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Resumen

La sincronizacion es un fendémeno que emerge en sistemas que interactiian, por lo tanto,
caracterizarla es determinante para entender la dinamica colectiva. No obstante, la nece-
sidad de identificar y cuantificar las propiedades responsables de este fenémeno hacen de
esto una tarea ardua. En las tltimas décadas se ha concentrado esfuerzos para caracterizar
este fendomeno representando tales sistemas como redes complejas y estudiando su evolu-
cion temporal desde aproximaciones numéricas. Motivados por la capacidad del anélisis
topologico de datos para extraer informacion de datos complejos de alta dimensionalidad,
proponemos su uso para estudiar el fenémeno de sincronizacion. En particular, la homolo-
gia persistente, al estudiar la aparicion y extincion de caracteristicas topoldgicas permite
caracterizar estados de la dindmica de un sistema en términos de su estructura geométrica.
En este trabajo formulamos la entropia de persistencia normalizada, N PE, para caracteri-
zar sincronizacion al cuantificar la irregularidad promedio de los tiempos de vida de grupos
de homologia. Para ello generamos conjuntos de datos emulando la evolucién temporal de
osciladores de Kuramoto acoplados arreglados en red con conectividad tipo Erdos-Renyi,
Scale-Free y Aleatoria, y adicionalmente analizamos un conjunto de datos experimenta-
les, también en arreglo de red, con dindmica tipo Rossler. En ambos tipos de dindmica,
cuantificamos la sincronizaciéon en funciéon de la intensidad de interaccion de la red, contro-
lada por un parametro de acoplamiento. Los resultados demostraron que la N PE permite
cuantificar sincronizaciéon e identificar la transicion de estado asincrono a sincronizado del
sistema en todos los tipos de red estudiados. Esta métrica es sensible a la cantidad de
interacciones de los nodos, la distancia entre los nodos, intensidad de acoplamiento, la
escala de anélisis de los datos y la dimensionalidad de la nube de puntos, proporcionando
informaciéon complementaria al parametro de orden y “phase locking value”. Por tanto, lo
resultados presentados en esta tesis demuestran que la NPFE es una herramienta tutil para
caracterizar sincronizacion en sistemas de osciladores dinamicos complejos.



Capitulo 1

INTRODUCCION, MOTIVACION Y
OBJETIVOS

1.1. Introduccion

Para entender el funcionamiento de muchos de los fenémenos que ocurren en la natu-
raleza es importante caracterizar asertivamente los procesos que en ella tienen lugar: de
esto se encarga del analisis de datos. Desde las diferentes disciplinas de la ciencia se ha
propuesto e implementado estrategias usando miltiples herramientas encaminadas a este
proposito. Quiza la estrategia més extendida ha sido separarla en sistemas como unidad
macro de analisis. Una vez definida dicha unidad macro, se identifican los elementos que
lo conforman (también denominados subsistemas), caracterizados por -a priori- participar
en el proceso bajo analisis, de tal forma que, a través de observaciones sistemaéticas de
alguna caracteristica, usando los métodos y técnicas pertinentes, sea posible caracterizarlo
y describirlo adecuadamente.

Pese a la carencia de consenso en adoptar una definicién concreta debido a la variedad
de proposiciones dependiendo del contexto ([1] ofrecen una breve discusion al respecto), en
este trabajo se entendera por sistema complejo al conjunto de elementos que interactiian
de manera autorganizada, retroalimentandose adaptativamente y estableciendo memoria
de sus eventos. Esto como consecuencia de intrincadas interacciones entre los subsistemas
que lo conforman, que combinado con sus procesos caracteristicos individuales, propician
el intercambio de informacion, auto-modulando su dinamica [1, 2, 3, 4].

Desde el punto de vista practico, caracterizar un sistema complejo consiste en estudiar
su comportamiento con base en observaciones del (los) proceso(s) de interés durante un
periodo de tiempo determinado. Al registro cronologico sistematico de estas observacio-
nes se denomina serie de tiempo, a partir de la cual, usando herramientas matematicas
y estadisticas, es posible describirlo de forma cuantitativa. Un sistema serd tan grande
como la perspectiva lo requiera, consecuentemente, cuanto mas grande la perspectiva, mas
complejo sera caracterizarlo. Piénsese por ejemplo en el cerebro humano como un sistema
(complejo, por su puesto). Tal sistema esta conformado por regiones cerebrales, las cuales
estan integradas por grupos de areas especificas, que a su vez corresponden a grupos de
neuronas y asi sucesivamente. Ahora bien, el cerebro hace parte de la cabeza, un subsis-
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tema del cuerpo (un sistema méas grande), que junto con las extremidades y el tronco,
conectados por un entramado de misculos, huesos, venas, arterias, tendones, nervios, etc.,
percibe, genera, transmite, procesa y retroalimenta informaciéon para su funcionamiento. El
cuerpo a su vez estd inmerso en el ambiente fisico (un sistema atn més grande) con el que
intercambia informacion. En tal sentido, la perspectiva (que depende de las necesidades
y/o alcance del proceso que se desea caracterizar) configura el tamano del sistema.

Un sistema complejo integrado por varios subsistemas trae consigo retos de abstraerlo
en un modelo tedrico que de forma realista se ajuste a su evolucion temporal. Dependien-
do de sus caracteristicas, representar un sistema como una red compleja [5, 6, 7|, como se
ejemplifica en la Figura 1.1, resulta ser la manera natural de estudiarlo. Las redes com-
plejas son una estrategia de estudio de sistemas complejos basada en grafos, donde los
vértices son denominados nodos, representando los subsistemas; y los enlaces simbolizan
las interacciones que estos comparten. Dos subsistemas (nodos) de un sistema (red com-
pleja) se dicen adyacentes (estan enlazados) cuando comparten una caracteristica, de tal
forma pueden emplearse elementos matematicos, computacionales y estadisticos de teoria
de grafos, asi como los razonamientos fisicos, biologicos, quimicos, entre otros, inherentes
al proceso de interés, para emular de manera tedrica el funcionamiento del sistema.

Dependiendo de las caracteristicas de sus enlaces, una red compleja puede categorizarse
como no dirigida (Fig. 1.1Ja]) o dirigida (Fig. 1.1|c|, la direccién y color de la flecha
indican el sentido en que se establece el enlace). En las redes no dirigidas es irrelevante
la direccion en la que ocurre la interaccién al suponer que la caracteristica que los une
ocurre bidireccionalmente y con la misma magnitud, mientras que en las redes dirigidas
es posible la existencia de enlaces paralelos entre dos nodos, distinguiendo la magnitud
y direccion de la interaccion o flujo de informacion (como se presenta ilustrativamente la
Figura 1.1]c|). Bajo la categorizacion de redes complejas basada en el tipo de enlace, estas
ademés pueden ser no dirigidas pesadas (Fig. 1.1|b]) y dirigidas pesadas (Fig. 1.1[d]), en
las cuales se asigna un “peso” como medida de la “fuerza” con la que se da la interacciéon
entre los nodos, simbolizada con el grosor de las lineas en las Figuras 1.1[b] y 1.1[d].

Otra forma de categorizar redes complejas es de acuerdo con la distribucion de grado
de los nodos. El grado de un nodo (simbolizado como el tamano de los nodos en la Figura
1.1) indica el namero de enlaces (interacciones) que tiene, de tal manera que la distribucion
de grado da razon de la conectividad de la red. Asi por ejemplo, cuando los enlaces son
asignados aleatoriamente, se espera que el grado de los nodos sea similar. En el contexto de
redes aleatorias, Paul Erdos y Alfréd Rényi en 1959 introdujeron uno de los modelos mas
representativos al establecer enlaces con una determinada probabilidad, la cual, para un
tamano de red lo suficientemente grande, adopta una distribuciéon de grado tipo Poisson,
con grado promedio bien definido [8]. Este modelo (Erdés-Rényi) ha mostrado ser de
utilidad practica y ha proporcionado avances significativos para caracterizar y describir
algunos sistemas representados como red compleja |9, 10]. Otro modelo relevante en esta
categoria fue propuesto por Réka Albert, Hawoong Jeong y Albert-Laszl6 Barabési en
1999 [11], cuya distribucion de grado no presenta una escala caracteristica, sino que sigue
una distribucién tipo ley de potencia. A este tipo de redes se ha denominado Scale-Free,
caracterizadas por tener pocos nodos altamente conectados y muchos nodos con poca
conectividad, lo cual también ha posibilitado describir apropiadamente tanto sistemas
naturales como algunos hechos por el hombre [12, 13, 14, 15, 16, 17, 18|.
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Figura 1.1: Ilustracion de red compleja no dirigida y no pesada [a], no dirigida pesada [b],
dirigida no pesada [c], y dirigida pesada [d].

E

Ademas de las categorias de redes complejas mencionadas, existen otros tipos especiales
tales como las redes bipartitas ([19]) en la que el conjunto de nodos puede separarse en
dos grupos y no existe adyacencia (enlace) entre dos nodos cualesquiera del mismo grupo.
Las redes temporales [20], donde los enlaces se establecen de acuerdo con la interaccion de
los nodos a través del tiempo, es decir, su conectividad no es estatica. Las redes multicapa
o multiplex [21, 22]), una coleccion de redes o capas, cada una representando alguna
propiedad del sistema, por mencionar algunos.

Ahora bien, los sistemas naturales cambian su dinamica conforme evolucionan en el
tiempo puesto que las variables involucradas en sus procesos no son estaticas. Ademés, en
general, sus elementos no presentan proporcionalidad lineal en el sentido en que cambios
en alguno de sus componentes no necesariamente genera cambios (aumento/disminucion)
de magnitud proporcional (lineales) en otros componentes, a lo que se denomina sistemas
complejos de dindmica no lineal. Esta condicién genera retos importantes al momento de
encontrar un modelo que describa de forma fidedigna el sistema, pues, cuando se quie-
re analizarlo, es necesario restringir el alcance, como isolarlo para reducir el ntimero de
subsistemas o elementos que lo componen, y particularizar en condiciones puntuales.

A este punto, es inferible que la evoluciéon temporal de un sistema complejo implica una
dindmica colectiva entre los elementos que lo conforman. El equilibrio de tal colectividad
permite el funcionamiento del sistema y crea condiciones para la emergencia fenémenos
que codifican informacion clave para caracterizarlo. Uno de estos es la sincronizacion, un
fenémeno que emerge de forma esponténea cuando dos o mas (sub)sistemas naturales (com-
plejos) evolucionan de manera coordinada |23, 24]. Este fascinante fenomeno ha atraido la
atencion de investigadores en diferentes dreas no sélo por la belleza que genera en eventos
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naturales como el oleaje de destellos de luciérnagas en el campo en una noche oscura, el
vuelo coreografico de cientos de aves o el de aleteo coordinado de miles de abejas en un
panal que de vez en cuando se viralizan en medios digitales, sino ademés porque codifica
informacion clave para describir diversos procesos, abarcando desde el funcionamiento de
las células en los organismos vivos hasta el movimiento de cuerpos celestes.

Es razonable pensar que para el funcionamiento adecuado de un sistema debe ha-
ber algin grado de sincronizacion entre sus elementos. Al tiempo, una sincronia total y
continua, que en algunos casos no es ni necesaria ni conveniente, toda vez que pude ser
ineficiente y demandante en términos energéticos. En campos como el control de sistemas
roboticos dentro de un proceso de manufactura, donde las diferentes estaciones (robots)
deben funcionar de manera coordinada siempre, la sincronizacién es imperativa. En tal
contexto, es inducida, e inducirla, aunque cominmente laborioso, es relativamente sencillo
puesto que es un sistema programable. Sin embargo, en otros contextos, una completa
sincronizacién por periodos de tiempo prolongados puede causar efectos no deseables. En
el cerebro humano por ejemplo, se ha observado que durante una falla epiléptica, varias
regiones cerebrales o la totalidad de ellas funcionan de manera sincrona, de tal manera
que cuanto mas tiempo dure esta actividad sincrénica, mayor sera la duracion de la falla,
llevando a aumentar el riesgo de dafio y mayores tiempos de “renormalizacion” [25]. En este
ultimo caso, el desafio para entender el padecimiento se centra en cuantificar el estado de
sincronizacién, enfrentando retos como la identificacion de las variables fisioldgicas que la
describen (qué medir), la regiones o areas cerebrales involucradas (dénde medir), la reso-
lucion de muestro de la actividad o variable descriptora (cada cuanto medir), la precision
de medicion (cuantas cifras son significativas), entre otros aspectos.

En general, las limitaciones para cuantificar la sincronizacién de un sistema radican
en la necesidad de identificar las propiedades responsables del comportamiento coordina-
do y registrar a la resolucion correcta las variables que codifican la informacién con la
que eventualmente se pueda adaptar medidas cuantitativas para caracterizar y describir
el fenobmeno, y en consecuencia, el sistema. En este contexto, los modelos tedricos son una
herramienta valiosa a través de la cual se puede dar aproximaciones realistas del comporta-
miento del sistema. Al ser un fenémeno colectivo en el que participan varios (sub)sistemas,
las redes complejas representan una forma natural de estudiar la sincronizacion en sistemas
complejos [26]. Para implementar esta estrategia, los (sub)sistemas son concebidos como
los nodos, los enlaces (lineas uniendo los nodos) como la interacciéon entre los nodos, y la
sincronizacion es modulada a través de un parametro de acoplamiento.

Uno de los trabajos pioneros en el estudio del comportamiento colectivo en sistemas
complejos a través de modelos teodricos y cuantificacion del grado de sincronizaciéon usando
la nocion de redes complejas fue iniciado por Winfree en 1967 [27|, quien propuso un sis-
tema no lineal compuesto por un conjunto de osciladores acoplados a través de sus fases,
en el que cada oscilador (nodo) se encuentra conectado al resto de los osciladores de la red
(a este tipo de redes se denomina redes completas o “all-to-all connected”), controlando el
grado de sincronizacion a través de un parametro de acoplamiento. Esta idea fue refinada
por Kuramoto en 1975 28], quien consigui6 formular un sistema matematicamente reso-
luble, donde no necesariamente la red es completa (como se esperaria en redes de sistemas
naturales), lo que significé avances importantes en entender el fenomeno de sincronizacion
en sistemas naturales usando redes complejas.
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La idea general desarrollada Kuramoto puede describirse asi: supéngase un sistema
representado como una red compleja compuesta por un nimero finito de nodos (subsiste-
mas). Este sistema puede modelarse como un conjunto de osciladores, cuyas interacciones
(enlaces) son simbolizadas por lineas y por precticidad, asimase una red no dirigida, no pe-
sada y sin auto-enlaces. Entonces la propiedad responsable de generar sincronizacion puede
simularse como un parametro de acoplamiento A que controla la intensidad con la que se
retroalimentan los nodos de la red, de tal manera que para cierto valor de A, a través de ite-
raciones es posible generar un conjunto de valores (digamos x;(t), parat = 1,2,3,---, T,
donde T' es el niamero de iteraciones, representando la evolucién temporal del sistema).
Para valores de acoplamiento A por debajo de cierto umbral critico (digamos A.), es decir
valores de A < A, la red no alcanzara la sincronizacion debido a que la fase de cada osci-
lador evolucionaré independiente del resto y a su propia frecuencia natural. Sin embargo,
rebasado el umbral )., es decir, para valores de A > )., la intensidad de retroalimentacion
entre los nodos permitira que la fase de cada oscilador tienda a una fase promedio (digamos
1), denominada la fase basal del sistema, dando paso a la emergencia de sincronizacion
de la red en términos de las fases de los osciladores. En este modelo (Kuramoto), es posi-
ble determinar la sincronizacion de la red a través del parametro de orden. El modelo de
Kuramoto, aunque simple (lo cual también ha sido de ventaja practica), ha facilitado y
motivado el uso del modelo para estudiar diversos sistemas complejos.

Hasta aqui hemos introducido las nociones de sistemas complejos, redes complejas,
sincronizacion y hemos descrito un modelo de dindmica no lineal (el modelo de Kuramo-
to) para estudiar la sincronizacion en sistemas complejos ampliamente explorado ([29, 30,
31, 32]), cuya manera de medir el grado de sincronizacion se basa en estudiar el compor-
tamiento de las fases (una componente de las senales medidas del sistema de interés y
almacenadas como series de tiempo) a través del parametro de orden, es decir, un modelo
teorico funcional para emular el comportamiento de un sistema. Sin embargo, dado que
los datos provenientes de sistemas naturales son ricos en informacion codificada en todas
las componentes del conjunto de registros, es imperativo adoptar estrategias 6ptimas y
robustas de analisis de datos que permitan estudiarlos de forma cada vez méas completa.

Una de estas estrategias, que por su robustez tedrica y adaptabilidad ha venido ganando
relevancia es el andlisis topologico de datos, TDA, un conjunto de métodos que hacen uso
de elementos matematicos como la topologia algebraica y la topologia computacional para
estudiar las propiedades geométricas de un objeto [33, 34, 35]. Una de las herramientas
maés versatiles del TDA es homologia persistente |36, 37, 38, 39, 40|, que permite extraer
informacion de la estructura geométrica de un conjunto de datos. La homologia persistente
consiste en estudiar diagramas de persistencia que contienen la informacién de nacimiento
y muerte (formacion - extincion) de las clases de un grupo de homologia formadas en un
complejo simplicial, una coleccion de invariantes topologicos denominados simplejos (tam-
bién llamados simplices), al efectuar una filtracion a escala multiresolucién a un conjunto
de datos configurados como una nube de puntos a través de alguna estrategia de embebi-
do que reconstruya el espacio en que “vive” el sistema del que provienen los datos. En el
espacio métrico, un complejo simplicial es una coleccion de poliedros, de tal forma que un
0 — simplejo puede considerarse como un punto, un 1—simplejo puede ser visto como una
linea, un 2 — simplejo puede interpretarse como un tridngulo, y asi sucesivamente con los
poliedros de dimension superior, de tal forma que, grupos de homologia de dimension cero
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(Hp) pueden ser interpretados como componentes conectados, los grupos de homologia de
dimension uno (H;) como hoyos unidimensionales, extendiéndose a sus analogos de or-
den superior, también conocidos como caracteristicas topologicas del complejo simplicial.
Los grupos de homologia dan informacion de la estructura geométrica, lo cual representa
ventajas en cuanto a ganar informacion no trivial de diferente naturaleza del conjunto de
datos objeto de analisis.

Para analizar datos usando homologia persistente se procede como sigue: suponga un
conjunto de datos (serie de tiempo) registrados mediante observaciones de un proceso de
interés en un sistema complejo. El primer paso es configurar dicho conjunto de datos como
una nube de puntos, siendo la estrategia de reconstruccion del espacio de estados de Takens
[41] comtinmente usada para esta tarea, de tal manera que la nube de puntos representa
el espacio fase en el “vive” el conjunto de datos. A partir de esta nube de puntos se calcula
la distancia entre cualesquiera dos puntos, obteniendo la matriz de distancias, cuyos lados
son de igual dimension que la longitud de la serie de tiempo. La filtraciéon consiste en
variar la distancia (digamos €) a la que pueden formarse los simplejos en la nube de
puntos. La coleccion de todos los simplejos generados a cada valor de distancia conforman
un (sub)complejo simplicial, donde se generan y extinguen las clases de los grupos de
homologia 1(a cantidad de clases en un grupo de homologia corresponde a su numero de
Betti). La distancia a la que se genera cada clase en un grupo de homologia se denomina
nacimiento y la distancia a la que se extingue se conoce como muerte, de tal forma que la
coleccion pares {(nacimiento, muerte)} corresponde al diagrama de persistencia de dicho
grupo de homologia. La diferencia entre la muerte y el nacimiento de las clases de un
determinado grupo de homologia es la persistencia de dicha clase en el complejo simplicial,
de tal manera que la colecciéon de estas persistencias es el cédigo de barras asociado al
diagrama de persistencia correspondiente. El codigo de barras contiene la informaciéon que
caracteriza la estructura geométrica de la nube de puntos que resulta de utilidad para
entender el conjunto de datos o serie de tiempo y por tanto el sistema del que provienen,
el lector puede ampliar aspectos detallados de esta descripcion en [39, 42, 43].

