [b] y [e]) y κ = 0.10 (paneles [c] y [f]), donde se observa que la nube de puntos
tridimensional muestra más cambios en la forma geométrica conforme aumenta el acopla-
miento κ, lo cual sugiere que la configuración a triadas (tridimensional) puede proveer
información adicional a la que provee la configuración a pares (bidimensional).
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Figura 4.8: Nube de puntos de las series de tiempo experimentales. [a] y [d]: a acoplamientos
κ = 0.00; [b] y [e]: κ = 0.02; [c] y [f]: κ = 0.10, para las nubes de punto bidimensional (fila
superior) y tridimensional (fila inferior), respectivamente, de los osciladores xa = 2, xb = 9
y xc = 12 de la red experimental.
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Así, Nuestra propuesta estudia el fenómeno de sincronización en redes de osciladores
acoplados de Kuramoto y sobre datos experimentales usando homología persistente como
herramienta y la entropía de persistencia normalizada como cuantificador. De esta estrate-
gia se resaltan dos enfoques principales: (i) cuantificar la sincronización en términos de la
información que proporcionan las estructuras locales formadas por tres nodos adyacentes
entre sí (triángulos) en la conectividad de la red. (2) caracterizar el estado de sincronización
del sistema al identificar cuantitativamente la transición de estado incoherente o asíncrono
a estado sincronizado variando el parámetro de filtración, es decir, analizando el “espectro”
de filtración, lo cual, hasta donde es de nuestro conocimiento, no tiene precedentes en la
literatura. Los resultados obtenidos son presentados en la siguiente Sección.



Capítulo 5

RESULTADOS

En este capítulo se presentan y disertan los resultados obtenidos con nuestra estrate-
gia de análisis, los cuales mostraremos en dos segmentos. En el primero describimos los
resultados obtenidos al analizar la sincronización desde la perspectiva clásica en el senti-
do de interacción entre pares osciladores como aproximación descriptiva inicial acorde a
la forma convencional de estudiar la sincronización en redes de osciladores, centrando el
análisis en el conjunto de datos experimentales. En el segundo segmento particularizamos
nuestro análisis sobre el comportamiento de la métrica formulada (NPE) para triadas
cerradas (triángulos), que corresponden a estructuras de conectividad locales constituidas
por tres nodos adyacentes en la conectividad global de la red, siendo esta aproximación la
contribución de mayor novedad de nuestro trabajo, el cual es desarrollado para conjuntos
de datos simulados y extendido al conjunto de datos experimentales.

5.1. Análisis a Pares (Bidimensional)
Como punto de partida analizamos el comportamiento de la NPE como descriptor de

sincronización en función del parámetro de acoplamiento, κ, entre pares de osciladores de
la red de datos experimentales descritos en la sección 4.2.2 para grupos de homología de
dimensión cero, H0, y grupos de homología de dimensión uno, H1. Elegimos este conjunto
de datos como referente teniendo en cuenta que, de acuerdo con la descripción proporcio-
nada por los creadores del experimento ([107]), se trata de una serie de registros generados
específicamente para analizar el comportamiento de métricas de cuantificación de sincroni-
zación en sistemas de osciladores acoplados, por lo que también lo usamos como referencia
para estudiar el efecto de la cantidad de interacciones entre los nodos y la distancia a la
que estos se encuentran en la red.

5.1.1. Según la Cantidad de Interacciones

Estudiamos la influencia del número de interacciones (grado) de los nodos, tomando
como casos representativos los osciladores 1 y 28. El oscilador 1 es un nodo central con
6 conexiones (un “hub” de la red), mientras que el oscilador 28 es un nodo periférico con
sólo una conexión. Para el primer caso (tomando el oscilador 1 como nodo de referencia),

50
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se analiza la NPE como función del acoplamiento para los pares de osciladores 1 vs 2, 1
vs 23 y 1 vs 27. El oscilador 2 es también un nodo central que tiene siete enlaces en la red
(el más conectado de la red), uno de los cuales es a primer vecino con el nodo 1 (1,2); el
oscilador 23 es un oscilador periférico que tiene un único enlace en la red y es a primer
vecino con el oscilador 1 (1,23), y el oscilador 27 también es periférico, con la diferencia
que este no tiene conexión a primer vecino con el oscilador 1 (1,27). Para el segundo caso
(oscilador 28 como nodo de referencia), se analiza la NPE respecto del acoplamiento entre
los osciladores 28 vs 3, 28 vs 7 y 28 vs 14. El oscilador 28 es un oscilador periférico que tiene
una única interacción a primer vecino con el oscilador 7 (que tiene 4 enlaces) y no tiene
conexión directa con los osciladores 3 (que tiene seis enlaces) y 14 (que tiene 3 enlaces); de
manera que el análisis para estas configuraciones permite analizar escenarios de interacción
entre los nodos en relación al grado y distancia de interacción. En adelante se usará los
términos componente(s) conectado(s) y hoyo(s) para referirnos indistintamente a grupos
de homología de dimensión cero y uno, respectivamente. En la Figura 5.1 se presentan los
resultados para grupos de homología de dimensión cero (paneles [a] y [b]) y dimensión uno
(paneles [c] y [d]) de este grupo de osciladores.
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Figura 5.1: NPE vs acoplamiento respecto de la cantidad de interacciones. Usando los
osciladores 1 y 28 como casos representativos, los paneles [a] y [c] corresponden grupos
de homología de dimensión cero (H0) y uno (H1) para los pares de osciladores (1,2) que
son nodos altamente conectados con interacción a primer vecino, (1,23) siendo 23 un nodo
periférico con única interacción a primer vecino con el nodo 1, y (1,27) siendo 27 un nodo
periférico con única interacción y no es adyacente con el nodo 1. Los paneles [b] y [d]
también corresponden a grupos de homología de dimensión cero y uno, pero para los pares
de osciladores (28,3) donde 23 es un nodo altamente conectado y distante de 28, (28,7)
donde 7 tiene 4 interacciones y una de ellas es a primer vecino con 7, y (28,14) siendo 14
un nodo con sólo dos conexiones y no interactúa a primer vecino con 28.
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Tomando el oscilador 1 como nodo de referencia, puede observarse en los paneles [a] y
[c] de la Figura 5.1 para componentes conectados y hoyos, respectivamente, que la mayor
entropía corresponde al par de osciladores (1,2), siendo estos los más conectados de la red,
mientras que la de menor entropía se obtiene para el par (1,23), donde el oscilador 1 es
uno de los más conectados y el oscilador 23 sólo tiene un enlace (con el oscilador 1). Este
comportamiento puede deberse a que los nodos altamente conectados pueden ser modu-
ladores en la sincronización global de la red, en tanto que aquellos menos conectados son
los modulados. Esto hace sentido al tener en cuenta que cuanto más regulares o parecidas
entre si son las señales, menor será su entropía, de tal forma que la taza de generación
de nueva información al sistema por un nuevo evento es baja. En el caso del oscilador 28
como nodo de referencia, aunque no en la misma magnitud, este comportamiento también
es reflejado para componentes conectados y hoyos (paneles [b] y [d] de la Figura 5.1), en
particular, para del par de osciladores (28,7), en los que la interacción es a primer vecino y
el oscilador 7 tiene 4 conexiones, para valores de acoplamiento 0.00 ≤ κ ≤ 0.30, la entropía
es mayor comparada con los pares de osciladores (28,3) y (28,14).