Cuando se tiene conjuntos de datos de un sistema complejo en diferentes estados, es
razonable pensar que la “forma” de la nube de puntos sera diferente y en consecuencia la
coleccion de tiempos de vida de sus grupos de homologia también serd distinta. El reto
siguiente es encontrar una forma de cuantificarlo y que tal métrica sea capaz de distinguir
entre los diagramas de persistencia generados en cada estado. En el contexto de sistemas
complejos, una manera de cuantificar la taza de generacién de informacién en series de
tiempo es a través de la entropia de Shannon [44], que da razon del “grado de irregularidad”
de la funcién de distribucion de probabilidad que siguen los datos. Rucco y colaboradores
en el 2014 extendieron esta idea para cuantificar el grado de irregularidad en la coleccion
de tiempos de vida de las clases en un diagrama de persistencia, a lo que se denomind
entropia de persistencia [45]. Esta métrica da una medida cuantitativa de la informacion
que en promedio genera el cédigo de barras de un grupos de homologia.

Debido a sus caracteristicas, se ha usado homologia persistente para estudiar series de
tiempo provenientes de sistemas complejos en diversos campos y disciplinas, incluyendo su
aplicacion en sistemas computacionales (|46, 47]), biologicos ([48, 49, 50, 51, 52]), fisicos
([53, 54, 55]), y el clima ([56, 57]), por mencionar algunos. A pesar de su amplio uso en
diferentes areas, las aproximaciones al estudio de sincronizacién usando homologia per-
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sistente se ha enfocado a la identificacion de periodicidades ([58]) y grupos (clusters) en
redes ([59, 60]). Sin embargo, hasta donde es nuestro conocer, no existen investigaciones
en la literatura orientadas a identificar y distinguir entre estados asincrono, de transicion
y sincronizado de este fenémeno en sistemas cuyos elementos se retroalimentan, siendo
esta el area en el que incursiona este trabajo desde una aproximacion numérica en el que
analizamos este fenémeno para redes de osciladores de Kuramoto acoplados, extendiéndolo
a un conjunto de datos experimentales.

1.2. Motivacidon

El estudio de sistemas complejos mediante aproximaciones basadas en datos, como lo
son las redes complejas y el anélisis de series de tiempo, requiere de herramientas cada
vez mas completas que permitan progresivamente extraer informaciéon con mayor confia-
bilidad. En particular, cuantificar el grado de sincronizaciéon de un sistema representado
como red es fundamental para entender el comportamiento colectivo en sistemas que se
retroalimentan. Gracias a su robustez teérica y adaptabilidad a sistemas de alta dimen-
sionalidad (complejidad), la homologia persistente resulta ser una herramienta potente
para esta tarea. Entender por ejemplo la dindmica del cerebro (o las regiones involucra-
das) en una crisis epiléptica en el sentido de cuantificar de manera robusta y precisa la
sincronizacién de su actividad, puede ser clave en ayudar a identificar precursores de la
crisis, de tal forma que, identificada con anticipacién, permita implementar acciones para
manejar el padecimiento. En redes eléctricas por ejemplo, pensando la demanda de una
ciudad (o pais) como un nodo y un grupo de ciudades (escalable a paises) como una red,
puede pensarse que, por las razones a las que haya lugar, habra actividad sincrénica en la
demanda, de tal manera que estudiar este fenémeno puede ayudar a planear y proyectar
mejor la generacion eléctrica (adaptable digamos) y de esta forma optimizar la produc-
cion como medida de mitigacion al cambio climatico. Lo comiin en estos dos ejemplos es
que tales sistemas pueden ser modelados como redes complejas. Ahora bien, la limitacién
més importante de las estrategias existentes en la literatura para estudiar el fenémeno de
sincronizaciéon radica en que estas se restringen a interacciones a pares. Sin embargo, la di-
namica de un sistema puede involucrar la interaccion simultanea entre una mayor cantidad
de sus elementos. Respecto de esta limitacion, la caracteristica de multidimensionalidad de
la homologia persistente toma una relevancia fundamental para estudiar y entender tales
sistemas. Por otra parte, en la mayoria de contextos es comun la carencia de datos para
estudiar tales sistemas, por lo que el modelo de Kuramoto se convierte en una forma rea-
lista de estudiar la dinamica colectiva en términos de sincronizacién. Motivados por en el
futuro responder algunas de las necesidades planteadas en los ejemplos anteriores, en este
trabajo dedicamos esfuerzos a sentar bases para estudiar el fenémeno de sincronizacion en
sistemas complejos de dindmica no lineal usando homologia persistente.
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1.3. Objetivos

Objetivo General

Demostrar la utilidad del analisis topologico de datos, usando homologia persistente,
para caracterizar estados de sincronizacion en redes complejas formadas por oscilado-
res acoplados, mediante el analisis de las series de tiempo que describen su dinamica.

Objetivos Especificos

Generar series de tiempo mediante el modelo de osciladores acoplados de Kuramoto,
organizados como red compleja, considerando distintas estructuras de conectividad
e intensidades de acoplamiento que generen diferentes estados de sincronizacion.

Formular una métrica que cuantifique cambios en la geometria de nubes de puntos,
formadas por series de tiempo de pares o triadas de osciladores acoplados, organiza-
dos como red compleja, ante variaciones en su estado de sincronizacion.

Caracterizar los estados de sincronizacion de las redes simuladas a partir del analisis
de las series de tiempo generadas con el modelo de Kuramoto, usando de la métrica
formulada, probando este cuantificador en datos experimentales, y comparandolo con
métricas convencionales.

El resto de esta Tesis esta organizada como sigue: en el Capitulo 2 se asientan las
bases tedricas involucradas en el analisis topolégico de datos. El Capitulo 4 describe la
metodologia adaptada. El Capitulo 5 se presenta y disertan los resultados obtenidos, en el
Capitulo 6 se presentan las conclusiones y perspectivas, el Capitulo 7 contiene la biblio-
grafia consultada y finalmente el Capitulo 8 consta de una lista con los eventos académicos
relevantes en los que el autor participé6 durante el proyecto doctoral.



Capitulo 2

ANALISIS TOPOLOGICO DE DATOS

El analisis topologico de datos, T DA, se refiere a una serie de métodos para estudiar las
propiedades topologicas de conjuntos de datos. Este es un campo relativamente reciente
cuyo auge inici6 en 2002 con los trabajos de Edelsbrunner y colaboradores en homologia
persistente aplicada a ciencia de datos [36]. El TDA se fundamenta en elementos matema-
ticos como la topologia algebraica y la computacion, para extraer informaciéon geométrica
de la estructura de un conjunto de datos de alta dimensionalidad, revelando informaciéon
no trivial que no es posible obtener mediante analisis convencionales [33, 35].

Este capitulo contiene el marco tedrico de referencia con los fundamentos matematicos
del analisis topologico de datos en la senda de homologia persistente. La Seccién 2.1 for-
maliza el concepto de topologia y algunos términos asociados tales como homeomorfismo,
isotopia, homotopia y homologia (Seccién 2.1.1) y espacio métrico (Seccion 2.1.2) como
espacio de particular interés de espacio topologico tratado en este trabajo. La Seccion
2.2 introduce el concepto de homologia persistente, definiendo los complejos simpliciales
(Seccion 2.2.1), grupos de homologia (Seccion 2.2.2), persistencia 2.2.3, resimenes de ho-
mologia persistente (Seccion 2.2.4) y entropia de persistencia (Seccion 2.2.5), que son los
fundamentos teodricos de este trabajo. Finalmente, la Seccion 2.3 es dedicada a la revision
de algunos trabajos que son antecedentes en la aplicacion de TDA en sistemas dinamicos y
sincronizacion, usando homologia persistente. La mayor parte conceptos definidos en este
capitulo, particularmente las Secciones 2.1, 2.1.1, 2.1.2, 2.2, 2.2.1, 2.2.2, 2.2.3 y 2.2.4, estan
basados en los trabajos [61], [62], [63], [39], [42], [64] vy [65]. El lector puede consultar los
autores referidos para mayores detalles de las generalidades aqui mencionadas. Cuando
haya aportes de otros trabajos en especifico, se indicara incluyendo la cita particular.

2.1. Topologia

La topologia estudia las propiedades invariantes de espacios cuando se someten a defor-
maciones continuas. En particular, la topologia algebraica hace uso de objetos matematicos
tales como grupos y formaliza los conceptos de “proximidad” y “conectividad” a través de
mapeos continuos para identificar homeomorfismos entre espacios topologicos equivalentes,
por lo que en principio es necesario definir algunos de los conceptos fundamentales en los
que se basa el analisis topologico de datos, iniciando por definir un mapeo.

14
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Definicién 2.1.1 (Mapeo) Sea P un conjunto de puntos. Un mapeo es una regla f que
asigna una imagen I a cada punto x € P, esto es: f: P — 1.

Las caracteristicas de un mapa son establecidas con base en el concepto de continuidad
conforme las necesidades impuestas por el tipo de mapeo. Por su parte, los aspectos de
“proximidad” y “conectividad” son formalizados en términos de la teoria de conjuntos,
especificamente referidos a conjuntos abiertos y cerrados definidos a continuacion.

Definicién 2.1.2 (Conjunto abierto) Sean X y O un espacio y subespacio, respectiva-
mente, tal que O € X. O es un conjunto abierto si cada punto x € O estd enteramente
contenido en O.

Notese de la definicion 2.1.2 que, es posible seleccionar cualquier punto z € O, tomar
pasos infinitesimales en cualquier direcciéon dentro X y encontrar otro punto, digamos
y € O, dentro de O. Esta definicion conduce intuitivamente a los conceptos de “proximidad”
y “conectividad”, toda vez que, si dos punto z, y € O son infinitesimalmente proximos (bajo
alguna nocion de proximidad, ya sea sobre conjuntos abiertos/cerrados o alguna métrica),
entonces x e y estan conectados en O.

Los conjuntos abiertos en el espacio X (por convencion, el conjunto vacio ) € X)
cumplen con las siguientes propiedades:

i. () es un conjunto abierto.
ii. X es un conjunto abierto.
iii. La unién de una coleccién finita de conjuntos abiertos es un conjunto abierto.

iv. La interseccién de una coleccion finita de conjuntos abiertos, es un conjunto abierto.

Es posible ahora definir un conjunto cerrado con base en la definicion de conjunto
abierto, de manera que:

Definicién 2.1.3 (Conjunto cerrado) Sean X y C un espacio y un conjunto, respecti-
vamente. C' es un conjunto cerrado si el complemento X — C' es abierto.

Es importante mencionar que, de acuerdo con las definiciones 2.1.2 y 2.1.3 no necesa-
riamente un conjunto que no es abierto es cerrado, ni un conjunto no cerrado es necesaria-
mente abierto, pues, existen conjuntos que son ni abiertos ni cerrados y existen conjuntos
que son abiertos y cerrados. A partir de los conceptos de conjuntos abiertos y cerrados es
posible establecer una definicién general de espacio topolégico y topologia.

Definicién 2.1.4 (Espacio topologico) Un espacio topoldgico es el par (X,T), donde
X es un conjunto y T es la topologia de X .

Definicién 2.1.5 (Topologia) Una topologia T de un conjunto X es una coleccion de
subconjuntos de X que satisfacen las siguientes propiedades:

i. El conjunto vacio () y el espacio X son conjuntos de la topologia T (0, X € T ).
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i1. La union de cualquier coleccion de conjuntos en T estd contenida en T .

i1i. La interseccion de cualquier coleccion finita de conjuntos en T estd contenida en T .

Es posible conocer las propiedades geométricas de un conjunto de puntos mediante
el estudio de las caracteristicas invariantes de la topologia asociada a dicho conjunto a
través de la comprobacion de la existencia de homeomorfismos, cuyos conceptos asociados
se definen en la Secciéon 2.1.1.

2.1.1. Homeomorfismo, Isotopia, Homotopia y Homologia

Dado que la topologia trata con las propiedades geométricas de objetos o funciones
(representados como conjuntos de puntos) mediante el estudio de sus elementos invariantes,
es decir, elementos o caracteristicas que no cambian bajo deformaciones, tales como la
“conectividad” entre una coleccion de n elementos (n — vertices) cercanos entre si de un
conjunto de puntos, cuando estos son mapeados, de lo cual, si dos objetos pueden ser
topologicamente mapeados entre se si, se dicen homeomarficos.

Dos espacios topologicos son homeomorficos si existe un homeomorfismo entre ellos,
de tal forma que, un homeomorfismo induce a una relaciéon de equivalencia entre dichos
espacios topologicos y en consecuencia, estos se dicen topoldgicamente equivalentes.

Definicion 2.1.6 (Homeomorfismo) Sean X e Y espacios topoldgicos. Un homeomor-
fismo es una biyeccion continua f : X — Y, cuya inversa f~' Y — X emiste y es
continua.

En general, es més facil probar que dos espacios topoldgicos son homeomorficos, es
decir, que son equivalentes, a probar que no lo son, para lo cual se recurre a deformaciones
tales como isotopicas, homotopicas y homologicas.

Definiciéon 2.1.7 (Isotopia) Sean X e Y dos espacios topoldgicos. Una isotopia es una
deformacion € © X x [0,1] — R® que conecta a X e Y a través de un mapeo continuo,
donde £(X,0) = X, £&(X,1) =Y y para cada e € [0,1], &(+,t) es un homeomorfismo entre
X y su imagen {&(x,t) : x € X}.

En otras palabras, supongase que ¢ = £(X,0) = X y h = £(X,1) = Y son defor-
maciones que mapean X a Y, si g permanece libre de puntos duplicados para todas las
posiciones durante el mapeo en el intervalo [0, 1], entonces X e Y se dicen isitopicamente
equivalentes.

Definicién 2.1.8 (Homotopia) Sean g: X — Y y h: X — Y mapas. Una homotopia
es un mapeo H : X x [0,1] =Y tal que H(-,0) =g y H(-,1) = h.

Notese que la equivalencia homotdpica de los espacios topologicos presenta una relaja-
cion respecto a la deficion de equivalencia a través de la isotopia, toda vez que la homotopia
relaciona los espacios que pueden ser continuamente deformados sin que necesariamente la
deformacion preserve el homeomorfismo, es decir, a diferencia de la isotopia, la deformacion
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homotodpica no requiere que no haya puntos duplicados en todas las posiciones interme-
dias del mapeo (no requiere biyectividad), sin embargo, esta preserva algunas formas de
conectividad.

Dado que algunos mapeos a través de deformaciones continuas no requieren biyectivi-
dad, toda vez que los mapeos de un espacio topolodgico a otro espacio topologico equivalente
conservan propiedades de conectividad, surge la nocién generalizada de homeomorfismo,
es decir de equivalencia topoldgica: homologia.

Definicion 2.1.9 (Homologia) Una homologia es una equivalencia de dos (o mds) es-
pacios topologicos cuya relacion de equivalencia se establece mapedndolos a través de de-
formaciones continuas sin que necesariamente estas sean viyectivas, siempre que conserve
la conectividad de los espacios topoldgicos equivalentes.

2.1.2. Espacio Métrico

Un espacio métrico es un tipo de espacio topologico que facilita construir una idea
geométrica de la topologia de un espacio, toda vez que este incluye la nociéon de distancia
o métrica que posibilita esquematizar de manera intuitiva la abstraccion de un espacio
topologico que no necesariamente incluye un nociéon de distancia adjunta al espacio métrico
como se define a continuacion:

Definicién 2.1.10 (Espacio métrico) Un espacio métrico es un par (X,d), donde X
es un conjunto y d : X x X — R es una funcion de distancia que para cualesquiera puntos
p, q, v € X satisface las siguientes propiedades:

i. d(p,q) =0 siy sdlo sip=gq;
. d(p,q) =d(q,p), y
ii. d(p,q) < d(p,r)+d(r,q).

De acuerdo con las propiedades de la funcién de distancia d de un espacio métrico,
puede notarse que d > 0 para cada par p, ¢ € X, de tal forma que es posible construir
bolas métricas abiertas en X.

Definicion 2.1.11 (Bola métrica) Sea X un espacio métrico. Una bola métrica abierta
B(e,r) centrada en c y de radio r es el conjunto de puntos tales que B(p,r) = {p € X :
d(p,c) < r}, a partir de la cual es posible definir el espacio topoldgico métrico.

Definicién 2.1.12 (Espacio topologico métrico) Dado un espacio métrico X, la co-
leccion de todas las bolas métricas {B(p,r)|p € X and 0 < r < oo} y sus uniones confor-
man los conjuntos abiertos que definen una topologia en X, es decir, un espacio topoldgico
metrico.

En este trabajo nos dedicamos a estudiar conjuntos de puntos en términos de anélisis
topologico de datos embebidos en un espacio métrico a través de homologia persistente.
En ese sentido, la seccion siguiente es dedicada a detallar la forma en como funciona.
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2.2. Homologia Persistente

Por su adaptabilidad para estudiar conjuntos de datos de alta dimensionalidad, la ho-
mologia persistente |36, 38, 39, 40, 42, 37|, se ha convertido en la herramienta méas versatil
del TDA. A grandes rasgos, dado un conjunto de datos unidimensional, es decir una serie
de registros tabulados en una tnica columna y N filas representando las observaciones
del fenémeno de interés, la homologia persistente consiste en configurar dicho conjunto de
datos como una nube de puntos de d columnas y T filas, de tal forma que las columnas
representen la dimension en la que el conjunto de datos estd embebido, interpretada como
su configuracion geométrica en el espacio topologico al que pertenece, en tanto que las filas
representan la evolucion temporal del estado en que se encuentra el fenémeno observado.
Una vez configurado el conjunto de datos como una nube de puntos se construye un com-
plejo simplicial compuesto por la coleccion de simplejos que surgen al realizar filtraciones
a escala multiresolucion de la nube de puntos, dando lugar a la formacion (nacimiento) y
extincion (muerte) de las clases de un grupo de homologia, mismo que se generan durante
la filtracion. Para cada grupo de homologia a la coleccion de (nacimiento, muerte) de las
clases de un grupo de homologia se denominada diagrama de persistencia, en tanto que la
coleccion de diferencias (muerte-nacimiento) corresponde a los tiempos de vida, también
conocidos como cddigo de barras (“barcodes” en inglés). Tanto el diagrama de persisten-
cia como el cédigo de barras almacenan la informacién geométrica de la nube de puntos
analizada, de tal manera que, desde el punto de vista de ciencia de datos, la tarea del
analisis topologico de datos a través de homologia persistente consiste en encontrar las
propiedades geométricas caracteristicas del conjunto de datos de origen y en consecuencia,
del fenébmeno subyacente.