Nótese además que los pares (enlaces) en donde participa un nodo altamente conectado
a primer vecino, como los enlaces (1,2), (1,27) y (28,7), después de cierto valor de aco-
plamiento la NPE evoluciona de manera regular, lo cual sugiere que la sincronización es
estable, mientras que para los pares en donde participan nodos poco conectados y distantes
es más irregular. Ahora bien, el hecho de que esto no ocurre para la totalidad del intervalo
de acoplamiento (como es el caso entre los osciladores 28 y 7), sugiere que el estado del
sistema, para esta dinámica no depende sólo del acoplamiento, sino que además depende
de la configuración de las interacciones en la red.

A continuación, analizamos el efecto de la cantidad de interacciones de los oscilado-
res calculando la NPE como función del cociente del grado de los nodos con los que se
construye el complejo simplicial respecto de la intensidad de acoplamiento. Esto es, dados
los nodos xj y xl con grado dj, dl, respectivamente, el complejo simplicial es construido al
usando las series de tiempo de xj y xl como nube de puntos, y la NPE es representada
respecto del cociente dj/dl para un valor de acoplamiento dado. Los resultados se presen-
tan en la Figura 5.2, donde las filas (paneles [a-b] y [c-d]) corresponden a componentes
conectados y hoyos, respectivamente, mientras que las columnas presentan los resultados
considerando cada grado en la red (paneles [a] y [c]) y a primer vecino (paneles [b] y [d]),
respectivamente, respecto del nodo de referencia.

Por ejemplo, si el nodo de referencia es el oscilador 1, d1 = 6, entonces en la primer
columna (paneles [a] y [c]) se calcularía d1/dl, donde l = {2, 3, · · · , 28} corresponde resto
de los osciladores de la red, mientras que la segunda columna (paneles[b] y [d]), el cociente
se calcula para l = 2, 4, 11, 16, 22, y 23, que son los primeros vecinos del oscilador 1 y así
para el resto de nodos de la red.

Nótese de la Figura 5.2 que la NPE disminuye conforme el grado del oscilador del
numerador es mayor y aumenta conforme la intensidad de acoplamiento. Este efecto es
más notorio para el caso “todos contra todos” presentado en los paneles [a] y [c] (para
componentes conectados y hoyos, respectivamente), en comparación a cuando se consideran
unicamente los primeros vecinos del nodo de referencia (paneles [b] y [d], para componentes
conectados y hoyos, respectivamente). Este efecto puede deberse a la finitez del sistema
(la cantidad de nodos en la red), lo cual genera mayor variabilidad en el comportamiento
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de la NPE respecto del acoplamiento. Es preciso resaltar además que en ambos casos los
resultados para componentes conectados es más distinguible el acoplamiento, por lo que
exploramos este hecho en mayor detalle considerando la distancia de interacción de los
nodos en términos de la longitud de ruta más corta (“shortest path length”).
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Figura 5.2: NPE vs cociente del grado de los osciladores. Los paneles [a] y [c] corresponden
a la NPE promedio de los grupos de homología de dimensión cero H0 y uno H1, respec-
tivamente, calculando el cociente de cada oscilador con el resto de los nodos. Los paneles
[b] y [d] también corresponden a H0 y H1, respectivamente, pero calculando el cociente
tomando en cuenta únicamente los nodos adyacentes. Las barras de verticales representan
la desviación estándar de la NPE respecto de la cantidad de cocientes con el mismo valor.