De acuerdo con lo anterior, la forma en como la homologia extrae informacién geomé-
trica de una nube de puntos se basa en estudiar los grupos de homologia formados por los
invariantes topologicos que conforman el complejo simplicial resultante de la filtracion de
la nube de puntos, por lo que iniciaremos definiendo el complejo simplicial y de qué esta
constituido.

2.2.1. Complejo Simplicial

Un complejo simplicial estd conformado de simplejos (o simplices), siendo estos ele-
mentos los invariantes topologicos, por tanto, definiremos primero el concepto de simplejo
y posteriormente extenderemos la definicion de complejo simplicial.

Definicién 2.2.1 (Simplejo) Sea X un conjunto de puntos del espacio métrico. Un k —

simplejo o simplice 0 = {xg,x1,- - x} de dimesnion k es la cubierta convera de k + 1
(Vz; € X, 0 <j <k+1) puntos afinmente independientes, es decir, el conjunto de todas
las combinaciones convexas {apTo, 121, -, aprr} donde ag + oy + -+ + oy, = 1, que se

“conectan” entre si a través de la nocion de prorimidad.

En el espacio métrico, esta nocion de proximidad es la funciéon de distancia Euclidea. Si
la distancia entre dos puntos x; y x; (i # j) es menor o igual a cierto umbral de “maxima
distancia de enlazamiento”, digamos €, (||z;, z;||2 < €) se establece un “enlace” entre tales
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dos puntos, de tal forma que cualesquiera puntos z;, x; bajo esta condicién forman un
simplejo. Asi, en el espacio métrico, los simplejos son generalizaciones de triangulos. Parti-
cularmente, como se ilustra en la Figura 2.1, un 0 — simplejo es un vértice (un punto), un
1 — simplejo es un enlace (una linea uniendo dos puntos), un 2 — simplejo es un triangulo,
un 3 — simplejo es un tetraedro, generalizandose asi a sus analogos de mayor orden. La
dimension de un simplejo o es dim(o) = k 'y ¢’ es una cara de o si es un conjunto no vacio
de o € X. Por definicion, 0 < k < ¢’ y ¢ es una cara de mismo.

0 — simplejo 1 — simplejo 2 — simplejo 3 — simplejo

Figura 2.1: Ilustracion de simplejos o invariantes topologicos. En el espacio métrico un
0-simplejo es un punto, un 1-simplejo es una linea uniendo dos puntos, un 2-simplejo es
un triangulo canoénico, un 3-simplejo es un tetraedro, extendiéndose sucesivamente a sus
analogos de mayor dimension.

Definicion 2.2.2 (Complejo simplicial) un complejo simplicial K = {o}} es una co-
leccion finita de simplejos tales que: si o’ es una cara de o € K, entonces o' € K; vy, la
interseccion de una coleccion de cualesquiera simplejos de K es una cara comiun de cada
uno de ellos o un conjunto vacio.

La dimensiéon de un complejo simplicial K es la mayor dimension de simplejos en el, de
manera que el espacio de un complejo simplicial es el espacio de todos los poliedros sobre
el cual se puede construir una abstraccion de estos.

Definicién 2.2.3 (Complejo simplicial abstracto) FEs una coleccion finita de simple-
jos A tales que si a« € A y f € a entonces § € A.

La definicién de complejo simplicial abstracto ha sido adaptada a una version geomé-
trica en el espacio topologico métrico. En este trabajo, la filtracion se realiza a complejos
simpliciales de Vietoris — Rips, mismos que estan basados en el complejo simplicial abs-
tracto de Clech como se define a continuacion.

Definicién 2.2.4 (Complejo simplicial de Cech) Sea X = {xy,z,--- , x5} una co-
leccion finita de puntos en R? y sea B(x,r) = x + r una bola de centro x y radio r.



CAPITULO 2. ANALISIS TOPOLOGICO DE DATOS 20

El complejo de Cech de X es la coleccion de (sub)complejos simpliciales formada por la
interseccion de todas las B(x,r), esto es: Cech = {0 C X| Nye, d(z,7) # 0}.

Definicién 2.2.5 (Complejo simplicial de Vietoris-Rips) El Complejo simplicial de
Vietoris — Rips es una relajacion del complejo de Cech en el cual, el complejo simplicial
es formado por la interseccion de las bolas B(x,r) con una distancia a lo mds de dos veces
r, esto es: Vietoris — Rips = {o C X|diam(c) < 2r}.

La Figura 2.2 bosqueja un complejo simplicial de Vietoris-Rips en R%. En términos sim-
ples, dada una nube de puntos conformada por la coleccion de valores {y;} = {(zs, zi1r)},
donde 7 es el retardo o delay de embebido (en este ejemplo la dimension de embebido es
d=2),ei=1,23,--,se“dibuja” una bola de radio r centrada en cada punto como se ilus-
tra con la circunferencia dibujada. Todas las bolas que se intercepten entre si conforman un
simplejo. En nuestro ejemplo existen once (11) 0—simplejos, {o0} = {v1}, {v2}, -+, {yn},
cinco (5) 1 — simplejos, {o1} = {y1, 92}, {ys, ya}, {y3, s}, {va, e}, {y7, ys}, un (1) 2 —
simplejo, {o2} = {ys, Y6, yr}, y un (1) 3 — simplejo, {o3} = {ys, Y9, Y10, Y11} Asi, el com-
plejo simplicial K3 = {{oo}, {01}, {02}, {03}} de dimensién 3 (esta es la maxima dimension
de simplejos en el complejo simplicial), corresponde a la coleccion de todos los simplejos
formados bajo la condicion ||y;, y;]l2 < 7.

1

Figura 2.2: Tlustracion de complejo simplicial abstracto. Corresponde a la coleccion de
simplejos que se forman al interceptarse los circulos de radio r de cualesquiera dos puntos.
En este ejemplo, para tal valor de r, el complejo simplicial contiene dos componentes
conectados [a] y [b], y este tltimo contiene un hoyo unidimensional.

Ahora bien, el estudio de las propiedades geométricas de un conjunto de datos desde
la perspectiva de homologia persistente se basa en el analisis de los grupos de homologia,
mismos que describiremos a continuacion.
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2.2.2. Grupos de Homologia

Los grupos de homologia, a menudo también llamados hoyos m-dimensionales en el
contexto de topologia, son estructuras geométricas un poco mas complejas (comparados
con los simplejos) que se forman en el complejo simplicial. Para tener un panorama mas
claro al respecto, es necesario introducir primero conceptos tales como cadenas, fronteras,
ciclos y grupos de fronteras. Empezaremos por la primera.

Definicién 2.2.6 (Cadena de complejos simpliciales) Una p — cadena ¢ de un k —
complejo simplicial K con m, p — simplejos (o, € K;0 < p < k), es la suma formal
c= Zmp a;0;, donde a; son los coeficientes modulo 2 (Z1s) para un simplice dado.

En la topologia computacional los coeficientes modulo 2 toman valor 0 o 1 de acuerdo
con las siguientes reglas binarias de la operacion de adicion modulo 2, Z,o : 0+ 0 = 0;
0+1=1;1+41=0. La adicién de una colecciéon de p-cadenas forman una nueva cadena.
En particular, si dos p-cadenas ¢ = Zmp ajo; y ¢ = Zmp a;o; son adicionadas, ¢ + ¢ =
Zmp(ai+a;)oi, formaran una nueva p — cadena. Las p—cadenas con operaciéon Z,, forman
un grupo C,(K) donde la cadena identidad es c =}, 0o;.

Los p — grupos de cadenas estan relacionados por un operador de frontera 9,, tal que,
para un p — simplejo o formado por p puntos o = {xg,--- , z,}, la operacion de frontera
9y sobre o 0,0 = 3 {wg, -+ , i, -+ - 1, } (&; simboliza la exclusion del vértice z; en la suma
sobre x), envia a o a una (p — 1) — cadena cuyos coeficientes a; distintos de cero son las
(p — 1) — caras (fronteras) de o. Extendiendo el operador de frontera d, a p — cadenas
C,, 0, : C, = C,_1, genera un homeomor fismo, para un k —complejo simplicial tal que

(ORia O RN G TS = ST G NI G MUY o S )

Bajo la operacion de frontera pueden identificarse ciclos (“loops”) en una cadena de
complejos simpliciales. Una p — cadena ¢ es un p — ciclo si dc = 0, es decir, una cadena
que tiene una frontera vacia es un ciclo. La colecciéon de todos los p — ciclos adicionados
mediante Z,, formando un p — grupo Z,. El conjunto de (p — 1) — cadenas que puede
ser obtenido al aplicar el operador de frontera d, a p — cadenas forma un subgrupo de
(p—1) — cadenas llamado (p — 1) — grupo de frontera B,_; = 0,C,, de manera que B,_;
es la imagen del homeomorfismo, dando paso a los los grupos de homologia.

Definicién 2.2.7 (Grupos de homologia y nimeros de Betti) Unp—grupo de homologi’a
H, (p >0), es el grupo cociente H, = Z,/B,, , para el cual el nimero de Betti 3, es la
dimension de H,, B, = dimH,.

Informalmente, para un complejo simplicial en el espacio métrico, un 0 — grupo de
homologia Hy es un 0 — ciclo que representa los componentes conectados, un 1 — grupo de
homologia H; es un 1—ciclo (hoyos) que encierran un area, un 2—grupo de homologia H es
un 2 — ciclo (cavidades) que encierran un volumen, extendiéndose a sus analogos de mayor
dimension. En el ejemplo ilustrativo de la Figura 2.2 existen dos grupos de homologia
de dimension cero (Hy), formando los (sub)complejos [a] y [b], los cuales representan los
componentes conectados que existen en el complejo simplicial, asi mismo, el (sub)complejo
(b) contiene un grupo de homologia de dimension 1 (H;) que se genera al haber una frontera
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vacia (que encierra un area) entre los puntos conectados que conforman esa seccion del
complejo simplicial.

Matematicamente hablando, la homologia caracteriza objetos cuya “forma’” esta bien
definida, es decir, que poseen una cantidad de nameros de Betti exactos, por ejemplo, un
circulo consiste de exactamente 5y = 1 componentes conectados, ; = 1 hoyos unidimen-
sionales, y 3, = 0V £ > 1, un toro tiene 3, = 1 componentes conectados, $; = 2 hoyos
unidimensionales, 8, = 1 cavidades, y 8, = 0 V £ > 2. Sin embargo, en razéon a que la
forma de los conjuntos de datos no necesariamente se ajusta a la de un objeto mateméa-
tico bien definido, se ha recurrido a identificar las caracteristicas topologicas (estructura
geométrica) de estos al variar el parametro de distancia r, a este proceso se denomina
filtracion, de tal manera que r representa la longitud maxima de enlace, referido también
como parametro de filtracion, e. En la filtracion se generan (nacen) y extinguen (mueren)
grupos de homologia y la distancia que tarda en “morir” un grupo homolégico desde su
“nacimiento” se denomina persistencia. A fin de precisar este procedimiento, a continuacion
se definen formalemnete este y otros conceptos relacionados a la persistencia de grupos de
homologia.

2.2.3. Persistencia

Para un objeto X, una clase de homologia (homomeorfismo) ¢ € H,(X) nace en X,,
si ¢ € Hyi pero ¢ ¢ H ', de forma andloga, una clase de homologia (inH,(X) muere en
X, si ¢ ¢ Hy pero ¢ € Hp™', 0 <4, 5 <n=rank(j,).

Una vez identificados el nacimiento b y la muerte d de una clase de grupo de homologia
¢, a la diferencia ¢ = b — d se denomina persistencia de (. £ es conocido ademas como
el tiempo de vida que tiene una dicha clase desde su aparicion (nacimiento) hasta que se
extingue (muere) en la filtracion de un complejo simplicial.

Hasta este punto, la teoria introducida se refiere a analizar los grupos de homologia
en un complejo simplicial generado a partir de una nube de puntos para estudiar sus
propiedades geométricas. Esto requiere de variar el pardmetro de filtraciéon € entre ciertos
valores tales que 0 < € < oo y analizar las persistencias de los grupos de homologia que se
generan y extinguen en la medida en que € cambia, es decir, filtrar el complejo simplicial.

Definiciéon 2.2.8 (Filtracion) Sea K un complejo simplicial finito. Una filtracion es una

secuencia anidada de subcomplejos (complejos simpliciales o caras de menor o igual orden)
K; € K tales que: ) =Ko CK; C---CK,,=K (V0 <i<m).

Esta filtracion da como resultado la coleccion de todos los grupos de homologia a través
de una escala y su “duracion”, es decir, su persistencia (o tiempo de vida) formados a partir
de la nube de puntos, proporcionando informaciéon acerca de la estructura de esta, y en
consecuencia del fenémeno subyacente.

A fin de brindar una nocién esquematica de una filtracion, en la Figura 2.3 ilustramos
este procedimiento aplicado a un conjunto de datos arbitrarios. Partiendo de la nube
de puntos conformada por la coleccion de valores {y;}, la filtracién consiste en cons-
truir (sub)complejos al variar los valores de distancia € [0 < ¢ < 00). En este ejemplo
el (sub)complejo simplicial es mostrado en los paneles superiores, y el codigo de barras
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representando la persistencia de los grupos de homologia en los paneles inferiores. En esta
representacion, cuando un grupo de homologia, a determinado valor de filtraciéon e aun
no muere, se representa con la barra a la mayor longitud (cabe aclarar que, tedricamen-
te, el grupo de homologia, a ese determinado valor de filtracion, vive infinitamente). Por
convencion, cuando € = ¢, = 0 (Figura 2.3[a|), el complejo simplicial estéd conformado
por los puntos (0 — simplejos), y cada punto representa un componente conectado, Hy,
por tanto, ningiin componente conectado muere a ese valor de filtracion. Cuando € = ¢,
(Figura 2.3|b]), se genera el 1 — simplejo {y1,y2}, asi como la coleccion de 1 — simplejos
{ys,yat, {ys,ush, {vaysh, {us,ue}s {we, urts {yr, usts {us, yo} {wo, 910}, {910,911} Ast, los
antiguos componentes conectados que nacieron en |a| a € = ¢, y murieron en |[b| a € = ¢,
persistieron hasta ¢ = d — b = €, — €,, de tal manera que el nuevo (sub)complejo simplicial
estd compuesto por dos componentes conectados, incluyendo un grupo de homologia de
dimension 1, Hy, conformado por el ciclo de simplejos {y7, ys}, {v7, vo}, {vs, ¥o} {9, 10},
{¥10,911}. Cuando ¢ = €. (Figura 2.3|c|), debido a la generacion de los 1 — simplejos
{ye, 7}, {vr,y0}, {yr,vi0} v {us, v10}, el Hy generado a € = ¢, se extingue, de tal suerte
que persistio durante ¢ = €. — ¢, y el complejo simplicial sigue teniendo dos compoenen-
tes conectadosvivos”, por lo que sigue habiendo dos barra azules con la maxima longitud
posible. Finalmente, a una distancia de € = ¢, (Figura 2.3|d]), el complejo simplicial con-
siste en un unico componente conectado que persistira hasta infinito (representada como
la tnica barra azul con longitud maxima en el codigo de barras), y que ademés contiene
los (sub)complejos formados a menor valor del parametro de filtracion, e.
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;US .’yﬁy Y10 \
?3 oy V11 [
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SN Y2
o - a
12 -
11 p— p— p—
[} glg — = —
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NG‘S 8 — — —
QS 7 p— p— p—
%3 < 6 — — —
N 3 5 p— p— —
Q, ‘/1 — — —
Q 3 E— E— p—
2 ——
a b c d na b c d na b c d na b c d n

paso de filtracion

Figura 2.3: Filtracion de una nube de puntos. La fila superior muestra el complejo simpli-
cial y la fila inferior el codigo de barras de la filtraciéon conforme aumenta la distancia € de
construccion de simplejos. En [a], cada punto es un componente conectado que atn no se
extingue. En [b|, se han extinguido 9 componentes conectados y nace un hoyo unidimen-
sional que “vive” hasta [c|, donde s6lo dos componentes conectados conforman el complejo
simplicial. En [d], s6lo “sobrevive” un componente conectado que “vivird” hasta €, — oo.

En general, la coleccion de clases de los diferentes grupos de homologia que se generan
en la filtracion son “almacenados” en los denominado restimenes de homologia persistente,
mismos que describiremos a continuacion.



CAPITULO 2. ANALISIS TOPOLOGICO DE DATOS 24

2.2.4. Diagrama de Persistencia

Los resumenes de homologia persistente tienen por objetivo dar una representacion de
la informacion geométrica extraida de una nube de puntos. En tal sentido, estos son formas
de (cualitativamente) reconocer las caracteristicas topologicas de tal conjunto de datos. El
resultado de la filtracion de un conjunto de puntos es una colecciéon de pares ordenados
de nacimiento-muerte (b, d) que indican la coordenada en que se genera y eventualmente
se extingue la clase de un determinado grupo de homologia (caracteristica topologica) de
cierta dimension, de tal manera que habra un arreglo de tamano (n,2), donde n es la
cantidad de elementos (clases) de un grupo de homologia de cierta dimension. Quiza el
resumen mas reconocido de la coleccion nacimiento-muerte de los grupos de homologia
resultantes de una filtracion es el grafico de dispersion de nacimiento vs muerte para
cada una de las caracteristicas topolégicas que tuvieron lugar. A este tipo de gréfico se le
denomina diagrama de persistencia. En este resumen, los valores estan ubicados por encima
de la diagonal del grafico, toda vez que ninguna muerte es menor que el nacimiento. Al
inicio de una filtracion (cuando e = 0.00), cada punto de la nube de puntos representa un
componente conectado del complejo simplicial, esto implica que cuando un componente
conectado se extiende (conteniendo otro componente conectado también ya existente por
definicion), muere el que se genero de ultimo, asi, toda muerte de las clases de un grupo de
homologia seran mayor que cero. En consecuencia de lo anterior, ningiin grupo grupo de
homologia de dimension uno naceréa en € = 0.00. La Figura 2.4 ilustra la representacion de
un diagrama de persistencia para la nube de puntos de la Figura 2.3, donde los simbolos de
triangulos representan las clases del grupo de homologia de dimension cero, Hy, mientras
que los circulos representan las clases del grupo de homologia de dimensiéon uno, H;.

A

muerte

v >

nacimaiento

Figura 2.4: Diagrama de persistencia. Consiste en un gréafico de dispersion de “nacimien-
to” versus “muerte” de los elementos (clases), ejemplificado para grupos de homologia de
dimension cero (simbolos azules) y uno (simbolos rojos) en esta ilustracion.
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Otro tipo de resumen de homologia persistente es la representacion del arreglo como
codigo de barras simbolizando la persaistencia o tiempo de vida asociado a cada clase
de un grupo de homologia de cierta dimensién, tal como los ilustrados en los paneles
inferiores de la Figura 2.3. Un tipo de resumen de persistencia adicional es el de perfiles de
persistencia, que incluye un arreglo distinto de los elementos del diagrama de persistencia
de los considerados de coédigo de barras antes descritos, que si bien no se presentan en este
trabajo, se mencionan como contexto general. El lector puede consultar las referencias |66,
67, 68, 69| para detalles de estos resimenes de homologia persistente.