5.1.2. Según la Distancia de Interacción

En una rutina diaria, constantemente estamos eligiendo la forma más sencilla y rápida
de llegar de un lugar a otro con el menor costo de recursos posible. Por ejemplo, si estamos
en el trabajo y debemos ir al supermercado de camino a casa, buscamos la ruta más corta
en tiempo y distancia que optimice el recorrido trabajo-supermercado-casa. Representados
como red, la casa, el supermercado y el sitio de trabajo simbolizan los nodos y las calles
que debemos recorrer para ir de uno a otro simboliza los enlaces. Si fuéramos directo del
trabajo a casa estaríamos a “un paso” de recorrido. Sin embargo, al pasar al supermercado
se genera un “paso adicional”, de tal manera que esta ruta está a “dos pasos” de distancia.
La cantidad de “pasos” que debe recorrerse para ir de un nodo a otro dice de la “rapidez”
con que se propaga la información en una red. La rapidez del flujo de información puede
entonces medirse en términos de la cantidad de pasos al usar una ruta u otra. En el
contexto de redes, esto se mide a través de la longitud de la ruta más corta (shortest path
length, spl, en inglés). Así, la estructura de conectividad de la red condiciona la rapidez
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de propagación de la información. Usamos estas nociones para analizar la influencia de la
estructura de conectividad de la red a través del comportamiento de la NPE como función
del parámetro de acoplamiento en términos de la longitud más corta spl, cuyos resultados
se muestran en la Figura 5.3.
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Figura 5.3: NPE vs acoplamiento respecto de la distancia de interacción (experimental).
[a] y [b] muestran la NPE promedio para los grupo de homología de dimensión cero (H0) y
uno (H1), respectivamente, para valores de longitud de distancia más corta spl = 1, 3, y 5,
para la red experimental. Las barras verticales representan la desviación estándar calculada
sobre la cantidad de elementos que distan tal distancia en la red.

En la Figura 5.3, las curvas representan el promedio de la entropía de persistencia
de todos los osciladores que distan spl pasos entre sí para componentes conectados, H0,
(panel [a]), y hoyos H1 (panel [b]). Las barras verticales representan la desviación estándar
calculada sobre los pares de osciladores que distan spl pasos. Puede observarse que los
valores promedio de la NPE distingue la distancia a la que se encuentran los nodos,
cuya relación es inversamente proporcional, es decir, conforme más cerca estén dos nodos,
mayor será su NPE. En cuanto al acoplamiento, la NPE tiende a crecer conforme lo
hace la intensidad de acoplamiento. Puede observarse de la Figura 5.3[a] que a valores
acoplamiento 0.00 ≤ κ ≤ 0.10, donde los osciladores se encuentran en estado incoherente
o asíncrono, que las curvas simbolizando la NPE promedio son indistinguibles y crecen
notablemente conforme aumenta el acoplamiento para este intervalo. A partir de κ ≥ 0.25,
la NPE se estabiliza, sugiriendo que a partir de tal valor de acoplamiento la red de
osciladores se sincroniza.

5.1.3. Comparativa entre la NPE y el “Phase Locking Value”

A fin de tener una comparación adicional, se determinó el valor de bloqueo de fase
(“phase locking value”, PLV ) para establecer similitudes y diferencias de la información
que es posible obtener a través de ambas métricas. El PLVj,l = ⟨|eiϕj,l(t)|⟩T ([114]) mide las
variaciones de fase ϕj,l(t) = θj(t)− θl(t) promedio entre los osciladores xj y xl durante el
intervalo de tiempo 0 ≤ t ≤ T . Por su naturaleza, el PLV es una métrica bien establecida
para saber cuan acopladas se encuentran las fases de un sistema bajo análisis, por lo que
representa una métrica óptima para comparar la información que es posible obtener de
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dicho sistema. Esta comparación es para el rango de acoplamiento de la red completa como
función de la longitud más corta spl y los resultados se presentan en la Figura 5.4.
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Figura 5.4: PLV vs acoplamiento respecto de la distancia de interacción. La línea simboliza
el PLV promedio (las barras verticales representan la desviación estándar) calculados sobre
la cantidad de elementos que distan spl = 1, 3, y 5 pasos, respectivamente.

Nótese de la Figura 5.4 que, similar a los resultados obtenidos para la NPE mostra-
dos en la Figura 5.3, el PLV crece conforme la spl aumenta, lo cual es consistente. Por
otra parte, la principal diferencia entre la NPE y el PLV es que la primera se compor-
ta creciente a valores de acoplamiento 0.00 ≤ κ ≤ 0.10, en el sentido en que la NPE
exhibe tendencia clara de aumento conforme aumenta la intensidad de acoplamiento para
todos los valores de spl, lo cual no ocurre para el PLV , puesto que presenta variabilidad
de comportamiento en este rango de valores de acoplamiento dependiendo del spl. Esta
característica representa una ventaja de la NPE para caracterizar la sincronización de la
red como función de este parámetro.

5.1.4. Comparativa entre la NPE y R

Finalmente, en esta aproximación de análisis a pares, y con intención de contrastar los
resultados obtenidos al estudiar la red experimental con otros cuantificadores de sincro-
nización, generamos una red de osciladores de Kuramoto con estructura de conectividad
idéntica a la de la red experimental, sobre la cual calculamos la NPE de la actividad de
los osciladores (es decir, usando xj = cos(θj)), y el parámetro de orden, R, a partir de las
fases, θj, de los osciladores. Los resultados se muestran en la Figura 5.5 para grupos de
homología de dimensión cero (H0, panel [a]) y grupos de homología de dimensión uno (H1,
panel [b]), a longitud de distancia más corta (“shortest path length”) spl = {1, 3, 5}, en
tanto que los valores de R se incluyen en el eje derecho del panel [a]. En el caso de la NPE,
las barras de error representan la desviación estándar calculada sobre cinco realizaciones
independientes de la red, variando las frecuencias naturales iniciales del modelo.

Puede observarse de la Figura 5.5, particularmente para una spl = 1, que la NPE es
sensible al acoplamiento de la red, comparable con el comportamiento de los valores de R.
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Figura 5.5: NPE y R, vs acoplamiento respecto de la distancia de interacción (Modelo). [a]
y [b] muestran la NPE promedio (símbolos verde, negro y azul) para grupos de homología
de dimensión cero (H0) y uno (H1), respectivamente. Las barras verticales representan la
desviación estándar, calculados sobre la cantidad de elementos que distan spl = 1, 3, y 5
pasos. Los símbolos rojos en [a] representan el parámetro de orden R. Ambas métricas
calculadas para el los datos simulados sobre una red de osciladores acoplados de Kuramoto.

Nótese además que la NPE, para H0 (Figura 5.5[a]) es una medida de sincronización más
estable comparado con los valores de R, siendo este último más disperso en el intervalo
de acoplamiento analizado. En cuanto a los resultados obtenidos para H1 (Figura 5.5[b]),
pese a que los resultados con concordantes con los obtenidos para H0, su dispersión es
mayor. Este puede atribuirse al hecho de que los componentes conectados (H0) dan razón
del comportamiento de la nube de puntos a diferentes escalas, mientras que hoyos unidi-
mensionales se relacionan más bien con periodicidades de la señal que forma la nube de
puntos (H1) (Perea y Harer [80] ofrecen una discusión al respecto).

Si bien los resultados presentados hasta aquí corresponden a una aproximación conven-
cional en el sentido que el análisis de sincronización es realizado a pares y como función
del parámetro de acoplamiento, el mecanismo de estudiar este fenómeno en una red con
configuración de conectividad no trivial y usando homología persistente como herramienta
representa una contribución sin precedente en esta materia, de tal manera tuvimos éxito
al presentar estos resultados en la Colección Especial “Data-Driven Models and Analysis
of Complex Systems” y fueron publicados en el Volumen 33 de Noviembre de 2023 en la
revista Chaos, los datos asociados a este trabajo pueden consultarse en la referencia [130].

5.2. Análisis a Triadas (Tridimensional)
Los grupos de homología de dimensión uno son formados por ciclos con frontera vacía

encerrando un área ([62, 64]). Desde la perspectiva de análisis de datos esta característi-
ca ayuda a identificar periodicidades ([80]), puesto que sistemas con dinámica periódica
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generarán este tipo de “formas”. Sin embargo, en conjuntos de datos donde la forma no
contiene periodicidades, el complejo simplicial carecerá de hoyos unidimensionales como
característica principal, de tal suerte que en estos casos los componentes conectados serán
más informativo respecto del proceso subyacente. En el curso de la investigación asociada
a este trabajo y a partir de los resultados del análisis a pares, notamos que en general, para
los datos usados, la NPE muestra resultados más favorables en cuanto a la posibilidad
de caracterizar el estado de sincronización de la red en función del parámetro de acopla-
miento a partir de la información contenida en los diagramas de persistencia de grupos
de homología cero, H0, es decir, de los componentes conectados. Con base en esto, en la
última parte de este proyecto doctoral nos concentramos en estudiar el comportamiento
de componentes conectados siguiendo lo descrito en la sección 4.1, con especial atención
al análisis de triadas cerradas, tanto para el conjunto de datos simulados como para los
datos experimentales, cuyos resultados describiremos a continuación.

5.2.1. Transición entre Estados de Sincronización

Para el conjunto de datos experimentales cuyos resultados principales fueron presenta-
dos en la sección 5.1, partimos del hecho conocido que la sincronización aumenta conforme
lo hace el parámetro de acoplamiento, que además, con base en nuestros resultados, estos
sugieren que el sistema pasa de asíncrono o incoherente a estado síncrono alrededor un
acoplamiento κ ≈ 0.10, como se observa en los paneles [a] y [c] de la Figura 5.1, los paneles
[a] y [b] de la Figura 5.2 y la Figura 5.3[a] para grupos de homología de dimensión cero,
H0. En el caso de los sistemas simulados en este trabajo compuestos de N = 30 nodos
cuyas frecuencias naturales iniciales fueron seleccionadas de una distribución normal con
media cero y desviación estándar de 0.2, a partir de la Ecuación 3.4, calculamos el valor
de acoplamiento crítico λc ≈ 0.28 al que el sistema pasa de incoherente a sincronizado.
Note que damos un único valor de acoplamiento crítico para los tres casos de conectivi-
dad de red, esto teniendo en cuenta que los tres tipos de red tienen la misma cantidad
de nodos y el sistema es inicializado con frecuencias naturales con la misma distribución.
En tal sentido, a fin de asegurar que efectivamente estuviéramos en un estado u otro, el
primer paso fue cerciorarnos que la transición de incoherente a sincronizado ocurre a λc,
comprobándolo a través del parámetro de orden R como indicador principal. El siguiente
paso fue averiguar si la NPE también podía identificar tal transición. Los resultados son
presentados en la Figura 5.6 para R (paneles [a-c]) y NPE (paneles [d-e], para una lon-
gitud máxima de enlace ϵ = 0.15), calculados sobre triángulos y tripletas (tres osciladores
que no comparten enlace a primer vecino y que no hacen parte de un triángulo) (símbolos
de triángulos sólidos y huecos, respectivamente), y para la red completa en el caso de R
(símbolos circulares sólidos, paneles [a-c]).

Puede observarse de la Figura 5.6 que tantoR como laNPE son sensibles a la transición
de estado incoherente a sincronizado en el sistema y que el valor de acoplamiento al que
ocurre tal transición es consistente con el valor de acoplamiento crítico λc. Particularmente,
puede notarse que la NPE, para las redes tipo Erdös-Rényi y Scale-Free la transición
es abrupta, identificándose que, para valores de acoplamiento 0.0 ≤ λ ≤ 0.3, la NPE
se mantiene en valores próximos a cero, ocurriendo la transición en el intervalo 0.3 ≤
λ ≤ 0.4, y para λ > 0.4, sin pérdida de generalidad, la NPE se estabiliza. En el caso
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Figura 5.6: NPE y parámetro de orden R vs acoplamiento. Los símbolos sólidos represen-
tan el R (fila superior) y la NPE de H0 (fila inferior) promedio para triángulos, en tanto
que los símbolos punteados representan el R y la NPE promedio para tripletas. Las barras
verticales representan la desviación estándar calculada sobre 10 elementos (triángulos o
tripletas, según sea el caso), para 10 repeticiones independientes cambiando las frecuencias
iniciales del modelo de Kuramoto en redes con conectividad tipo Erdös-Rényi ([a] y [d]),
Scale-Free ([b] y [e]) y Aleatoria ([c] y [f]).

de la red Aleatoria, puede verse que la transición es más lenta en comparación con las
redes tipo Erdös-Rényi y Scale-Free. Nótese que la detección de la transición de estado
incoherente a sincronizado usando la información local de las triadas cerradas (triángulos)
es favorable para R comparado con el valor obtenido al calcularlo para la red completa,
sugiriendo que esta tales estructuras locales son más sensibles a cambios en el estado de
la red. Adicionalmente, puede observarse que tanto para el R como para la NPE existen
diferencias entre las triadas cerradas y las tripletas, lo cual implica que triángulos codifican
información que no es solamente dependiente del número de nodos que participan, sino de
la forma en cómo están conectados.