Los diagramas de persistencia son una representacion cualitativa de la informacion ge-
nerada durante la filtracion. Sin embargo, como consecuencia del marco teérico en el que
se fundamenta la homologia persistente esta es una tarea retadora. Pese a estas limitacio-
nes, a partir de los diagramas de persistencia se ha desarrollado elementos a través de los
cuales es posible aplicar estadisticas y otros elementos matematicos para acceder de for-
ma cuantitativa la informacion de la estructura geométrica extraida de la nube de puntos
(véase por ejemplo [70, 67]) en términos de la “distribucion” del diagrama de persistencia.
En la siguiente seccion introduciremos la forma de cuantificar informaciéon en diagramas
de persistencia usada en este trabajo.

2.2.5. Entropia de Persistencia

Los diagramas de persistencia resultantes de filtrar un conjunto de datos provenientes
del muestreo de objetos sin forma matemética bien definida no presentan una distribuciéon
probabilistica conocida. Por supuesto este aspecto se extiende y acenttia en conjuntos de
datos originados a partir de observaciones de algin fenémeno, es decir, datos empiricos
o series de tiempo. Tal aspecto es uno de los retos para cuantificar la informaciéon de la
estructura geométrica de series de tiempo a través de homologia persistente (véase por
ejemplo [71, 72, 73] para una breve discusion al respecto). En razon a ello, en este trabajo
nos dedicamos a estudiar la “irregularidad” de diagramas de persistencia en términos de la
heterogeneidad promedio que mide la entropia en el contexto de teoria de la informacion.

En este sentido, una manera natural de cuantificar la heterogeneidad de las persis-
tencias (o codigo de barras) de un diagrama de persistencia es a través de la entropia.
Considere un diagrama de persistencias PD = {H,} con la coleccion de grupos de homo-
logia H, = {(b1,d1),---, (by,dn)} de dimensién ¢ = 0,--- ,k, dotado con N = 1,2,---
clases (ntimeros de Betti). El codigo de barras B(H,) = {f1,---,{x} es la coleccion de
persistencias {¢;} (1 < j < N) de tal grupo de homologia en el diagrama de persistencia.
Asi, la heterogeneidad del codigo de barras es cuantificada en términos de la entropia de
persistencia introducida por Rucco y Colaborades en el 2014 como una extension de la
entropia de Shannon en el contexto de homologia persistente definida como [45, 74]:

N
PE == p(t;)log[p(¢;)], (2.1)
j=1
donde p(¢;) =¢;/L,y L = Zjvzl ¢;. La Ecuacién 2.1 mide la heterogeneidad promedio
del diagrama de persistencia en cuestion, al cuantificar la contribucién de incertidumbre
generada por las j-ésima persistencia del codigo de barras asociado.
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2.3. Antecedentes: Aplicaciones del Analisis Topologico
de Datos

Existe en la literatura una variedad de estrategias (adaptadas segin sea el caso de
uso) para extraer la informacion de la estructura geométrica de una nube de puntos a
partir de los diagramas de persistencia generados, algunas de estas estrategias aplican
técnicas estadisticas para establecer conjuntos de confianza en cierto tipo de diagramas
de persistencia (véase [75]), otras basadas en distancia entre dos grupos de homologia
(fijando uno de estos como referencia) H, de dimension ¢ usando por ejemplo distancias
de Wasserstein (véase [40]), distancia de cuello de botella (|35]), entre otras herramientas
(véase adicionalmente |76, 77, 50] para una revision més amplia), a fin de cuantificar la
informacion contenida en los diagramas de persistencia. El desarrollo de estas herramientas,
que constituyen el marco estadistico cuantitativo de homologia persistente, ha posibilitado
su uso en diferentes contextos. A continuacion, describiremos brevemente algunos de los
trabajos que se han desarrollado respecto al uso de homologia persistente en el estudio
de sistemas complejos de dinamica no lineal, incluyendo aproximaciones en el estudio del
fendémeno de sincronizacion en sistemas dindmicos relevantes para este trabajo.

El trabajo pionero de Edelsbrunner y colaboradores en homologia persistente publicado
en 2002 [36] marco el inicio del uso de la topologia algebraica en el analisis de datos de
alta dimensionalidad, que junto con los importantes aportes de los trabajos realizados por
Zomordian y Carlsson en 2004 [37], Bubenik y Kim en 2007 [70], Edelsbrunner y Harer
en 2008 [39], Ghrist en 2008 |78], Epstein y colaboradores en 2011 [79], Edelsbrunner
y Morozov en 2013 [40], Perea y Harer en 2013 [80], entre otros, contribuyeron en la
construccion las bases de este campo, mismo que sigue en desarrollo desde el punto de
vista de aplicacion a series de tiempo con contribuciones importantes como las presentadas
en los trabajos de Athe y colaboradores en 2019 [77], Atienza y colaboradores en 2020 [81],
Ravishanker y Chen en 2021 [69], entre otros mencionados en lo que va de este escrito,
fortaleciendo desde diferentes disciplinas el anélisis topologico de datos con herramientas
y perspectivas que posibilitan su uso en diferentes contextos.

La homologia persistente se ha consolidado como la herramienta mas versatil del ana-
lisis topologico de datos, toda vez que ha mostrado ser capaz de revelar informacién no
trivial de algunos sistemas dindmicos que exhiben comportamiento complejo, caracteris-
tica que ha posibilitado su uso en una variedad de areas. A continuacién presentamos un
(corta) revision de trabajos en este campo. Perea y Harer en 2013 [80] por ejemplo usa-
ron homologia persistente para analizar periodicidades en la expresion de genes, para lo
cual propusieron un método basado en ventaneos deslizantes denominado SW1PerS que
permite identificar periodicidades en una gran variedad de series de tiempo.

Maleti¢, Zhao y Rajkovi¢ en 2016 [82] usaron homologia persistente para analizar dife-
rentes sistemas dindmicos tales como mapa logistico, Lorez y Rossler, describiendo algunas
de sus propiedades bajo condiciones establecidas. Algunos de estos sistemas también fueron
estudiados por Garland y colaboradores en 2016 [83].

Stolz y colaboradores en 2017 [58| usaron homologia persistente para analizar cambios
en los patrones de sincronizacion (temporal) usando osciladores de Kuramoto acoplados
y redes de imégenes de resonancia magnética funcional obtenida de datos registrados de
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sujetos realizando tareas motoras de aprendizaje para analizar fluctuaciones estructurales
de la conectividad funcional en el cerebro. Los autores sostienen que la posicion (aparicion)
de los grupos de homologia en la filtracion puede representar un rol méas importante que
las persistencias en la interpretacion de las caracteristicas topologicas del conjunto de
datos. Asi mismo, reportan la posibilidad de detectar patrones de cambios en los patrones
temporales de sincronizacién en los datos, reportando ademas que para casos particulares,
las caracteristicas persistentes parecen estar relacionadas a la red a través de sincronizacion
débil intra comunidades.

Chung y colaboradores en 2020 [50] usaron homologia persistente para clasificar estados
de vigilia y sueno a través del analisis de la variabilidad del ritmo cardiaco a través de
estadisticas extraidas de diagramas de persistencia. Los autores sostienen que el uso de
homologia persistente es més efectivo en la clasificacion de los estados de vigilia y sueno
que los reportados en la literatura.

Lombardi y colaboradores en 2020 [52] evaluaron la sincronizacion funcional en el es-
pacio fase de series de tiempo registrados en imégenes de resonancia magnética funcional
en estado de reposo para descubrir macroescalas de organizaciéon del cerebro asi como los
nodos mas importantes en la red, reportando que la organizacién topologica de la sincro-
nizacion temporal basada en la conectividad de la red muestra una organizaciéon modular
mas fina de la que se identifica con métricas convencionales tales como el coeficiente de
correlacion de Pearson y la coherencia espectral.

Bois y colaboradores en 2022 [51] aplicaron anélisis topologico de datos para analizar
series de tiempo de marcha para estudiar la esclerosis multiple. Sus hallazgos sostienen
que es posible estimar la severidad y la evoluciéon de la enfermedad.

Dunton en 2016[60], como parte del desarrollo de su trabajo doctoral analizé redes de
osciladores de Kuramoto acoplados a través de sus fases para identificar patrones de agru-
pamiento (clusters) como funcion de la evolucion temporal del acoplamiento, encontrando
que es posible identificar regiones con acoplamiento particular que se agrupan conforme
avanza el tiempo.

En el contexto de redes, Horak, Maleti¢ y Rajkovi¢ [84] estudiaron redes aleatoria,
Erdos-Rényi y Scale-Free usaron homologia persistente para analizar algunas de sus carac-
teristicas, sugiriendo que la construcciéon de complejos simpliciales sobre grafos de redes
complejas es una configuraciéon para analizar atributos topolégicos de forma cualitativa.

Donato y colaboradores en 2016 [53| analizaron transiciones de fase el modelo de campo
medio y el modelo de cuadricula ¢*. Los autores reportan que para ambos modelos que
para cierto subcolector en la configuracion del espacio, tanto las transiciones de fase como
las caracteristicas topolégicas son completamente conocidas, lo cual supone la homologia
persistente es capaz de recuperar informacion de la dindmica de los colectores.

Myers y colaboradores en 2019 [85] usaron homologia persistente para estudiar series de
tiempo representadas como grafos construidos con criterio de vecinos cercanos, mostrando
su utilidad para distinguir estados periddicos y cadticos de sistemas simulados con dinamica
tipo Rossler.

Aktas y colaboradores (2019) [86] ofrecen una revision del contexto general de analisis
de redes usando homologia persistente. El lector puede consultar sobre aplicaciones en
distintos campos pueden en los trabajos [87, 88, 33, 89, 90, 38, 91, 43, 66, 92, 39, 36, 42|,
por mencionar algunos.



Capitulo 3
SINCRONIZACION

3.1. Contexto Historico

En la Seccién 1.1 presentamos una descripcion resumida del fenémeno de sincronizacion
en un panorama general, conectando tales generalidades con el contexto de redes complejas
y su importancia para estudiar la dinamica colectiva en sistemas complejos, mencionando
el modelo de Kuramoto como caso de interés. En este Capitulo ampliamos este panorama,
particularizando nuestro enfoque en como se ha desarrollado el estudio de este fenémeno
en conjuntos de osciladores acoplados arreglados en red, gobernados por dindmicas de tipo
Kuramoto y Rossler, siendo estas las dinamicas estudiadas en este trabajo.

La palabra sincronizacion tiene sus origenes etimologicos en el griego ovy xpovo(,
lo cual significa “compartir tiempo en comin”, que adaptado a una traduccién de las
palabras Syn (lo mismo)y Chronos (tiempo) puede interpretarse como “cosas” (procesos)
que ocurren al mismo tiempo. Se trata de un fenémeno que emerge de manera espontanea
como resultado de la dindmica colectiva entre dos o més sistemas cuando estos intercambian
informacion de su evoluciéon temporal.

Los primeros reportes documentados del fenémeno de sincronizaciéon se remontan al
siglo XVII con las investigaciones del suizo Christian Huygens, quien al poner dos relojes
de péndulo oscilantes, sostenidos por un soporte comun, observo que al cabo de aproxi-
madamente una hora, los péndulos oscilaban a la misma frecuencia (misma cantidad de
oscilaciones por unidad de tiempo) y en fase [93]. Este fenémeno atrajo de tal forma la aten-
cion, que se desarrollaron numerosos experimentos para develar el mecanismo responsable
de tal dindmica de sincronizacion (véase por ejemplo [94] para una revision ampliada). Sin
embargo, desde tiempos remotos, la sincronizacién ha sido objeto de investigacion en la
evolucion temporal de sistemas dindmicos, como lo describe Blekhman en una colecciéon de
ejemplos clasicos que van desde el destello luciérnagas, el canto unisono o silencio absoluto
automodulado en algunos organismos, entre otros [95].

Desde una perspectiva historica, la sincronizacion fue concebida como un fenémeno que
podia provocar comportamientos tanto exéticos y de belleza en la naturaleza, como “extra-
nos” en sistemas hechos por personas (a menudo referidos en la literatura como “sistemas
artificiales”), como es el caso de la sincronizacion de péndulos, algunas maquinas, etc. Mas
alla de tales caracteristicas que resultan en eventos fascinantes, este fenémeno desperto

28
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interés en investigadores de diversas disciplinas dedicadas al estudio de sistemas complejos
de dindmica no lineal, puesto que es puede proporcionar informaciéon indispensable para
entender su evolucion temporal colectiva [23].

En el contexto de sistemas dinamicos, particularmente referido al campo de sistemas
caoticos (sistemas dindmicos cuya evolucion temporal es altamente sensible a sus condicio-
nes iniciales y donde pueden coexistir la aleatoriedad y la auto-organizacion), se ha descrito
diversos tipos de estados de sincronizacion, incluyendo sincronizaciéon completa o idéntica,
que consiste en un traslape cuasi perfecto en la trayectoria de dos o mas (sefiales)sistemas
y que se mantiene sobre el tiempo [96, 97|; sincronizacion parcial, que ocurre cuando un
grupo de elementos (variables) de un sistema se sincronizan con el correspondiente grupo
de elementos en otro(s) sistema(s) |98]; sincronizacion generalizada, que emerge cuando
cuando se asocian dos (0 més) sistemas completamente distintos a través de una funcion
que asocia los resultados de ambos [99]; sincronizacion de fase y sincronizacion de lag,
donde los elementos del sistema se sincronizan a través de sus fase y/o con un retardo
temporal (lag o delay) de simultaneidad [29, 100|, por mencionar algunos de relevancia
para este trabajo, el lector puede consultar las referencias |7, 30, 31, 32| para una revision
exhaustiva de varios tipos de sincronizacion, incluyendo los ya mencionados.

3.2. Sincronizacién en Redes Complejas

En las tltimas dos décadas, el estudio de sincronizacion se ha enfocado en caracterizar
sistemas complejos de dindmica no lineal representados como redes puesto que ofrecen
una aproximacion natural para entender la dindmica colectiva de tales sistemas ([101, 102,
103]), en el sentido de analizar la forma en como interactian los elementos del sistema, asi
como los mecanismos responsables de la emergencia de sincronizaciéon. Arenas y colabo-
radores [26] ofrecen una extensiva revision de redes de osciladores acoplados, incluyendo
el modelo de Kuramoto, asi como varios ejemplos de aplicabilidad en campos como la
biologia, neurociencia, ingenieria, ciencias computacionales, economia y ciencias sociales,
donde el anélisis de estructuras locales en la conectividad de la red, tales como los es-
fuerzos hechos por Gomez-Gardenes, Moreno y Arenas ([104]), ha cobrado importancia,
toda vez que tienen el potencial de revelar informacion a nivel local del estado del sistema,
ofreciendo la posibilidad de anticipar su comportamiento comparado con la informaciéon
obtenida analizando la red completa.

En tal sentido, el enfoque de estudio del fenémeno de sincronizaciéon en redes complejas
ha girado entorno a sistemas simulados en los cuales es posible controlar el “mecanismo”
responsable de la sincronizacion. La idea principal consiste en considerar un conjunto de
osciladores acoplados configurados como una red y establecer la conectividad de acuerdo
con algun algoritmo de generacion de grafos. Asi, los osciladores emulan los componentes
del sistema y representan los nodos de la red, mientras que los enlaces simbolizan una ca-
racteristica compartida entre tales elementos. En los casos reales, los enlaces son definidos
con base en una relacion funcional entre los nodos. Teniendo la estructura de conecti-
vidad de la red, se elige la dindmica que seguiran los nodos, donde es posible controlar
la intensidad con la que los nodos se “transmite” informacion a través de un parametro
de acoplamiento, que permite la emergencia de sincronizacion. Esta dinamica convencio-
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nalmente es un modelo matematico que emula el comportamiento de un proceso fisico,
biologico, social, ingenieril, etc., cuyas propiedades estan bien caracterizadas. Conociendo
de antemano la estructura de conectividad de la red y los estados de sincronizaciéon que
emergeran al variar el parametro de acoplamiento, la tarea siguiente es caracterizar cuan-
titativamente los estados de sincronizacion a través de alguna métrica. Uno de los modelos
que por sus caracteristicas de adaptabilidad, tractabilidad matemaética y practicidad ha
sido extensivamente para simular este tipo de procesos es el modelo de Kuramoto [28] (los
detalles de este modelo son presentados en la Seccion 3.3). Asi mismo, aunque con una
mayor dimensionalidad, gracias a la posibilidad de reproducir experimentalmente su di-
namica usando circuitos electronicos, el modelo de Réssler [105] también se ha convertido
en una herramienta para estudiar el fenémeno de sincronizaciéon en redes de osciladores
acoplados.

En esta direccion, el grupo de trabajo de Javier Bulda y colaboradores (véase detalles
de este grupo en el enlace: https://gestion2.urjc.es/pdi/grupos-investigacion /scff. Fecha
de ultimo acceso: 14/05/2025), en conjunto con el grupo de trabajo de Sevilla-Escoboza
y colaboradores del Centro Universitario de los Lagos de la Universidad de Guadalajara,
Meéxico, han generado varios conjuntos de datos experimentales a partir de configuracion
de circuitos eléctricos con dinamica tipo Rossler operando en régimen cadtico, destinados
a evaluar sincronizacioén en sistemas dindmicos y probar estrategias de inferencia de co-
nectividad de redes (véase por ejemplo los conjuntos de datos reportados en las referencias
[106, 107]).

En cuanto la primer destinacion de estos datos (evaluar sincronizacion en sistemas dina-
micos), en este trabajo usaremos uno de estos conjuntos de datos, los cuales describiremos
en la Seccion 4.2.2. En cuanto a la segunda destinacion (probar estrategias de inferencia de
conectividad de redes), igual de laboriosa que importante, tiene por objetivo descubrir y
reconstruir las interacciones que tienen los elementos de un sistema configurado como una
red, dependiendo de su estado de sincronizacion. En este empeno, trabajos como el realiza-
do por Forero-Ortiz, Tirabassi, Masoller y Pons ([108]), quienes estudiaron la posibilidad
de inferir la estructura de conectividad de un conjunto de osciladores de Kuramoto y de
Rossler acoplados arreglados como una red empleando filtros de Kalman; otro trabajo en
este campo corresponde al realizado por Almendral, Leyva y Sendina-Nadal ([109]), quie-
nes usaron métodos de transicion ordinal para inferir la estructura de conectividad global
en redes de osciladores cadticos de Rossler, obteniendo resultados prometedores en esta ta-
rea; asi como el trabajo desarrollado por Aristides, Cerdeira, Masoller y Tirabassi ([110]),
quienes indagaron respecto de la posibilidad de predecir la estructura de conectividad de
redes de osciladores de Kuramoto acoplados, asi como un conjunto de datos experimentales
correspondiente a circuitos electrénicos gobernados por una dinamica cadtica tipo Rossler,
logrando inferir la conectividad de tales redes a partir de observar una tnica variable del
sistema.