5.2.1.1. NPE vs Parámetro de Acoplamiento

Habiendo verificado que efectivamente estábamos identificando un cambio en el estado
y que tal cambio obedece a la transición de estado incoherente a sincronizado de la red,
continuamos con un análisis más detallado que incluye analizar la información de compo-
nentes conectados de triángulos teniendo en cuenta el parámetro de filtración, esto último
a fin estudiar la estructura geométrica a diferente escala de filtración. La Figura 5.7 mues-
tra la NPE de componentes conectados en triángulos como función del acoplamiento (λ
para las redes simuladas y κ para la red experimental) para varios valores de filtración.

Puede observarse de la Figura 5.7 que la NPE identifica de forma clara la transición
de estado incoherente a sincronizado. Nótese que para un valor de filtración ϵ = 0.15,
para las redes tipo Erdös-Rényi (Fig. 5.7[a]), Scale-Free (Fig. 5.7[b]) y experimental (Fig.
5.7[d]), ocurre un cambio abrupto cuando la red transita de incoherente a sincronizada
después del cual la NPE se mantiene estable para el resto de valores de acoplamiento. En
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Figura 5.7: NPE de triángulos vs acoplamiento respecto del parámetro de filtración. Los
símbolos representan la NPE promedio para H0, las barras de verticales corresponden a
la desviación estándar, calculadas para 10 triángulos sobre 10 realizaciones independientes
cambiando las frecuencias iniciales del modelo de Kuramoto para las redes con conectividad
tipo Erdös-Rényi ([a]), Scale-Free ([b]) y Aleatoria ([c]). Para la red experimental ([d]), el
valor medio y la desviación estándar son calculados sobre los cinco triángulos existentes
en la conectividad de dicha red.

el caso de la red Aleatoria puede notarse que la transición es más lenta, lo cual es atribuible
a la estructura de conectividad global de la red. La red Aleatoria es una red conectada
pero sin estructura de conectividad heterogénea sin patrón definido, mientras que el resto
de redes si tienen estructura de conectividad global que favorece una propagación más
rápida de la información, lo cual propicia que la sincronización ocurra. Estos resultados
concuerdan con lo reportado en [104] respecto de la “rapidez” de transición en relación con
la heterogeneidad de la red.

Un resultado inesperado y sorprendente es que a valores de filtración cercanos a cero
(ϵ = 0.03 por ejemplo), la NPE de triángulos para este grupo de homología (H0) también
identifica transición en la sincronización pero con valores inversos comparado con el máxi-
mo valor de filtración (ϵ = 0.15), lo cual sugiere que la NPE es sensible a la información
contenida a micro-escalas en la nube de puntos. Así mismo, existen de valores intermedios
de filtración (ϵ = 0.07 por ejemplo) sobre los cuales la NPE se mantiene estable durante
el intervalo de acoplamiento, lo cual puede corresponder a meso-escalas de información en
la nube de puntos. Indagamos más detalle del este aspecto al presentar los resultados de
la NPE como función del parámetro de filtración respecto del acoplamiento.
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5.2.1.2. NPE vs Parámetro de Filtración

Sin pérdida de generalidad, el parámetro de filtración es la distancia a la cual se “conec-
tan” elementos de la nube de puntos para generar los simplejos que conforman el complejo
simplicial, de tal manera que este da razón de la estructura geométrica de los datos a
diferente escala. Así, valores de filtración bajos capturan información relacionada a pro-
piedades geométricas a micro escalas, en tanto que los valores de filtración próximos a la
distancia máxima entre cualesquiera dos registros de la nube de puntos revela detalles a
macro escalas de su estructura geométrica. Esta característica puede entonces ayudar a
distinguir mejor tanto el estado de sincronización (incoherente o sincronizado), como los
valores de acoplamiento a los que ocurre la transición entre tales estados. Tal condición
motivó explorar el comportamiento de las redes estudiadas respecto del parámetro de fil-
tración en términos del acoplamiento. Los resultados son presentados en la Figura 5.8 para
el grupo de homología de interés (componentes conectados, H0) de triángulos, siendo una
forma alternativa de analizar los resultados presentados en la Figura 5.7.
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Figura 5.8: NPE de triángulos vs parámetro de filtración respecto del acoplamiento. Los
símbolos representan la NPE promedio para H0, las barras de verticales corresponden a
la desviación estándar, calculadas para 10 triángulos sobre 10 realizaciones independientes
cambiando las frecuencias iniciales del modelo de Kuramoto para las redes con conectividad
tipo Erdös-Rényi ([a]), Scale-Free ([b]) y Aleatoria ([c]). Para la red experimental ([d]), el
valor medio y la desviación estándar son calculados sobre los cinco triángulos existentes
en la conectividad de dicha red.