Nuestra propuesta para caracterizar diferentes estados de sincronizacion consiste en es-
tudiar las propiedades topoldgicas de grupos de estructuras de conectividad local formadas
por nodos adyacentes entre si en una red compleja. Las caracteristicas de tractabilidad ma-
tematica y adaptabilidad préactica del modelo de Kuramoto prevalecieron en la eleccion de
modelo teérico adecuado para tales fines. Por tanto, a continuacién definimos formalmente
este modelo.
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3.3. El Modelo de Kuramoto

Para analizar el fenémeno de sincronizacion de una manera tractable, Kuramoto [28|
(|32] ofrecen una discusiéon ampliada de este modelo) consideré una poblacion dotada de
N osciladores de fase de ciclo limite acoplados, donde la evolucion temporal de la fase éj (t)
del j-ésimo oscilador al tiempo ¢ es conducida por su frecuencia natural w; elegida a partir
de una densidad de probabilidad g(w), y la retroalimentacion de las fases resultante de la
interaccion con el resto osciladores en el tiempo anterior, modulada por el parametro de
acoplamiento A, que representa la “fuerza” de interaccion o la intensidad con la que los
osciladores retroalimentan sus fases en todo el sistema, esto es:

b,(t) = %Z o(1)). (3.1)

La expresion de la Ecuacion 3.1 describe la evolucion temporal de las fases de osciladores
acoplados. Tal formulacion considera una configuracién de conectividad en la cual cada
oscilador interacttia con el resto de osciladores (a este tipo de conectividad de red se le
conoce como‘‘all-to-all connected”). Sin embargo, cuando se trata con casos reales, es de
esperarse que los sistemas representados como red no necesariamente sigan este tipo de
patrones de conectividad, donde no todos los nodos son adyacentes entre si. Ello implica
ajustar la Ecuacion 3.1 para en el contexto de redes complejas, transforméndose en la
expresion de la Ecuacion 3.2 [111]:

By(0) = s + % D2 Agrsin(0y(1) — (1), (3.2)
=1

donde A es la matriz de adyacencia, un arreglo simétrico de dimensiones N x N, que
representa la estructura de conectividad de la red, en la que A;; = 1 si los osciladores j y
[ son adyacentes, es decir, hay un enlace entre ellos, y A;; = 0 si j y [ no son adyacentes.

En su trabajo inicial, Kuramoto consider6 la funcién de distribuciéon de frecuencias
naturales g(w) de tipo unimodal y simétrica (g(w) = g(—w)), centrada en w = w = 0,
propiciando las simplificaciones que hacen funcional el modelo de la Ecuaciéon 3.2 de una
forma mas realista en el sentido en que se asemeja a la conectividad real de algunos sistemas
reales que pueden ser representados como una red compleja para estudiarlo.

La Figura 3.1 muestra una representaciéon a modo ilustrativo del modelo de Kuramoto
considerando una poblaciéon de N = 5 osciladores. La red es conectada, es decir, no existen
nodos isolados y para efectos practicos consideramos una red no dirigida, no pesada y sin
auto enlaces, en la que la intensidad de interaccién o de propagacion de informacion es con-
trolada por el pardmetro de acoplamiento A. Las series de tiempo generadas en del tiempo
cero al tiempo t corresponden a las fases del osciladores, obtenidas mediante simulaciones
numéricas que emulan la evoluciéon temporal del sistema, cuyos detalles computacionales
se presentan en la Seccion 4.2.1.
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Figura 3.1: Ilustraciéon de una red de osciladores tipo Kuramoto. Los circulos simbolizan los
osciladores (nodos), representando los elementos del sistema en la red. La serie de tiempo
asociada a cada oscilador corresponde a la fase (sefial) 6; registrada desde la iteracion
inicial (#;(0)), hasta la iteracion final (6;(¢)), emulando la evolucion temporal del sistema
cuyos nodos se retroalimenta con la misma intensidad .

3.4. Cuantificaciéon de Sincronizacidon

En esta Seccién describimos dos métricas existentes en la literatura (el parametro de
orden y el phase locking value) convencionalmente usados para cuantificar sincronizacion,
e introducimos la métrica propuesta en este trabajo para cuantificar este fenémeno en
redes de Kuramoto usando homologia persistente.

3.4.1. Parametro de Orden

En la formulacion de su modelo, Kuramoto proporcioné una medida para cuantificar
el grado de sincronizacion global entre la poblacion de osciladores en cierto instante de
tiempo t para una intensidad de acoplamiento A dada, conocido como el pardmetro de
orden, R, calculado de acuerdo con la siguiente expresion [28|:

N
Rt _ % 3 e, (3.3)
7j=1

cuya propiedad de mayor interés es que puede interpretarse como el centroide de un conjun-
to de IV puntos (osciladores) con la forma e%() (en esta expresion asi como en la Ecuacion
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3.3 i simboliza la notaciéon de nimero complejo) distribuidos en un circulo unitario en el
plano complejo, es decir, una representaciéon geométrica del sistema. En la Figura 3.2 se
esquematiza de manera ilustrativa esta propiedad para las fases de cinco osciladores 64,
0o, 03, 04, v 05. Cuando el acoplamiento sea cero (A = 0.0), las fases estaran distribuidas
de manera uniforme en el perimetro del circulo en el intervalo [0, 27| (Figura 3.2[a]) y R
tomaréa valores cercanos a cero (R ~ 0), significando asincronia entre los osciladores, mien-
tras que cuando el conjunto de puntos se encuentren proximos entre si, rotando en alguna
region del perimetro del circulo y formando un clister con fase cercana a la fase promedio
¥, lo cual ocurre cuando la fase de cada oscilador es cuasi igual a la fase promedio del
conjunto de osciladores (esto es, §; ~ ¢ V 1 < j < N), como se ilustra en la Figura 3.2[b],
entonces R tomara valores cercanos a uno (R ~ 1), significando sincronia (en términos de
sus fases) de los osciladores.

»

a A b

v
v

Figura 3.2: Ilustracion de sincronizacion en osciladores de Kuramoto. El panel [a] ilustra
el caso de estado asincrono o incoherente de los osciladores representados como los puntos
ubicados sobre el circulo, cuyas fases (representadas como arcos con lineas punteadas que
finalizan a interseccion con la flecha correspondiente) estan aleatoriamente dispersas sobre
el perimetro del circulo. En el panel [b] se ilustra el estado sincronizado, para el cual las
fases de los osciladores se concentran en una regiéon del perimetro del circulo. Tal region
corresponde a la fase promedio o basal del sistema.

Bajo estas condiciones es posible calcular un valor de fuerza de acoplamiento critico,
Ae a partir del cual se espera comience a haber sincronizaciéon de todos los osciladores
considerados en el sistema, de acuerdo con la siguiente expresion |28, 32, 112, 113]:

2

mg(0)
En resumen, la Ecuacion 3.2 describe la evolucion temporal de las fases de un con-
junto de osciladores acoplados configurados como una red compleja, cuya conectividad

Ae =

(3.4)
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no necesariamente es “all-to-all”, en la que la fuerza de acoplamiento es modulada por el
parametro de acoplamiento A. En tal configuracion. Si el parametro de acoplamiento, A,
es mayor que el valor de acoplamiento critico, A, (Ecuacion 3.4), es decir, A > A., la fase
de los osciladores en la red se sincronizara; mientras a valores de acoplamiento menores
que el valor critico (A < A.), la fase de los osciladores en la red se mantendra incoherente.
El “nivel” de sincronizacion en este modelo se mide con el parametro de orden, R (Ecua-
cion 3.3). Si R ~ 0, la red esta en estado incoherente, si R = 1, la red esta en estado
sincrono. Este modelo, aunque sencillo, resulta de gran utilidad por su tractabilidad, y ha
posibilitado el estudio de diversos sistemas con dindmica distinta en diferentes disciplinas,
cuyas caracteristicas lo convierten en un modelo adecuado para estudiar el fenémeno de
sincronizacion desde la perspectiva que se aborda en esta tesis.

3.4.2. Phase Locking Value

El phase locking value (PLV') mide las diferencias de fase promedio entre dos senales
cualesquiera x(t), y(t). Esta métrica fue formulada por Lachaux y colaboradores en 1999
([114]) para medir la variabilidad de diferencias de fase de senales cardiacas registradas a
través de electrocardiogramas. En su formulacién original, el PLV es calculado segin la
siguiente expresion:

N

Z €i¢(t,n)

j=1

1
PLV, = —

N : (3.5)

donde PLV; es el phase locking value al tiempo ¢, ¢(t,n) = 6,(t,n)—0,(t,n) es la diferencia
instanténea de fase al tiempo ¢ entre las sefiales x e y, a la repeticion n (1 <n < N).

En la practica, para determinar las fases instantédneas de las senales se puede recurrir
al concepto de la sefial analitica z(t), calculada como [30]:

2(t) = x(t) + iz (t) = A(t) - =), (3.6)

donde z(t) es la senal, i es la notacion de niimero complejo y Z(t) corresponde al conjugado
de la transformada de Hilbert de z(t). z(t) es equivalente ademés al producto de la amplitud
A(t) de z(t) con la exponencial de su fase 6,(t). Asi, para las sefial z(¢) con una tunica
realizacion al tiempo ¢, la fase instantanea es calculada asi [30, 115]:

0u(1) = arctan i) = aretan (23 (37)

Por defecto 6(t) en la Ecuacion 3.7 varia en el intervalo —7 < 6(¢) < 7. Sin embargo, en
los algoritmos de librerias de Pytnon como Numpy, la tangente inverso esta implementada
como la funcién numpy.arctan2() y arroja valores de las fases en el intervalo 0 < 6(t) <
27. Usando de forma anéloga la Ecuacion 3.7 a y(t), se puede calcular de forma facil la
diferencia de fase ¢(t) = 0,(t) — 6,(t) y calcular el PLV de forma alternativa de acuerdo
con la siguiente expresion:
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Ny 9y 1/2
%Z cos(qb(t))] ; (3.8)

J=1

2

1
PLV = [NZsm(gb(t)) +

J=1

La Ecuacion 3.8 proporciona el PLV promedio de las senales analizadas.

3.4.3. Entropia de Persistencia Normalizada

Por una parte, del parametro de orden R como cuantificador de la sincronizacion “ad
hoc” para redes de Kuramoto, puede notarse que este sera informativo cuando en el calculo
se involucren todos los nodos que conforman la red, y no necesariamente para analizar el
estado de sincronizacion en grupos de nodos. De otro lado, nétese que el PLV, aunque
también es una métrica basada en cuantificar sincronizaciéon en términos de las fases de
la senal, este esta limitado a interacciones a pares, asi como métricas basadas en entropia
tales como la informacién mutua [116] o la entropia cruzada de muestra [117], comun-
mente usadas en sistemas complejos para estudiar el intercambio de informacion entre dos
senales (sistemas). De tal manera que a partir de estas métricas no es posible analizar la
sincronizacion en grupos de nodos adyacentes entre si en la conectividad. Por lo que fue
necesario formular una métrica que superara estas limitaciones.

Las propiedades geométricas de un conjunto de datos al que se trata mediante homolo-
gia persistente se encuentran codificadas en el diagrama de persistencia. El reto es extraer
de manera cuantitativa dicha informacién, para describir el estado subyacente del sistema.
Basados en los trabajos de Rucco y colaboradores [45], Chintakunta y colaboradores [74],
y Myers y colaboradores [85], formulamos la métrica que hemos denominado entropia de
persistencia normalizada, NPFE, calculada como el cociente entre la entropia de persis-
tencia y el acumulado de tiempos de vida del diagrama de persistencias de un grupo de
homologia, esto es:

NPEH, = PE(H,)/L(H,), (3.9)

donde PE(H,) es calculada de acuerdo con la Ecuacion 2.1, y L(H,) = Zjv (;(H,) es la
suma de las persistencias de las clases del grupo de homologia H, de dimension p. La NPE
mide la heterogeneidad promedio de las persistencias del grupo de homologia al cuantificar
la incertidumbre promedio de la coleccion de timpos de vida de las clases de dicho grupo
de homologia, donde el denominador, L(H,), puede interpretarse como una modulaciéon
geométrica respecto de la “forma” de la nube de puntos.

Dado que PE = — Zévp(ﬁj) log[p(¢,)], y p(¢;) = £;/L, si la coleccién de persistencias
{¢;} son igualmente “probables” (en este contexto no se habla propiamente de probabilidad
sino mas bien de contribucién de la persistencia ¢; al diagrama de persistencia), es decir,
que todas las persistencias (tiempos de vida) son distintas, de manera que el diagrama de
persistencias es completamente heterogéneo, entonces p(¢;) = (L/n)/L = 1/n, y PE =

- Z;V(l/n) log[(1/n)] = log[n] es la maxima entropia.



Capitulo 4

METODOLOGIA

Este Capitulo es dedicado a describir la metodologia adoptada en este trabajo para el
analisis de datos usando homologia persistente como herramienta. La primer parte (Sec-
cion 4.1.1) es destinada a describir la estrategia de analisis en términos de configuracion
de las senales (series de tiempo) implementada para caracterizar los conjuntos de datos
estudiados. La segunda parte (Seccion 4.2) es dedicada a describir la forma como genera-
mos series de tiempo mediante simulaciones numéricas y se describe el conjunto de datos
experimentales objeto de anélisis. Por tltimo, en la Seccién 3.4, se describen algunos cuan-
tificadores de sincronizacion existentes en la literatura, asi como la métrica propuesta para
identificar y cuantificar este fenémeno.

4.1. Estrategia de Anélisis

4.1.1. De Series de Tiempo a Nube de Puntos

La ventaja fundamental de la homologia persistente es que permite procesar conjuntos
de datos multidimensionales de alta complejidad. A fin de disernir un poco la sentencia
anterior, piénsese por ejemplo cuando se mide la temperatura ambiental. Para ello, es
necesario, registrar la mediciéon de la observacion, hecha con un termémetro por ejemplo.
Adicionalmente, se requiere conocer la ubicacion (coordenadas) del lugar donde se hace
la observacion, de tal suerte que la medicion consta de la variable (temperatura) y las
coordenadas (latitud, longitud y altitud), por lo que en realidad son necesarias cuatro
dimensiones para registrar la medicion. Ahora bien, suponga que se requiere medir en mas
de un sitio la variable de interés para analizar su comportamiento de forma simultanea en
lugares distintos, es decir, se deben analizar multiples series de tiempo para caracterizar el
proceso. A esto hace referencia la multidimensionalidad del conjunto de datos. Tal aspecto
no es un problema para la homologia persistente, puesto que, a diferencia de la mayoria
de estrategias de anélisis de datos convencionales, su algoritmo de procesamiento no esta
limitado por la dimensién de los datos. Por otra parte, es de esperarse que la dinamica del
proceso observado contenga no linealidades en su evolucion temporal, siendo esto (aunque
no unica o necesariamente) a lo que se hace referencia con el término complejidad de los
datos, y es ahi donde la caracteristica invariante de los simplejos cobra importancia para
estudiar sistemas conformados por miltiples elementos que evolucionan simultdneamente,

36
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puesto que permiten combinar estrategias de cuantificaciéon (como las basadas en entropia
en el contexto de teoria de la informacion) para caracterizar el proceso. Estas son las
razones principales por las que dedicamos este trabajo doctoral a caracterizar el fenémeno
de sincronizaciéon usando homologia persistente.

En la practica, el uso de homologia persistente requiere la configuraciéon del conjun-
to de puntos objeto de analisis bajo alguna estructura, convencionalmente llamada nube
de puntos. En el contexto de sistemas complejos, debe configurarse dicha nube de pun-
tos de tal manera que los datos (registros) estructurados de esa forma asegure recuperar
la configuracion correcta del espacio del que son medidos tales registros, y que ademas
corresponda a la dindmica “real” del proceso subyacente, de tal manera que al estudiar
la estructura geométrica de la nube de puntos a través de homologia persistente, pueda
develarse informacion respecto del estado (incoherente o sincronizado, por ejemplo) en el
que se encuentra el sistema.

Una de las técnicas aplicadas extensivamente para la configuraciéon de nube de puntos
de un sistema es a través de la reconstruccion de los vectores de su espacio fase. Esta
idea fue asentada por Takens en 1981 ([41]) y ha sido exitosamente aplicada en diferentes
areas. A modo general, el espacio fase de un sistema representa la convergencia de dicho
sistema alrededor todos los posibles estados que pudiera adoptar. Esto es, dada una serie
de registros indexada temporalmente que captura las propiedades de un sistema, el espacio
fase representa el conjunto de valores a los cuales tiende tal sistema conforme su dinamica
avanza en el tiempo. Esta nocion esta relacionada con la existencia de atractores ([118,
119, 120]), es decir, un (o varios) centro(s) de referencia alrededor del cual se ubica el
espacio fase de un sistema y que genera su “estructura geométrica”. En otras palabras, el
espacio fase es la configuracion sobre la cual el sistema adquiere una “forma’”.

La estrategia de reconstruccion del espacio fase propuesta de Takens puede describirse
de manera general como sigue: dada una serie de tiempo (una coleccion de registros)
unidimensional {x(t)} = x(1),2(2),---,z(t) del sistema X, que es observado durante
cierto periodo de tiempo, obteniendo 7" observaciones (1 <t < T') con incremento temporal
constante (At = constante), el vector de reconstruccion del espacio fase de X tiene la forma
x@f) =zxt),z(t+7),-x(t+(m—1)7) (V1 <t <T—(d—1)7), donde m representa
la dimension del sistema, también llamada dimension de embebido, es decir, el niimero de
coordenadas que debe tener cada punto del sistema en cada vector del espacio fase, y 7 es
el delay o retardo temporal de no traslape entre un vector y otro que reconstruye el espacio
fase. El sistema X es entonces configurado por el arreglo de dimension (¢ — (m — 1)7 x m)
que puede representarse como:

z(l) z(1+71) - z(1+ (m—1)7)
Y x(:2) x(2 —|— T) - ':- (2 + (m —1)7) (1)
x(t) z({t+71) - zt+(m—1)71)

Para la determinacion de los parametros m y 7 se han propuesto e implementado varias
metodologias. En el caso de la elecciéon adecuada de la dimensiéon de embebido m se ha
consolidado el método de falsos vecinos cercanos como uno de los mas acertados ([121,
122, 123|); mientras que la determinacion del retardo temporal 7 se basa en estimacion del



CAPITULO 4. METODOLOGIA 38

primer pico local de autocorrelaciéon cuando se trata de series de tiempo unidimiensionales
([124, 125]). Dado que gran parte de los procesos desarrollados en sistemas naturales con-
tiene no linealidades, es conveniente estimar el retardo temporal a través de métricas que
consideren este tipo de dindmicas, siendo la informacién mutua la métrica que ha mostra-
do ser de mayor utilidad ([126]). Esta estrategia estd pensada para reconstruir el espacio
fase de una senal, es decir, el conjunto de registros (serie de tiempo) de las observaciones
del proceso de interés. Aunque formulada en principio al caso caso unidimensional, esta
idea es facilmente adaptable a senales multidimensionales teniendo en cuenta que si dos
0 més senales provienen de un mismo sistema, entonces estas tendran el mismo orden de
reconstruccion del espacio fase.

La reconstruccion del espacio fase en esencia tiene por objetivo dos aspectos relevantes.
El primero es reconstruir la geometria del espacio en el que “vive” el sistema; y el segundo
es recuperar la dindmica “real” de dicho sistema. Estos dos aspectos aseguran tedricamente
la geometria y dinamica del estado en el que se encuentra el sistema. Ahora bien, estra-
tegias de reconstruccion del espacio fase de acuerdo con lo descrito en el parrafo anterior,
parten del supuesto de que la serie de tiempo (unidimensional o multidimensional) es re-
gistrada a partir de las observaciones que caracterizan el proceso a resolucion temporal
(el tiempo transcurrido de observacion a observacion) adecuada, suficiencia de observacion
(cantidad de observaciones), y quizé la asuncién de mayor relevancia: que el proceso se
haya observado en un espacio representativo del sistema estudiado y con las condiciones
de frontera definidos.

Para poner esto tultimo en perspectiva, considere por ejemplo que se requiere caracteri-
zar la temperatura de un lugar. Uno podria pensar en inicialmente generar una cuadricula
uniforme (lo mas fina posible, suponga por ejemplo cuadriculas de 100 metros de lado, que
eventualmente se pudiera optimizar segun las necesidades) en un area de tal superficie que
abarque el lugar de interés, y emplazar sensores (estaciones de medicion de la variable) en
cada interseccion de las “lineas” de la cuadricula. Si se conoce la resolucion temporal del
proceso de interés, se establece tal resolucion para la medicién de la variable y el almacena-
miento de cada observacion, por ejemplo, si se desea caracterizar el comportamiento de la
temperatura durante el dia, podria pensarse en resoluciones desde 30 segundos hasta una
hora, y medir durante varios anos, de este modo, el valor medio en la resolucién temporal
elegida, para un dia especifico, tendra suficientes datos para que sea representativo (nétese
que cuanto mas alta sea la resolucién de medicion, es posible recuperar comportamientos
del proceso a mayor escala). Asi, se analizaria hasta donde llega (geograficamente hablan-
do) algin tipo de “uniformidad” en el comportamiento de la variable y en dénde comienza
a haber transicion (es decir, la frontera) a condiciones distintas. De tal manera que la reso-
lucion de observacion corresponden al “retardo” (“delay”, ) real, el periodo de observacion
serfa la cantidad de anos que se observa se mide la variable, y el drea geografica representa
el espacio en el que el sistema esta embebido.

A partir del ejemplo anterior, es evidente que caracterizar un sistema no es una tarea
trivial, de hecho, es la razon de que en la actualidad existan muchos frentes de investi-
gaciéon activos buscando maneras de hacerlo en las diferentes disciplinas y con diferentes
herramientas, de tal suerte que sean adecuadas a los casos particulares, y que por supuesto,
es una de las razones que motivan este trabajo. Concretamente, nos interesamos por carac-
terizar el fenémeno de sincronizacion, puesto que este codifica informaciéon indispensable
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para describir el estado de un sistema en el que colectivamente intervienen varios elemen-
tos (subsistemas). Dadas las ventajas que ofrece la homologia persistente en el sentido de
analizar simultaneamente varias series de tiempo, nuestro razonamiento para abordar el
problema es el siguiente: suponga un sistema complejo conformado por varios elementos,
relacionados de tal manera que cada elemento tiene al menos una “conexién”, de modo que
el sistema puede representarse como una red compleja, donde los nodos corresponden a
los elementos del sistema y los enlaces simbolizan la caracteristica que comparten. Dado
que existen relaciones entre los elementos, que puede verse como un tipo de “comunicacién
local”, habra una dinamica colectiva, y que a causa de dicha dindmica, emerja la sincroniza-
cion. Es razonable pensar ademas que en grupos de elementos que estan “enlazados” entre
si, se propague la “informacion” mas “rapido”, comparado con la “rapidez” a la que ocurre
en el resto de la red, asi, estos elementos pueden ayudar a identificar etapas tempranas del
estado de sincronizaciéon que tendra la red.

Con base en lo anterior, nuestra estrategia de analisis consiste en generar series de
tiempo de osciladores configurados como una red, controlando el estado de sincronizacion
a través de un parametro de acoplamiento, construir nubes de puntos bidimensionales y
tridimensionales conformadas por las series de tiempo de pares y triadas de osciladores,
respectivamente, y formular una métrica capaz de caracterizar el estado de sincronizacion
de la red con base en las persistencias (tiempos de vida) de grupos de homologia durante
la filtracion, recuperando la informacién generada a diferente resolucion de filtracion, por
su puesto comparando los resultados obtenidos con las estrategias de cuantificacion de
sincronizacién convencionales existentes en la literatura. Ciertamente es una tarea, tem-
poralmente hablando, ambiciosa para un proyecto doctoral. Por ello, en esta etapa nos
concentramos en estudiar conjuntos de datos generados a partir del modelo de Kuramoto,
donde es posible controlar el estado de sincronizacion a través del parametro de acopla-
miento, probando nuestra aproximaciéon sobre un conjunto de datos experimentales.

4.1.2. Analisis a Pares (Bidimensional)

La forma convencional de estudiar el estado de sincronizaciéon de una red cuyos nodos
siguen cierta dindmica, es a pares, observando la evolucion de la métrica que indica el
estado del sistema (red) conforme varia el pardmetro de acoplamiento que controla la
sincronizacién. Adoptamos esta aproximacion como punto de partida para estudiar la
“influencia” que tienen nodos altamente conectados a nodos también altamente conectados,
nodos poco conectados a primer vecino, y nodos a cierta distancia (en términos de la ruta
con la distancia més corta o shortest path length en inglés) en la vecindad de la red.
En tal sentido, en la primer etapa de este proyecto nos concentrandonos en caracterizar el
estado de sincronizacion de una red de osciladores acoplados estudiando el comportamiento
entre pares de osciladores adyacentes (formando un enlace) y de la distancia de longitud
de ruta méas corta, abordando aspectos como la influencia del grado de los nodos y la
distancia entre estos, respecto de la intensidad con la que se propaga la informacién en la
red, modulada por el pardmetro de acoplamiento. Para ello, suponga dos series de tiempo
como las ilustradas en la Figura 4.1[a|, que corresponden a la evolucién temporal de dos
nodos formando un enlace en una red de osciladores acoplados siguiendo cierta dinamica
y en un estado sincronizacién definido por el parametro de acoplamiento. La nube de
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puntos es configurada segtn se ilustra en la Figura 4.1[b], a partir de la cual se calculan
las persistencias (codigo de barras) de las clases de grupos de homologia de dimensiéon cero
(Hp) y uno (H;) a partir de los cuales se calcula la métrica (la entropia de persistencia
normalizada, N PE, que introduciremos formalmente en la secion 5.2.1) que cuantifica el
estado de sincronizacion, como se representa en la Figura 4.1|c|.
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Figura 4.1: Tlustraciéon de andlisis a pares. Dadas las series de tiempo z,(t) y () ilustra-
das en [a], que representan la evolucion temporal de los nodos de una red de osciladores
acoplados, se configura la nube de puntos como z,(t) vs x,(t) y se construye el complejo
que genera el codigo de barras con las persistencias las clases de los grupos de homologia,
ilustrados en [c| para dimensiones cero (Hy) y uno (H;), con las cuales se cuantifica el
estado de sincronizacion a través de la entropia de persistencia normalizada, NPE.

A continuacion definimos formalmente la estrategia de construccion de nube de puntos
para la aproximacion de analisis a pares.

4.1.2.1. Nube de Puntos Bidimensional

Considere las series de tiempo x,(t) y xp(t) que corresponden a la evolucién tem-
poral de los osciladores z, y m,, respectivamente, que hacen parte del sistema (red)
X = {x,, - ,xy} formada por N osciladores, la nube de puntos bidimensional se de-
fine como PC(z4,x) = {(za(t),2p(t)}, V2; : 1 < j < N,y1<t<T, donde T es el
ntmero de observaciones de cada nodo (oscilador) z;, que corresponde a un arreglo bi-
dimensional (7" x 2) conformado por z,(t) y x(t), de tal manera que la Ecuacion 4.1 se
convierte en:

PC=|"" : (4.2)

za(T)  o(T)

A partir de la Ecuacion 4.2 es posible analizar el fenémeno de sincronizaciéon a pares
estudiando las propiedades geométricas de la nube de puntos generada por las series de
tiempo de los nodos involucrados, usando homologia persistente. Esta configuracion de
nube de puntos permitira comparar nuestros resultados con métricas usadas convencional-
mente en la literatura para estudiar sincronizacion.
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4.1.3. Analisis a Triadas (Tridimensional)

En razon a la hipotesis de que grupos de nodos (més de dos) adyacentes entre si inter-
cambiarin informacion de forma maés “rapida” comparado con la rapidez a la que lo haran
con el resto de los nodos que no hacen parte de tales estructuras en la red, estudiamos el
estado de sincronizacién de la red a triadas, donde la nube de puntos corresponde a un
arreglo tridimensional conformado por las series de tiempo de los tres nodos. En este senti-
do, quizé la mayor novedad que proponemos incluyé estudiar el fenémeno de sincronizaciéon
a triadas cerradas (tridngulos) conformados por tres nodos adyacentes en la estructura de
conectividad de la red (algunos trabajos recientes han encontrado utilidad estas nociones
para caracterizar series de tiempo, véase por ejemplo [127, 128, 129|) y recuperando la
informacion de formacion y extincion de las clases de un grupo de homologia. Para esta
aproximacion nos concentramos unicamente en estudiar el estado de sincronizacion del
sistema analizando grupos de homologia de dimension cero Hy. La Figura 4.2 ilustra de
manera general el procedimiento.

NPEe; (Hp)

A ﬁﬁ:’

oo
oo

NPEe, (Hg)

Figura 4.2: Tlustracion de anélisis a triadas. Dadas las series de tiempo x,(t), xp(t) v z.(t),
asociadas a los osciladores x,, 7 y x., respectivamente, como se ilustra en [a], configuramos
la nube de puntos tridimensional segin se muestra en [b]. A partir de la nube de puntos,
se determina la distancia maxima r,,,, entre cuales quiera dos puntos y se segmenta en
n partes, de tal forma que 0.00 < ¢ < rmaz (1 <1 < n). A continuaciéon se filtra la
nube de puntos a cada valor ¢ y se recupera el cédigo de barras asociado, que contiene la
informacion geométrica de la nube de puntos hasta tal valor de filtracion.

4.1.3.1. Nube de Puntos Tridimensional

En nuestra aproximacion de analisis a triadas, la nube de puntos se define formalmente
asi: suponga tres nodos x,, =, y x. en una red de osciladores acoplados representando
el sistema X = {z,,---,xy} formada por N osciladores. Si existen los enlaces (z,,xy),
(Ta,xe) v (xp,x.) en la conectividad red, es decir, x,, x, y x. son adyacentes entre si,
entonces x,, p, y o, forman un triangulo (una estructura de conectividad local, en la Figura
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4.6]a] ilustramos los triangulos de la red resaltando en diferente color los enlaces y nodos
que los conforman). Para este caso, la nube de puntos PC(z, Ty, z.) = {(24(t), zs(t), x:(t)}
(1 <t <T) corresponde a un arreglo tridimensional de tamano (7" x 3) conformado por
las tres series de tiempo (z,(t), zp(t) v z.(t) que representan la evolucion temporal de los
respectivos nodos (osciladores) del sistema (red). Asi, la Ecuacion 4.1 adopta la forma:

po= |70 T (4.3)

2lt) w(t) zelt)

La configuracion de la nube de puntos segtn la expresion de la Ecuacion 4.3, permite
no solo estudiar tridngulos, sino también tripletas (tres nodos que no son adyacentes entre
si) para comparar si realmente los tridngulos son capaces de proporcionar informacion
“privilegiada” comparado con analizar cualesquiera tres nodos aleatorios dentro de la red.

4.1.3.2. Resolucion de Filtracion

Cominmente, para filtrar una nube de puntos se procede asi: se calcula y ordena
ascendentemente las distancia entre todos los puntos que la conforman, estas distancias
son valores de filtracion finitos; luego, tomando cada valor de distancia como longitud
méxima de enlace, se construyen los simplejos que formarén el (sub)simplejo a ese valor de
filtracion, al incrementar la distancia, el nuevo (sub)complejo contiene los (sub)simplejos
formados a menor distancia; finalmente, a cada valor de distancia se cuantifica las clases
de los grupos de homologias que se extinguieron y nacieron. Es preciso mencionar que,
aunque se tomen los valores de distancia entre los puntos de la nube de puntos como
valores finitos de filtracion, el parametro de filtracién (denotado convencionalmente como
€) por definicién puede tomar valores 0 < € < 0.

Pese a que la informacion de la estructura geométrica de la nube de puntos esta con-
tenida en el diagrama de persistencia, por la naturaleza de las distancias con las que se
efectiia la filtracion, es dificil identificar a qué valor de distancia se generan cambios en
el estado del sistema del que provienen los datos, de tal manera que el diagrama de per-
sistencia global puede enmascarar informacion relevante para caracterizar tales cambios.
Nuestra propuesta en este contexto, es recuperar la informaciéon que se genera a diferentes
escalas de los datos variando el pardametro de filtracion (conforme se ilustra en la Figura
4.2[c]), al segmentar la distancia méxima de enlace, digamos r,,, en multiples valores e
tal que 0.00 < € < rpz-

Los algoritmos computacionales como el implementado en la libreria Gudhi usada para
generar los diagramas de persistencia en este trabajo, por defecto toman como distancia
maxima de enlace la maxima distancia entre cualesquiera dos puntos de la nube de puntos.
Dependiendo de la capacidad de computo (en este trabajo usamos una méquina de 16GB en
RAM y 512GB en memoria del SSD para los célculos), para conjuntos de datos pequetios,
digamos T < 27, donde T es el ntimero de puntos, esto no serfa mayor problema. Sin
embargo, cuando se debe analizar multiples conjuntos de datos, con mayor cantidad de
registros, los célculos pueden demandar dias o semanas, lo cual es una limitante para
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explorar y probar el comportamiento de los datos bajo diferentes enfoques, ademas de
consumir una gran cantidad de recursos en términos computacionales y de electricidad.

A fin de disminuir el costo computacional, seleccionamos adaptativamente la distancia
méaxima de enlace bajo la condicién de garantizar que a tal valor el complejo simplicial
sea un unico componente conectado, para lo cual es suficiente verificar que una red cuyos
nodos estan enlazados bajo ese criterio sea conectada. En una nube de puntos, la distancia
a la cual se genera el complejo simplicial formado por un tinico complejo no necesariamen-
te es la distancia maxima entre cualesquiera dos puntos de la nube de puntos. Observe a
modo ilustrativo presentado en la parte inferior de la Figura 4.2|c| que el complejo sim-
plicial a la distancia méaxima de enlace €, es un tinico componente conectado, al tiempo
que es facil notar que hay puntos que distan mas que ¢,, sin embargo, la variacion del
complejo simplicial ya no genera informacion relevante en términos geométricos para tal
nube de puntos. En tal sentido, y adicinalmente para efectos de comparacion, se verificd
esta condicién y se unifico un valor de distancia maxima de enlace, r,,,,. En relacién con
el enmascaramiento de informacién por efectos de la filtracion, para recuperar informacion
a micro, meso y macro escalas, filtramos la nube de puntos a una distancia maxima de
enlace € tal que 0.00 < € < 7,42, v calculando la entropia de persistencia normalizada
(NPE, los detalles de como se calcula se presentan en la Seccion 5.2.1), a cada valor de
longitud méaxima de filtraciéon e. Para efectos de este trabajo, con base en lo antes descrito,
se unificé 4, = 0.150, segmentandolo a incrementos Ae de 1073, lo que correspondio a
realizar 150 filtraciones para cada nube de puntos analizada.

En resumen, nuestra estrategia de analisis se basa caracterizar el estado de sincroniza-
cion cuantificando cambios en la geometria de la nube de puntos (bidimensional o tridimen-
sional) formada por las series de tiempo emulando la evoluciéon temporal de un conjunto
de nodos (dos o tres para el caso bidimensional y tridimensional, respectivamente) de una
poblacién de osciladores acoplados simulando elementos de un sistema representado como
una red compleja. Cuando el parametro de acoplamiento que controla la sincronizacion de
la red cambie, cambiara la geometria de la nube de puntos.

4.2. Datos

Para aplicar la estrategia de analisis de datos propuesta, en este trabajo usamos datos
conjuntos de datos. El primero corresponde a datos numéricamente a partir del modelo de
Kuramoto, que por sus caracteristicas tedricas resulta ser uno de los modelos més decuados
para analizar el fenémeno de sincronizaciéon en sistemas complejos arreglados como red.
Por su parte, el segundo conjunto de datos corresponde a una base de datos generadas
experimentalmente para fines de prueba de métricas en el contexto de sincronizacion.
Ambos conjuntos de datos se describen a continuacion.

4.2.1. Datos Generados con el Modelo de Kuramoto

Hasta ahora hemos descrito las bases tebricas para extraer informacion de la estructura
geométrica de un conjunto de datos usando homologia persistente. Ahora bien, dado que
el objetivo global de este trabajo es caracterizar el fenomeno de sincronizaciéon en series
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de tiempo provenientes de sistemas complejos a través de esta herramienta del analisis to-
pologico de datos, a continuaciéon describiremos las simulaciones realizadas en este trabajo
usando el modelo de Kuramoto para generar las series de tiempo de los nodos configurados
como una red compleja acoplada (usando varias estructuras de conectividad), a partir de
las cuales se caracterizo la sincronizaciéon como funcién del parametro de acoplamiento,
analizando la estructura geométrica del complejo simplicial generado, cubriendo asi nuestro
primer objetivo particular.

Las simulaciones computacionales se efectuaron de acuerdo con la Ecuacién 3.2 pa-
ra un conjunto X = {x1,---,xy} de N = 30 osciladores (nodos), donde z; = cos(6;)
(1 < j < N). Para tales simulaciones, se efectuaron 10 repeticiones sobre tres (3) tipos
de red: Erdoés-Rényi (ilustrada la Figura 4.3|a], véase [8] para detalles tedricos) con gra-
do promedio < k >= 3.2, Scale-Free (ilustrada la Figura 4.3[b], véase [12] para mayor
informacién) con un nimero de E = 56 enlaces, y una red Aleatoria con grado prome-
dio de conectividad < k >= 2.7, cuya conectividad no sigue algin patréon de adyacencia,
pero en la que se asegura conexion de la red, como se ilustra en la Figura 4.3|c|]. En los
tres casos, los grafos asociados a cada tipo de conectividad fueron generados con los mo-
dulos erdos_renyi_graph, scale_free_graph, respectivamente, de la libreria NetworkX,
implementada en Python. Para estas redes, se consideré un intervalo de acoplamiento
0 < X\ < 4.00 con incrementos AX = 1072, seleccionando condiciones iniciales de frecuen-
cias naturales de cada oscilador y para cada valor de acoplamiento de una distribuciéon
normal de media cero y desviacion estandar de 0.20, es decir, f(w) = N(0.00,0.20), en
cada repeticion realizada para cada tipo de red. Bajo estas condiciones, el acoplamiento
critico (véase Ecuacion 3.4) promedio para las redes generadas ronda un valor A\, =~ 0.28.
La simulaciéon numérica fue realizada para 1 <t < 2! pasos temporales. Posteriormente,
a fin de disminuir la densidad de datos manteniendo la dindmica subyacente al estado co-
rrespondiente, se muestreo las series de tiempo iniciales a los indices temporales en factor
de 2%, generando las series de tiempo finales de longitud 7' = 2'*. Asi, cada oscilador z;, a
cada valor de acoplamiento, consta de una serie de tiempo de T' = 2! registros de su fase.