Puede notarse de la Figura 5.8 que, para todas las redes, cuando el acoplamiento es
λ ≤ 0.25, la NPE decae hasta el valor máximo de filtración, lo cual es de esperarse toda
vez que cada oscilador evoluciona según su frecuencia natural sin retroalimentación de
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su vecindad. Sin embargo, para valores de acoplamiento λ > 0.25, el comportamiento es
distinto para cada tipo de red. Para la red tipo Scale-Free (Figura 5.8[b]) se observa una
mayor variabilidad en la NPE a valores de acoplamiento próximos a λ = 2.5, comparado
con la red tipo Erdös-Rényi (Figura 5.8[a]) y este último a su vez comparado con la red
Aleatoria (Figura 5.8[c]). Para esta última es notorio que el decaimiento es más suave en
comparación con el resto de redes simuladas. Otro aspecto que resalta en esta perspectiva
es que, para valores de acoplamiento cercanos a cero (λ ≈ 0.00), empieza a haber valores de
NPE a partir de ϵ ≥ 0.01. Esto se debe al hecho que estamos considerando componentes
conectados con tiempo de vida finitos, de tal suerte que a valores de acoplamiento bajos los
puntos están lo suficientemente separados entre sí y a esas distancias de enlazamiento no se
generan nuevos componentes conectados que extingan a componentes conectados formados
sólo por un punto, lo cual no sucede cuando la red está sincronizada, es decir, a valores
de acoplamiento λ > 0.30, para los cuales puede observarse que se generan y extinguen
componentes conectados a partir de ϵ = 10−3, sugiriendo que en estado síncrono, la NPE
es sensible información a micro escalas. Esta característica también es identificada en la red
experimental (Figura 5.8[d]), con la particularidad que para algunos casos de acoplamiento
(0.25 ≤ κ ≤ 0.35), existen componentes conectados a menor escala que para acoplamiento
κ > 0.35, lo cual puede deberse a la naturaleza de los datos.

5.2.2. Efecto de la Conectividad de la Red

Con base en los resultados presentados en las Figuras 5.6, 5.7 y 5.11, se observa que se
obtienen resultados diferentes para la NPE de los triángulos según sea la estructura de
conectividad de la red, lo que sugiere que, al menos cualitativamente hablando, la NPE
es capaz de distinguir entre tipos de redes para ciertos estados de sincronización. A fin
de ilustrarlo, comparamos los resultados obtenidos en estados incoherente (acoplamiento
λ = 0.00), dentro del intervalo de transición (acoplamiento λ = 0.50) y sincronizado
(acoplamiento λ = 1.50) como se muestra en la Figura 5.9 para las redes simuladas.

Puede verse de la Figura 5.9[a] que en estado incoherente (λ = 0.00) las redes son
indistinguibles entre sí, lo que es de esperarse puesto que cuando la red está desacoplada
los osciladores evolucionan de manera independiente gobernados por su propia frecuencia
natural y sin retroalimentación del resto de nodos que conforman la red, de tal suerte que
la variabilidad en los valores de la NPE es únicamente ocasionada por efectos de finitez
numérica del experimento. Note que el estado de transición de incoherente a sincronizado
(ilustrado para λ = 0.50 en la la Figura 5.9[b]), se distingue claramente la red Aleato-
ria (símbolos marrones) respecto de las redes Erdös-Rényi (símbolos verdes) y Scale-Free
(símbolos azules). Observe además que para este valor de acoplamiento las redes tipo
Erdös-Rényi y Scale-Free han empezado a sincronizarse (como se muestra en los paneles
[a] y [b] de la Figura 5.6), por lo que no es posible distinguirlas para todo el espectro de
filtración. En estado sincronizado (λ = 1.50), todas las redes se vuelven indistinguibles a
valores de filtración bajos, lo cual es consistente, puesto que una vez la red se ha sincroni-
zado se minimiza la evolución detallada de los osciladores a baja escala de los datos y en
consecuencia de ello, para valores de filtración altos la red Aleatoria es ligeramente distinta
de las redes Erdös-Rényi y Scale-Free, puesto que la red Aleatoria no está completamente
sincronizada.



CAPÍTULO 5. RESULTADOS 62

10−3 10−2 10−1

parametro de filtracion (ε)

10−1

100

101

102

N
P
E

aλ = 0.00

Erdos − Renyi
Scale − Free
Aleatoria

10−3 10−2 10−1

parametro de filtracion (ε)

bλ = 0.50

10−3 10−2 10−1

parametro de filtracion (ε)

cλ = 1.50

Figura 5.9: NPE de triángulos vs parámetro de filtración. Los símbolos representan la
NPE promedio de H0 para las redes simuladas de Kuramoto con conectividad tipo Erdös-
Rényi (símbolos verdes), Scale-Free (símbolos azules) y Aleatoria (símbolos marrones) en
estado incoherente o asíncrono (panel [a], λ = 0.00), de transición (panel [b], λ = 0.50) y
sincronizado (panel [c], λ = 1.50). Las barras verticales representan la desviación estándar
calculada sobre 10 triángulos y 10 realizaciones independientes variando las frecuencias
iniciales del modelo.

Con base en lo anterior, los resultados sugieren que la estructura de conectividad de la
red influencia la “rapidez” a la que se sincroniza el sistema, siendo más rápida la transición
en redes tipo Scale-Free que en la red tipo Erdös-Rényi y en esta última la transición es
más rápida comparada con la red Aleatoria. Estos resultados concuerdan con lo sugerido
en [26] sobre el efecto de la conectividad de la red con la trayectoria de transición de
estados asíncronos a sincronizados.

5.2.3. Distinguiendo Triángulos de Tripletas

Por otra parte, a fin de corroborar que realmente la información proporcionada al ana-
lizar el sistema a triadas cerradas (triángulos) es más informativa que la proporcionada
por tres nodos no adyacentes entre sí y que tampoco hacen parte de un triángulo (triple-
tas), comparamos los resultados obtenidos con la NPE para cada una de estas estructuras
de interacción directa. Los resultados se presentan en la Figura 5.10, usando la red tipo
Scale-Free (paneles [a]-[c]) como caso representativo de las redes simuladas y la red expe-
rimental (paneles [d]-[e]) en estados asíncrono (columna de la izquierda) a acoplamiento
λ = 0.00 (κ = 0.00), de transición (columna central) a acoplamiento λ = 0.25 (κ = 0.10), y
sincronizado (columna de la derecha) a acoplamiento λ = 1.50 (κ = 0.50), respectivamente.