A fin de ilustrar la dindmica asociada a estos datos, en la Figura 4.4 se presenta la
evolucién temporal del coseno z; = cos(f;) de las fases 0; asociadas a los osciladores
a=3,b=06yc=17 para la red Er6és-Rényi (fila superior), a =1, b =3y ¢ = 4 para la
red Scale-Free (fila central) y a = 1, b = 2 y ¢ = 3 para la red Aleatoria (fila inferior) a
valores de acoplamiento A = 0.00 (columna de la izquierda), A = 0.25 (columna de central)
y A = 1.50 (columna de la derecha), representando a con simbolos negros, b con simbolos
azules y ¢ con simbolos verdes, que forman un triangulo en la red.

Puede notarse de la Figura 4.4 que las redes en estado incoherente (A = 0.00, paneles
[a], [d] v [g], para Eros-Rényi, Scale-Free y Aleatoria, respectivamente), la actividad de los
osciladores (cos(#)) es conducida de manera independiente de acuerdo con la frecuencia
natural asociada a cada uno. Cuando inicia el acoplamiento (A = 0.25), puede verse para
las redes Erdoés-Rényi (panel [b]) y Scale-Free (panel [e]), que la actividad de los nodos
empieza evolucionar coordinadamente, sin embargo, la red Aleatoria (panel |h]) sigue en
estado incoherente. El acoplamiento es alto (A = 1.50), tanto para la red Erdos-Reényi
(panel [c]) y Scale-Free (panel [f]), la actividad de los nodos es coordinada, mientras que
para la red Aleatoria (panel [i]), s6lo dos de los tres nodos estan sincronizados.


https://networkx.org/documentation/stable/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.directed.scale_free_graph.html
https://networkx.org/
https://www.python.org/
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Figura 4.3: Representacion gréafica de las redes simuladas. En la fila superior se representan
las redes y en la fila inferior el histograma de frecuencia del grado de los nodos para Erdos-

Rényi [a], Scale-Free [b] y Aleatoria [c|, respectivamente.
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Figura 4.4: Evolucion temporal de las redes simuladas. Se ejemplifica evolucion temporal
del coseno z; = cos(f;) de las fases 6; de los osciladores a = 3, b = 6y ¢ = 17 para la red
Eros-Reényi ([a]-[c]), a = 1, b = 3 y ¢ = 4 para la red Scale-Free (|d]-[f]) ya=1,b=2
y ¢ = 3 para la red Aleatoria ([g]-[h]) a valores de acoplamiento A = 0.00 ([a], [d] v [g]),
A =025 ([b], [e] y [0]) y A = 1.50 ([c], [] ¥ [i])-
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A partir de la evoluciéon temporal ilustrados en la Figura 4.4 es inferible que la actividad
de los osciladores no es trivial, sugiriendo ademés que dependiendo de la configuracion
de conectividad global de la red, estos se comportan distinto en cuanto a sincronizacién
se refiere. A fin de ponerlo en perspectiva de homologia persistente, en el sentido de la
estructura geométrica que generan los osciladores, la Figura 4.5 muestra la nube de puntos
bidimensional (fila superior) y tridimensional (fila inferior) a valores de acoplamiento A =
0.00 (columna de la izquierda), A = 0.25 (columna de central) y A = 1.50 (columna de la
derecha), para la red Scale-Free como caso representativo de las redes simuladas.
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Figura 4.5: Nube de puntos de las series de tiempo simuladas. Se ejemplifica la nube de
puntos bidimensional (|al-[c|) y tridimensional (|d]-[f]) formadas las series de tiempo del
coseno z; = cos(#;) de las fases 6; de los osciladores a = 1, b = 3 y ¢ = 4 que forman un
triangulo para la red Scale-Free, como caso representativo de las redes simuladas a valores
de acoplamiento A = 0.00 ([a] y [d]), A = 0.25 ([b] y [e]) y A = 1.50 (|c] y [f])-

Puede notarse de la Figura 4.5 que la nube de puntos tridimensional (paneles [d]-[f]) que
la estructura geométrica de la nube de puntos tiene una “forma” mejor definida comparado
con el caso bidimensional (paneles [a]-[c]) en todos los estados de la red (incoherente,
A = 0.00; parcialmente sincronizado, A = 0.25; y sincronizado, A = 1.50), lo cual sugiere
que la configuracion a triadas (tridimensional), puede recuperar informacion adicional
comparado con la configuracion a pares (bidimensional).

4.2.2. Datos Experimentales de Circuitos Electrénicos Cadticos

El segundo conjunto de datos estudiado corresponde a los registros del experimento 1
realizado por Sevilla-Escoboza y Baldt en 2016 [107]. Los registros corresponden a voltajes
de 28 circuitos electronicos arreglados como una red ilustrada en la Figura 4.6[a], cuya
dindmica sigue un sistema de ecuaciones de osciladores de Rdssler, acoplados a través
de la variable y, cuya sincronizaciéon es controlada por el parametro de acoplamiento x
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(0.00 < xk < 1.00, con incrementos Ax = 1072). Este conjunto de datos, para cada
oscilador y a cada valor de acoplamiento contiene 3 x 10* registros. A fin de evitar efectos
de borde, en este trabajo seleccionamos un segmento de 2!! registros, tomados entre los
indicies temporales 13296 y 16024, garantizando suficiencia de datos y representatividad
de la dindmica.

A modo general, los nodos (osciladores) que conforman la red experimental (Figura
4.6]al), tiene un méaximo de interacciones (grado) de hasta siete conexiones (siendo este el
caso del oscilador 2), las interacciones decrecen de manera lineal de tal suerte que en la red
hay un oscilador con siete interacciones (enlaces), dos osciladores con seis interacciones,
tres osciladores con cinco interacciones, cuatro osciladores con cuatro interacciones, cinco
osciladores con tres interacciones, seis osciladores con dos interacciones y siete osciladores
con 1 interaccion como se ilustra en la Figura 4.6|b|. Esta configuracion genera un entrama-
do complejo en la red en cuanto al intercambio de informacién de un oscilador a otro, toda
vez que existen osciladores periféricos (con una tnica interacciéon) que estan influenciados
a primer vecino por osciladores con multiples interacciones, esto permite que los nodos con
mayor cantidad de interacciones jueguen un rol de “moduladores” en la retroalimentacion
del acoplamiento en la red. Lo anterior implica que la distribucién de grado de la red
también presente decrementos lineales, tal como se aprecia en la Figura 4.6]c|.
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Figura 4.6: Representacion grafica de la red experimental. [a]: estructura de la conectividad
de la red; [b]: grado de cada nodo en la red; [c|: histograma de frecuencia del grado de los
nodos. A modo ilustrativo, los nodos y sus respectivos enlaces coloreados hacen parte de
un triangulo en la red.

En la Figura 4.7 se presenta a modo ilustrativo un segmento de las seniales (series de
tiempo) de este conjunto de datos para los osciladores x, = 2 (simbolos negros), z, = 9
(simbolos azules) y z. = 12 (simbolos verdes), a valores de acoplamiento x = 0.00 (panel
[a]), K = 0.02 (panel |b]) y k = 0.10 (panel |c]). Note que en estado incoherente (x = 0.00,
panel [a]), la senal de los nodos oscilan de manera independiente. Atin estado asincrono,
pero con intensidad de interaccion mayor que cero (acoplamiento, x = 0.02), la evolucion
temporal de los osciladores ya no es por completo aleatoria, de tal forma que cuando la
intensidad de interaccion es relativamente grande (acoplamiento, x = 0.10), la actividad
de los osciladores (aunque no completamente) evoluciona de manera coordinada.



CAPITULO 4. METODOLOGIA 48

l

sena
=

v 'k =0.10
1 1 1 1 0 1 1 1 1
14900 14950 15000 15050 15100 14900 14950 15000 15050 15100 14900 14950 15000 15050 15100
tiempo tiempo tiempo

Figura 4.7: Evoluciéon temporal de la red experimental. Se ejemplifica la evolucion temporal
(senal) de los osciladores z, = 2 (simbolos azules), 2, = 9, x. = 12 de la red experimental
a acoplamiento [a]: kK = 0.00; |b]: k = 0.02; y [c|: K = 0.10, respectivamente.

La evolucion temporal de este conjunto de datos evidencia que se trata senales comple-
jas que depende ademas de la intensidad de interaccion de los osciladores. Adicionalmente,
con intenciéon de ponerlo en perspectiva de homologia persistente en el sentido de confi-
guracion geométrica, la Figura 4.8 se ejemplifica este aspecto representando las nubes de
puntos bidimensional (fila superior) y tridimensional (fila inferior) de los z, =2, 2, =9 y
x. = 12 de este conjunto de datos a acoplamientos x = 0.00 (paneles [a] y [d]), k = 0.02
(paneles [b] y [e]) v & = 0.10 (paneles [c| y [f]), donde se observa que la nube de puntos
tridimensional muestra mas cambios en la forma geométrica conforme aumenta el acopla-
miento k, lo cual sugiere que la configuracion a triadas (tridimensional) puede proveer
informacion adicional a la que provee la configuracion a pares (bidimensional).
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Figura 4.8: Nube de puntos de las series de tiempo experimentales. [a] y [d]: a acoplamientos
k= 0.00; [b] y le]: & =0.02; [c] y [f]: & = 0.10, para las nubes de punto bidimensional (fila
superior) y tridimensional (fila inferior), respectivamente, de los osciladores z, = 2, 2, = 9
y . = 12 de la red experimental.
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Asi, Nuestra propuesta estudia el fenémeno de sincronizacion en redes de osciladores
acoplados de Kuramoto y sobre datos experimentales usando homologia persistente como
herramienta y la entropia de persistencia normalizada como cuantificador. De esta estrate-
gia se resaltan dos enfoques principales: (i) cuantificar la sincronizacion en términos de la
informacion que proporcionan las estructuras locales formadas por tres nodos adyacentes
entre si (tridngulos) en la conectividad de la red. (2) caracterizar el estado de sincronizacion
del sistema al identificar cuantitativamente la transiciéon de estado incoherente o asincrono
a estado sincronizado variando el pardmetro de filtracion, es decir, analizando el “espectro”
de filtracion, lo cual, hasta donde es de nuestro conocimiento, no tiene precedentes en la
literatura. Los resultados obtenidos son presentados en la siguiente Seccion.



Capitulo 5

RESULTADOS

En este capitulo se presentan y disertan los resultados obtenidos con nuestra estrate-
gia de analisis, los cuales mostraremos en dos segmentos. En el primero describimos los
resultados obtenidos al analizar la sincronizacion desde la perspectiva clasica en el senti-
do de interaccién entre pares osciladores como aproximacion descriptiva inicial acorde a
la forma convencional de estudiar la sincronizacion en redes de osciladores, centrando el
analisis en el conjunto de datos experimentales. En el segundo segmento particularizamos
nuestro anéalisis sobre el comportamiento de la métrica formulada (NPE) para triadas
cerradas (triangulos), que corresponden a estructuras de conectividad locales constituidas
por tres nodos adyacentes en la conectividad global de la red, siendo esta aproximacion la
contribuciéon de mayor novedad de nuestro trabajo, el cual es desarrollado para conjuntos
de datos simulados y extendido al conjunto de datos experimentales.

5.1. Analisis a Pares (Bidimensional)

Como punto de partida analizamos el comportamiento de la NPFE como descriptor de
sincronizacién en funciéon del parametro de acoplamiento, k, entre pares de osciladores de
la red de datos experimentales descritos en la seccion 4.2.2 para grupos de homologia de
dimension cero, Hy, y grupos de homologia de dimensiéon uno, H;. Elegimos este conjunto
de datos como referente teniendo en cuenta que, de acuerdo con la descripcién proporcio-
nada por los creadores del experimento ([107]), se trata de una serie de registros generados
especificamente para analizar el comportamiento de métricas de cuantificacién de sincroni-
zacion en sistemas de osciladores acoplados, por lo que también lo usamos como referencia
para estudiar el efecto de la cantidad de interacciones entre los nodos y la distancia a la
que estos se encuentran en la red.

5.1.1. Segtn la Cantidad de Interacciones

Estudiamos la influencia del numero de interacciones (grado) de los nodos, tomando
como casos representativos los osciladores 1 y 28. El oscilador 1 es un nodo central con
6 conexiones (un “hub” de la red), mientras que el oscilador 28 es un nodo periférico con
s6lo una conexion. Para el primer caso (tomando el oscilador 1 como nodo de referencia),

50
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se analiza la NPFE como funcion del acoplamiento para los pares de osciladores 1 vs 2, 1
vs 23 y 1 vs 27. El oscilador 2 es también un nodo central que tiene siete enlaces en la red
(el més conectado de la red), uno de los cuales es a primer vecino con el nodo 1 (1,2); el
oscilador 23 es un oscilador periférico que tiene un dnico enlace en la red y es a primer
vecino con el oscilador 1 (1,23), y el oscilador 27 también es periférico, con la diferencia
que este no tiene conexion a primer vecino con el oscilador 1 (1,27). Para el segundo caso
(oscilador 28 como nodo de referencia), se analiza la N PE respecto del acoplamiento entre
los osciladores 28 vs 3, 28 vs 7'y 28 vs 14. El oscilador 28 es un oscilador periférico que tiene
una Unica interaccion a primer vecino con el oscilador 7 (que tiene 4 enlaces) y no tiene
conexion directa con los osciladores 3 (que tiene seis enlaces) y 14 (que tiene 3 enlaces); de
manera que el andlisis para estas configuraciones permite analizar escenarios de interaccion
entre los nodos en relacion al grado y distancia de interacciéon. En adelante se usara los
términos componente(s) conectado(s) y hoyo(s) para referirnos indistintamente a grupos
de homologia de dimensién cero y uno, respectivamente. En la Figura 5.1 se presentan los
resultados para grupos de homologia de dimension cero (paneles [a] y [b]) y dimension uno
(paneles [c] y [d]) de este grupo de osciladores.
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Figura 5.1: NPFE vs acoplamiento respecto de la cantidad de interacciones. Usando los
osciladores 1 y 28 como casos representativos, los paneles |a] y [c] corresponden grupos
de homologia de dimension cero (Hy) y uno (H;) para los pares de osciladores (1,2) que
son nodos altamente conectados con interacciéon a primer vecino, (1,23) siendo 23 un nodo
periférico con tnica interaccion a primer vecino con el nodo 1, y (1,27) siendo 27 un nodo
periférico con tnica interaccion y no es adyacente con el nodo 1. Los paneles [b] y [d]
también corresponden a grupos de homologia de dimensién cero y uno, pero para los pares
de osciladores (28,3) donde 23 es un nodo altamente conectado y distante de 28, (28,7)
donde 7 tiene 4 interacciones y una de ellas es a primer vecino con 7, y (28,14) siendo 14
un nodo con sblo dos conexiones y no interactia a primer vecino con 28.
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Tomando el oscilador 1 como nodo de referencia, puede observarse en los paneles [a] y
[c] de la Figura 5.1 para componentes conectados y hoyos, respectivamente, que la mayor
entropia corresponde al par de osciladores (1,2), siendo estos los méas conectados de la red,
mientras que la de menor entropia se obtiene para el par (1,23), donde el oscilador 1 es
uno de los més conectados y el oscilador 23 solo tiene un enlace (con el oscilador 1). Este
comportamiento puede deberse a que los nodos altamente conectados pueden ser modu-
ladores en la sincronizacion global de la red, en tanto que aquellos menos conectados son
los modulados. Esto hace sentido al tener en cuenta que cuanto mas regulares o parecidas
entre si son las sefiales, menor serd su entropia, de tal forma que la taza de generacion
de nueva informacién al sistema por un nuevo evento es baja. En el caso del oscilador 28
como nodo de referencia, aunque no en la misma magnitud, este comportamiento también
es reflejado para componentes conectados y hoyos (paneles |b| y [d] de la Figura 5.1), en
particular, para del par de osciladores (28,7), en los que la interacciéon es a primer vecino y
el oscilador 7 tiene 4 conexiones, para valores de acoplamiento 0.00 < x < 0.30, la entropia
es mayor comparada con los pares de osciladores (28,3) y (28,14).

Notese ademéas que los pares (enlaces) en donde participa un nodo altamente conectado
a primer vecino, como los enlaces (1,2), (1,27) y (28,7), después de cierto valor de aco-
plamiento la N PE evoluciona de manera regular, lo cual sugiere que la sincronizacion es
estable, mientras que para los pares en donde participan nodos poco conectados y distantes
es mas irregular. Ahora bien, el hecho de que esto no ocurre para la totalidad del intervalo
de acoplamiento (como es el caso entre los osciladores 28 y 7), sugiere que el estado del
sistema, para esta dindmica no depende so6lo del acoplamiento, sino que ademas depende
de la configuracion de las interacciones en la red.

A continuacién, analizamos el efecto de la cantidad de interacciones de los oscilado-
res calculando la NPE como funcién del cociente del grado de los nodos con los que se
construye el complejo simplicial respecto de la intensidad de acoplamiento. Esto es, dados
los nodos z; y x; con grado dj, d;, respectivamente, el complejo simplicial es construido al
usando las series de tiempo de z; y x; como nube de puntos, y la NPE es representada
respecto del cociente d;/d; para un valor de acoplamiento dado. Los resultados se presen-
tan en la Figura 5.2, donde las filas (paneles |a-b| y [c-d]|) corresponden a componentes
conectados y hoyos, respectivamente, mientras que las columnas presentan los resultados
considerando cada grado en la red (paneles [a] y [c]) y a primer vecino (paneles [b| y [d]),
respectivamente, respecto del nodo de referencia.

Por ejemplo, si el nodo de referencia es el oscilador 1, d; = 6, entonces en la primer
columna (paneles [a] y [c]) se calcularia d;/d;, donde | = {2,3,---,28} corresponde resto
de los osciladores de la red, mientras que la segunda columna (paneles|b| y [d]), el cociente
se calcula para [ = 2,4,11, 16,22, y 23, que son los primeros vecinos del oscilador 1 y asi
para el resto de nodos de la red.

Notese de la Figura 5.2 que la NPFE disminuye conforme el grado del oscilador del
numerador es mayor y aumenta conforme la intensidad de acoplamiento. Este efecto es
méas notorio para el caso “todos contra todos” presentado en los paneles [a] y [c| (para
componentes conectados y hoyos, respectivamente), en comparacion a cuando se consideran
unicamente los primeros vecinos del nodo de referencia (paneles [b] y [d], para componentes
conectados y hoyos, respectivamente). Este efecto puede deberse a la finitez del sistema
(la cantidad de nodos en la red), lo cual genera mayor variabilidad en el comportamiento
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de la NPFE respecto del acoplamiento. Es preciso resaltar ademés que en ambos casos los
resultados para componentes conectados es mas distinguible el acoplamiento, por lo que
exploramos este hecho en mayor detalle considerando la distancia de interacciéon de los
nodos en términos de la longitud de ruta mas corta (“shortest path length”).

0.3 ™ = I
Ho | B Ho

d; / d; d; / d;

Figura 5.2: NPFE vs cociente del grado de los osciladores. Los paneles [a] y [c] corresponden
a la NPFE promedio de los grupos de homologia de dimensiéon cero Hy y uno Hy, respec-
tivamente, calculando el cociente de cada oscilador con el resto de los nodos. Los paneles
[b] v [d] también corresponden a Hy y Hj, respectivamente, pero calculando el cociente
tomando en cuenta tnicamente los nodos adyacentes. Las barras de verticales representan
la desviacion estandar de la N PFE respecto de la cantidad de cocientes con el mismo valor.