Observarse que para para todos los casos, la NPE de triángulos captura información
a escala de los datos más bajas (la curva de NPE de triángulos representada con sím-
bolos verdes inicia a valores más bajos comparado con la de tripletas representada con
símbolos negros). Note que para el estado desacoplado de la red (λ = 0.00 y κ = 0.00,
respectivamente) tanto la red Scale-Free (Figura 5.10[a]) como para la red experimental
(Figura 5.10[d]) no hay diferencias distinguibles de la NPE en el espectro de filtración,
lo cual es de esperarse por la evolución individual de los osciladores en este estado. Sin
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embargo, cuando la red está parcialmente sincronizada (λ = 0.25 y κ = 0.10, respectiva-
mente), tanto en la red Scale-Free (Figura 5.10[b]) como en la red experimental (Figura
5.10[e]) se observan diferencias entre triángulos y tripletas. Esta distinguibilidad se pierde
cuando la red se sincroniza (λ = 1.50 y κ = 0.50, respectivamente), como se ilustra para
la tipo red Scale-Free (Figura 5.10[c]) donde las curvas se superponen, o en el caso de la
red experimental (Figura 5.10[f]), donde las diferencias son mínimas.
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Figura 5.10: NPE de triángulos y tripletas vs parámetro de filtración. Los símbolos (verde
para triángulos y negro para tripletas, respectivamente) representan la NPE promedio de
H0, en tanto que las barras verticales representan la desviación estándar, calculada sobre 10
elementos (triángulos o tripletas, según sea el caso) y para 10 realizaciones independientes
cambiando las frecuencias iniciales del modelo para el caso de la red tipo Scale-Free (fila
superior) y sobre 5 elementos para en caso de la red experimental (fila inferior) a estados
asíncrono (panel [a], λ = 0.00, y panel [d], κ = 0.00 para Scale-Free y Experimental,
respectivamente), de transición (panel [b], λ = 0.25, y panel [e], κ = 0.10 para Scale-Free
y Experimental, respectivamente) y sincronizado (panel [c], λ = 1.50, y panel [e], κ = 0.50
para Scale-Free y Experimental, respectivamente).

Con la intención de corroborar la posibilidad de distinguir entre la dimensionalidad
de la interacción de los nodos, para el conjunto de datos experimentales, comparamos la
NPE de enlaces, bipletas (dos osciladores que no son adyacentes entre sí) triángulos y
tripletas. Los resultados son presentados en la Figura 5.11.

Puede observarse que también para este conjunto de datos no es posible dinstinguir de
manera clara si la interacción diádica (5.11[a]) ocurre entre nodos que no son adyacentes
(bipletas, representadas con símbolos huecos de con color rojo) o si los nodos/osciladores
son adyacentes (enlaces, representadas con símbolos sólidos de con color azul). Mientras
que cuando el análisis es realizado a triadas (5.11[b]), sí es posible distinguir cuando estas
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Figura 5.11: NPE de enlaces, bipletas, triángulos y tripletas vs acoplamiento. Los símbo-
los representan la NPE promedio para H0, las barras verticales representan la desviación
estándar, calculados sobre 5 elementos para enlaces y bipletas (panel [a], símbolos azules
y rojos, respectivamente), y triángulos y tripletas (el panel [b], símbolos verdes para trián-
gulos y negros para tripletas, respectivamente), para la red Experimental.

no son cerradas (tripletas, representadas con símbolos de triángulos huecos de color negro)
a cuando los nodos que conforman la triada sí son adyacentes (triángulos, representados con
símbolos de triángulos sólidos de color verde). Note que, como es de esperarse, cuando la
red está en estado asíncrono (κ = 0.00), tanto en las interacciones diádicas como a triadas
no existen diferencias en los valores de la NPE. Sin embargo, cuando los osciladores
empiezan a retroalimentarse (κ > 0), la NPE es capaz de distinguir claramente entre
triángulos y tripletas, lo cual no ocurre para enlaces y bipletas, corroborando que el análisis
tridimensional, además de detectar de forma robusta la transición de un estado asíncrono
a estado sincronizado, es capaz de disntinguir entre la conectividad de la estructura local.
Vale la pena mencionar que los resultados descritos en esta sección, obtenidos al aplicar
nuestra estrategia de análisis fueron publicados en Scientific Reports. El lector puede
consultar los detalles de esta publicación en la referencia [131].
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CONCLUSIONES Y PERSPECTIVAS

En este trabajo adaptamos el concepto de entropía de persistencia y formulamos la
entropía de persistencia normalizada, NPE, para caracterizar el fenómeno de sincroniza-
ción en redes de osciladores acoplados con dinámicas de tipo Kuramoto (simuladas nu-
méricamente, para redes con estructura de conectividad tipo Erdös-Rényi, Scale-Free y
Aleatoria), y Rössler (datos experimentales reproducidos por [107]), al cuantificar la in-
certidumbre promedio de tiempos de vida de los diagramas de persistencia en grupos de
homología de dimensión cero, H0, uno, H1 tanto en interacciones a pares (bidimensionales)
como a triadas (tridimensionales), consiguiendo identificar y distinguir estados asíncrono,
de transición o sincronizado en que se encuentra el sistema cuando se estudia el estado de
sincronización del sistema (red) como función del parámetro de filtración.

Los resultados obtenidos muestran que la información proporcionada por la NPE a
diferentes escalas de los datos recuperada a diferentes valores de filtración permite carac-
terizar de forma robusta el sistema, toda vez que captura información a micro, meso y
macro escalas de las señales, y sugieren además que la estructura de conectividad global
de la red condiciona la “rapidez” de transición de estado asíncrono a estado sincronizado al
notar que en redes con estructuras de conectividad aleatorias la transición es más “lenta”
que en aquellas con conectividad global definidas como Erdös Rényi y Scale-Free.

Los triángulos, estructuras de conectividad local compuestas por tres nodos adyacentes
en la conectividad global de la red, aportan información consistente para caracterizar el
estado de sincronización de sistemas con dinámica y tipo de red analizadas (Kuramoto
[Erdös-Rényi, Scale-Free y Aleatoria] y Rössler [experimental]). Para este tipo de redes,
nuestra aproximación proporciona mayor información comparada con métricas clásicas
como el phase locking value y el parámetro de orden. Adicionalmente, la información
obtenida al analizar estas estructuras locales (triángulos) en la conectividad de la red no
es posible obtenerla de estructuras tales como tripletas (tres osciladores no adyacentes
ni formando parte de un triángulo), enlaces (dos osciladores adyacentes) o bipletas (dos
nodos no adyacentes y que no hacen parte de un triángulo). Así, el espectro de filtración
de la NPE de triángulos, es decir, la NPE como función del parámetro de filtración,
es una herramienta que permite caracterizar de manera robusta y efectiva el estado de
sincronización las redes analizadas, con gran potencial de aplicabilidad a sistemas cuyo
proceso de análisis se asemeje a los aquí estudiados.
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Una de las limitaciones en aplicar estrategias de análisis de datos basados en homo-
logía persistente es el costo computacional. Pese a los esfuerzos que hicimos en reducir
el tiempo de calculo al umbralizar adaptativamente el valor máximo de enlace que usa el
algoritmo de Gudhi para generar el complejo simplicial a un valor óptimo para nuestro
caso de estudio, los tiempos de cálculos aumentan con la cantidad de puntos y la dimen-
sionalidad de la nube de puntos, de tal manera que este fue un factor que, por cuestiones
de tiempo dentro del proyecto doctoral, limitó extender nuestros experimentos a sistemas
con otro tipo de dinámica, dejando abiertas algunas preguntas interesantes como ¿es po-
sible inferir la estructura de conectividad de una red usando homología persistente?, o
¿en redes densamente conectadas donde se forman estructuras de conectividad local de
mayor orden como tetraedros, pentaedros y de mayor dimensión, tales estructuras locales
también son capaces de extraer “información privilegiada” de la red?, siendo estos algunos
de los horizontes que en investigaciones futuras exploraremos, para lo cual existen con-
juntos de datos experimentales tales como los reportados por [106], quienes reprodujeron
experimentos con osciladores de Rössler en estado caótico usando circuitos eléctricos para
una variedad de estructuras de conectividad de redes reales; así como algunos conjuntos
de datos generados particularmente en contexto simplicial y de sincronización como los
reportados en las referencias [132, 133], los cuales serán de ayuda para responder lagunas
de estas preguntas. Adicionalmente, como perspectivas futuras es de interés explorar el
análisis de sincronización usando homología simplicial en sistemas biológicos, climáticos y
financieros, configurados como red compleja, combinando las ideas aquí desarrolladas con
diversas estrategias y propuestas en la comunidad investigadora de este fenómeno.

En resumen, en este trabajo:

■ Se sentaron bases para identificar y cuantificar sincronización en redes de osciladores
de Kuramoto acoplados como punto de partida para el estudio de este fenómeno en
sistemas complejos usando homología persistente como herramienta.

■ En los experimentos teóricos reproducidos mediante simulaciones numéricas, las ca-
racterísticas de redes fueron elegidas de tal forma que este tipo de estudios sean
reproducibles y replicables en sistemas similares.

■ Con base en los fundamentos teóricos, se identificaron parámetros computacionales
relevantes, a fin de que estos puedan ser optimizados según sea el caso de aplicabi-
lidad, para disminuir el costo de computo, que como instancia final implica menos
gasto energético, siendo esto un aporte de mitigación al cambio climático.

https://gudhi.inria.fr/python/latest/simplex_tree_ref.html
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no lineal durante el desarrollo de esta etapa.


	Resumen
	INTRODUCCIÓN, MOTIVACIÓN Y OBJETIVOS
	Introducción
	Motivación
	Objetivos

	ANÁLISIS TOPOLÓGICO DE DATOS
	Topología
	Homeomorfismo, Isotopía, Homotopía y Homología
	Espacio Métrico

	Homología Persistente
	Complejo Simplicial
	Grupos de Homología
	Persistencia
	Diagrama de Persistencia
	Entropía de Persistencia

	Antecedentes: Aplicaciones del Análisis Topológico de Datos

	SINCRONIZACIÓN
	Contexto Histórico
	Sincronización en Redes Complejas
	El Modelo de Kuramoto
	Cuantificación de Sincronización
	Parámetro de Orden
	Phase Locking Value
	Entropía de Persistencia Normalizada


	METODOLOGÍA
	Estrategia de Análisis
	De Series de Tiempo a Nube de Puntos
	Análisis a Pares (Bidimensional)
	Nube de Puntos Bidimensional

	Análisis a Triadas (Tridimensional)
	Nube de Puntos Tridimensional
	Resolución de Filtración


	Datos
	Datos Generados con el Modelo de Kuramoto
	Datos Experimentales de Circuitos Electrónicos Caóticos


	RESULTADOS
	Análisis a Pares (Bidimensional)
	Según la Cantidad de Interacciones
	Según la Distancia de Interacción
	Comparativa entre la NPE y el ``Phase Locking Value''
	Comparativa entre la NPE y R

	Análisis a Triadas (Tridimensional)
	Transición entre Estados de Sincronización
	NPE vs Parámetro de Acoplamiento
	NPE vs Parámetro de Filtración

	Efecto de la Conectividad de la Red
	Distinguiendo Triángulos de Tripletas


	CONCLUSIONES Y PERSPECTIVAS
	REFERENCIAS
	PUBLICACIONES Y PRESENTACIONES EVENTOS ACADÉMICOS