5.1.2. Segtn la Distancia de Interaccién

En una rutina diaria, constantemente estamos eligiendo la forma mas sencilla y rédpida
de llegar de un lugar a otro con el menor costo de recursos posible. Por ejemplo, si estamos
en el trabajo y debemos ir al supermercado de camino a casa, buscamos la ruta mas corta
en tiempo y distancia que optimice el recorrido trabajo-supermercado-casa. Representados
como red, la casa, el supermercado y el sitio de trabajo simbolizan los nodos y las calles
que debemos recorrer para ir de uno a otro simboliza los enlaces. Si fuéramos directo del
trabajo a casa estarfamos a “un paso” de recorrido. Sin embargo, al pasar al supermercado
se genera un “paso adicional”, de tal manera que esta ruta esta a “dos pasos” de distancia.
La cantidad de “pasos” que debe recorrerse para ir de un nodo a otro dice de la “rapidez”
con que se propaga la informaciéon en una red. La rapidez del flujo de informacion puede
entonces medirse en términos de la cantidad de pasos al usar una ruta u otra. En el
contexto de redes, esto se mide a través de la longitud de la ruta méas corta (shortest path
length, spl, en inglés). Asi, la estructura de conectividad de la red condiciona la rapidez



CAPITULO 5. RESULTADOS 54

de propagacion de la informacion. Usamos estas nociones para analizar la influencia de la
estructura de conectividad de la red a través del comportamiento de la N PE como funcién
del pardmetro de acoplamiento en términos de la longitud mas corta spl, cuyos resultados
se muestran en la Figura 5.3.
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Figura 5.3: NPE vs acoplamiento respecto de la distancia de interacciéon (experimental).
[a] y [b] muestran la N PE promedio para los grupo de homologia de dimension cero (Hy) y
uno (H;), respectivamente, para valores de longitud de distancia mas corta spl = 1, 3, y 5,
para la red experimental. Las barras verticales representan la desviacion estandar calculada
sobre la cantidad de elementos que distan tal distancia en la red.

En la Figura 5.3, las curvas representan el promedio de la entropia de persistencia
de todos los osciladores que distan spl pasos entre si para componentes conectados, Hy,
(panel [a]), y hoyos H; (panel [b]). Las barras verticales representan la desviacion estandar
calculada sobre los pares de osciladores que distan spl pasos. Puede observarse que los
valores promedio de la NPE distingue la distancia a la que se encuentran los nodos,
cuya relacion es inversamente proporcional, es decir, conforme més cerca estén dos nodos,
mayor serd su NPE. En cuanto al acoplamiento, la NPE tiende a crecer conforme lo
hace la intensidad de acoplamiento. Puede observarse de la Figura 5.3[a] que a valores
acoplamiento 0.00 < k < 0.10, donde los osciladores se encuentran en estado incoherente
o asincrono, que las curvas simbolizando la NPFE promedio son indistinguibles y crecen
notablemente conforme aumenta el acoplamiento para este intervalo. A partir de k > 0.25,
la NPE se estabiliza, sugiriendo que a partir de tal valor de acoplamiento la red de
osciladores se sincroniza.

5.1.3.

A fin de tener una comparacion adicional, se determiné el valor de bloqueo de fase
(“phase locking value”, PLV') para establecer similitudes y diferencias de la informacion
que es posible obtener a través de ambas métricas. El PLV; = (|e®1®)|) ([114]) mide las
variaciones de fase ¢;,;(t) = 0;(t) — 6;(t) promedio entre los osciladores z; y x; durante el
intervalo de tiempo 0 <t < T'. Por su naturaleza, el PLV es una métrica bien establecida
para saber cuan acopladas se encuentran las fases de un sistema bajo analisis, por lo que
representa una métrica 6ptima para comparar la informacién que es posible obtener de

Comparativa entre la NPE y el “Phase Locking Value”
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dicho sistema. Esta comparacion es para el rango de acoplamiento de la red completa como
funcién de la longitud mas corta spl y los resultados se presentan en la Figura 5.4.
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Figura 5.4: PLV vs acoplamiento respecto de la distancia de interaccion. La linea simboliza
el PLV promedio (las barras verticales representan la desviacion estandar) calculados sobre
la cantidad de elementos que distan spl = 1, 3, y 5 pasos, respectivamente.

Notese de la Figura 5.4 que, similar a los resultados obtenidos para la N PE mostra-
dos en la Figura 5.3, el PLV crece conforme la spl aumenta, lo cual es consistente. Por
otra parte, la principal diferencia entre la NPE y el PLV es que la primera se compor-
ta creciente a valores de acoplamiento 0.00 < x < 0.10, en el sentido en que la NPFE
exhibe tendencia clara de aumento conforme aumenta la intensidad de acoplamiento para
todos los valores de spl, lo cual no ocurre para el PLV, puesto que presenta variabilidad
de comportamiento en este rango de valores de acoplamiento dependiendo del spl. Esta
caracteristica representa una ventaja de la N PE para caracterizar la sincronizacion de la
red como funciéon de este parametro.

5.1.4. Comparativa entre la NPE y R

Finalmente, en esta aproximacion de anélisis a pares, y con intenciéon de contrastar los
resultados obtenidos al estudiar la red experimental con otros cuantificadores de sincro-
nizacion, generamos una red de osciladores de Kuramoto con estructura de conectividad
idéntica a la de la red experimental, sobre la cual calculamos la NPE de la actividad de
los osciladores (es decir, usando z; = cos(f;)), y el parametro de orden, R, a partir de las
fases, 0;, de los osciladores. Los resultados se muestran en la Figura 5.5 para grupos de
homologia de dimension cero (Hg, panel [a]) y grupos de homologia de dimensiéon uno (Hy,
panel [b]), a longitud de distancia mas corta (“shortest path length”) spl = {1,3,5}, en
tanto que los valores de R se incluyen en el eje derecho del panel [a]. En el caso de la NPE,
las barras de error representan la desviacion estandar calculada sobre cinco realizaciones
independientes de la red, variando las frecuencias naturales iniciales del modelo.

Puede observarse de la Figura 5.5, particularmente para una spl = 1, que la NPE es
sensible al acoplamiento de la red, comparable con el comportamiento de los valores de R.
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Figura 5.5: NPE y R, vs acoplamiento respecto de la distancia de interaccion (Modelo). [a]
y [b] muestran la N PFE promedio (simbolos verde, negro y azul) para grupos de homologia
de dimension cero (Hg) y uno (H;), respectivamente. Las barras verticales representan la
desviacion estandar, calculados sobre la cantidad de elementos que distan spl =1, 3, vy 5
pasos. Los simbolos rojos en [a] representan el parametro de orden R. Ambas métricas
calculadas para el los datos simulados sobre una red de osciladores acoplados de Kuramoto.

Notese ademas que la NPE, para Hy (Figura 5.5]a]) es una medida de sincronizacion més
estable comparado con los valores de R, siendo este tltimo més disperso en el intervalo
de acoplamiento analizado. En cuanto a los resultados obtenidos para H; (Figura 5.5[b]),
pese a que los resultados con concordantes con los obtenidos para Hy, su dispersiéon es
mayor. Este puede atribuirse al hecho de que los componentes conectados (Hy) dan razon
del comportamiento de la nube de puntos a diferentes escalas, mientras que hoyos unidi-
mensionales se relacionan mas bien con periodicidades de la senal que forma la nube de
puntos (H;) (Perea y Harer [80] ofrecen una discusion al respecto).

Si bien los resultados presentados hasta aqui corresponden a una aproximacion conven-
cional en el sentido que el analisis de sincronizacion es realizado a pares y como funciéon
del pardmetro de acoplamiento, el mecanismo de estudiar este fenémeno en una red con
configuracion de conectividad no trivial y usando homologia persistente como herramienta
representa una contribuciéon sin precedente en esta materia, de tal manera tuvimos éxito
al presentar estos resultados en la Coleccion Especial “Data-Driven Models and Analysis
of Complex Systems” y fueron publicados en el Volumen 33 de Noviembre de 2023 en la
revista Chaos, los datos asociados a este trabajo pueden consultarse en la referencia [130].

5.2. Analisis a Triadas (Tridimensional)

Los grupos de homologia de dimensiéon uno son formados por ciclos con frontera vacia
encerrando un area ([62, 64|). Desde la perspectiva de anélisis de datos esta caracteristi-
ca ayuda a identificar periodicidades ([|80]), puesto que sistemas con dindmica periddica
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generaran este tipo de “formas”. Sin embargo, en conjuntos de datos donde la forma no
contiene periodicidades, el complejo simplicial carecerd de hoyos unidimensionales como
caracteristica principal, de tal suerte que en estos casos los componentes conectados seran
mas informativo respecto del proceso subyacente. En el curso de la investigacion asociada
a este trabajo y a partir de los resultados del anéalisis a pares, notamos que en general, para
los datos usados, la N PE muestra resultados mas favorables en cuanto a la posibilidad
de caracterizar el estado de sincronizacion de la red en funcion del pardametro de acopla-
miento a partir de la informaciéon contenida en los diagramas de persistencia de grupos
de homologia cero, Hy, es decir, de los componentes conectados. Con base en esto, en la
ultima parte de este proyecto doctoral nos concentramos en estudiar el comportamiento
de componentes conectados siguiendo lo descrito en la seccion 4.1, con especial atencion
al analisis de triadas cerradas, tanto para el conjunto de datos simulados como para los
datos experimentales, cuyos resultados describiremos a continuacion.

5.2.1. Transiciéon entre Estados de Sincronizacion

Para el conjunto de datos experimentales cuyos resultados principales fueron presenta-
dos en la seccion 5.1, partimos del hecho conocido que la sincronizacion aumenta conforme
lo hace el pardametro de acoplamiento, que ademas, con base en nuestros resultados, estos
sugieren que el sistema pasa de asincrono o incoherente a estado sincrono alrededor un
acoplamiento k & 0.10, como se observa en los paneles [a] y [c| de la Figura 5.1, los paneles
[a] y [b] de la Figura 5.2 y la Figura 5.3|a] para grupos de homologia de dimension cero,
Hjy. En el caso de los sistemas simulados en este trabajo compuestos de N = 30 nodos
cuyas frecuencias naturales iniciales fueron seleccionadas de una distribuciéon normal con
media cero y desviacion estandar de 0.2, a partir de la Ecuacion 3.4, calculamos el valor
de acoplamiento critico A\, ~ 0.28 al que el sistema pasa de incoherente a sincronizado.
Note que damos un tinico valor de acoplamiento critico para los tres casos de conectivi-
dad de red, esto teniendo en cuenta que los tres tipos de red tienen la misma cantidad
de nodos y el sistema es inicializado con frecuencias naturales con la misma distribucion.
En tal sentido, a fin de asegurar que efectivamente estuviéramos en un estado u otro, el
primer paso fue cerciorarnos que la transicion de incoherente a sincronizado ocurre a .,
comprobandolo a través del parametro de orden R como indicador principal. El siguiente
paso fue averiguar si la N PFE también podia identificar tal transicion. Los resultados son
presentados en la Figura 5.6 para R (paneles |a-c|]) y NPE (paneles |d-e|, para una lon-
gitud maxima de enlace € = 0.15), calculados sobre triangulos y tripletas (tres osciladores
que no comparten enlace a primer vecino y que no hacen parte de un triangulo) (simbolos
de tridngulos solidos y huecos, respectivamente), y para la red completa en el caso de R
(simbolos circulares solidos, paneles [a-c]).

Puede observarse de la Figura 5.6 que tanto R como la N PE son sensibles a la transicion
de estado incoherente a sincronizado en el sistema y que el valor de acoplamiento al que
ocurre tal transicion es consistente con el valor de acoplamiento critico A.. Particularmente,
puede notarse que la NPE, para las redes tipo Erdos-Rényi y Scale-Free la transicion
es abrupta, identificAndose que, para valores de acoplamiento 0.0 < A < 0.3, la NPE
se mantiene en valores préximos a cero, ocurriendo la transicion en el intervalo 0.3 <
A < 04, y para A > 0.4, sin pérdida de generalidad, la NPFE se estabiliza. En el caso
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Figura 5.6: NPFE y parametro de orden R vs acoplamiento. Los simbolos sélidos represen-
tan el R (fila superior) y la NPE de Hj (fila inferior) promedio para tridngulos, en tanto
que los simbolos punteados representan el R y la N PE promedio para tripletas. Las barras
verticales representan la desviacion estandar calculada sobre 10 elementos (tridngulos o
tripletas, segtn sea el caso), para 10 repeticiones independientes cambiando las frecuencias
iniciales del modelo de Kuramoto en redes con conectividad tipo Erdos-Rényi ([a] y [d]),
Scale-Free ([b] y [e]) y Aleatoria ([c] y [f]).

de la red Aleatoria, puede verse que la transicion es mas lenta en comparaciéon con las
redes tipo Erdos-Rényi y Scale-Free. Notese que la deteccion de la transicion de estado
incoherente a sincronizado usando la informacion local de las triadas cerradas (triangulos)
es favorable para R comparado con el valor obtenido al calcularlo para la red completa,
sugiriendo que esta tales estructuras locales son mas sensibles a cambios en el estado de
la red. Adicionalmente, puede observarse que tanto para el R como para la NPE existen
diferencias entre las triadas cerradas y las tripletas, lo cual implica que triangulos codifican
informacioén que no es solamente dependiente del niimero de nodos que participan, sino de
la forma en como estan conectados.

5.2.1.1. NPEFE vs Parametro de Acoplamiento

Habiendo verificado que efectivamente estabamos identificando un cambio en el estado
y que tal cambio obedece a la transicion de estado incoherente a sincronizado de la red,
continuamos con un analisis mas detallado que incluye analizar la informacion de compo-
nentes conectados de tridngulos teniendo en cuenta el pardmetro de filtracion, esto taltimo
a fin estudiar la estructura geométrica a diferente escala de filtraciéon. La Figura 5.7 mues-
tra la NPE de componentes conectados en tridngulos como funcién del acoplamiento (A
para las redes simuladas y x para la red experimental) para varios valores de filtracion.

Puede observarse de la Figura 5.7 que la N PE identifica de forma clara la transicion
de estado incoherente a sincronizado. Notese que para un valor de filtracion ¢ = 0.15,
para las redes tipo Erdos-Rényi (Fig. 5.7[a]), Scale-Free (Fig. 5.7|b]) y experimental (Fig.
5.7[d]), ocurre un cambio abrupto cuando la red transita de incoherente a sincronizada
después del cual la N PE se mantiene estable para el resto de valores de acoplamiento. En
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Figura 5.7: NPFE de tridngulos vs acoplamiento respecto del parametro de filtracion. Los
simbolos representan la NPFE promedio para Hy, las barras de verticales corresponden a
la desviacion estandar, calculadas para 10 triangulos sobre 10 realizaciones independientes
cambiando las frecuencias iniciales del modelo de Kuramoto para las redes con conectividad
tipo Erdos-Rényi (|a]), Scale-Free (|b]) y Aleatoria ([c]). Para la red experimental (|d]), el
valor medio y la desviaciéon estandar son calculados sobre los cinco triangulos existentes
en la conectividad de dicha red.

el caso de la red Aleatoria puede notarse que la transicién es mas lenta, lo cual es atribuible
a la estructura de conectividad global de la red. La red Aleatoria es una red conectada
pero sin estructura de conectividad heterogénea sin patron definido, mientras que el resto
de redes si tienen estructura de conectividad global que favorece una propagaciéon mas
rapida de la informacién, lo cual propicia que la sincronizaciéon ocurra. Estos resultados
concuerdan con lo reportado en [104] respecto de la “rapidez” de transicion en relacion con
la heterogeneidad de la red.

Un resultado inesperado y sorprendente es que a valores de filtracion cercanos a cero
(e = 0.03 por ejemplo), la NPE de triangulos para este grupo de homologia (Hy) también
identifica transicién en la sincronizacién pero con valores inversos comparado con el maxi-
mo valor de filtracion (e = 0.15), lo cual sugiere que la NPE es sensible a la informacion
contenida a micro-escalas en la nube de puntos. Asi mismo, existen de valores intermedios
de filtracion (e = 0.07 por ejemplo) sobre los cuales la NPFE se mantiene estable durante
el intervalo de acoplamiento, lo cual puede corresponder a meso-escalas de informaciéon en
la nube de puntos. Indagamos més detalle del este aspecto al presentar los resultados de
la NPE como funcién del parametro de filtracion respecto del acoplamiento.
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5.2.1.2. NPEFE vs Parametro de Filtracion

Sin pérdida de generalidad, el parametro de filtracion es la distancia a la cual se “conec-
tan” elementos de la nube de puntos para generar los simplejos que conforman el complejo
simplicial, de tal manera que este da razén de la estructura geométrica de los datos a
diferente escala. Asi, valores de filtracion bajos capturan informacién relacionada a pro-
piedades geométricas a micro escalas, en tanto que los valores de filtracion proximos a la
distancia méxima entre cualesquiera dos registros de la nube de puntos revela detalles a
macro escalas de su estructura geométrica. Esta caracteristica puede entonces ayudar a
distinguir mejor tanto el estado de sincronizacion (incoherente o sincronizado), como los
valores de acoplamiento a los que ocurre la transiciéon entre tales estados. Tal condicion
motivo explorar el comportamiento de las redes estudiadas respecto del parametro de fil-
tracion en términos del acoplamiento. Los resultados son presentados en la Figura 5.8 para
el grupo de homologia de interés (componentes conectados, Hy) de triangulos, siendo una
forma alternativa de analizar los resultados presentados en la Figura 5.7.
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Figura 5.8: NPFE de tridngulos vs parametro de filtracion respecto del acoplamiento. Los
simbolos representan la N PE promedio para Hy, las barras de verticales corresponden a
la desviacion estandar, calculadas para 10 triangulos sobre 10 realizaciones independientes
cambiando las frecuencias iniciales del modelo de Kuramoto para las redes con conectividad
tipo Erdos-Rényi (|a]), Scale-Free (|b]) y Aleatoria (|c|). Para la red experimental (|d]), el
valor medio y la desviacion estandar son calculados sobre los cinco tridngulos existentes
en la conectividad de dicha red.

Puede notarse de la Figura 5.8 que, para todas las redes, cuando el acoplamiento es
A <0.25, la NPFE decae hasta el valor maximo de filtracion, lo cual es de esperarse toda
vez que cada oscilador evoluciona segtin su frecuencia natural sin retroalimentacion de
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su vecindad. Sin embargo, para valores de acoplamiento A > 0.25, el comportamiento es
distinto para cada tipo de red. Para la red tipo Scale-Free (Figura 5.8[b]) se observa una
mayor variabilidad en la NPFE a valores de acoplamiento préximos a A = 2.5, comparado
con la red tipo Erdés-Rényi (Figura 5.8[a]) y este ultimo a su vez comparado con la red
Aleatoria (Figura 5.8|c|]). Para esta tltima es notorio que el decaimiento es mas suave en
comparacion con el resto de redes simuladas. Otro aspecto que resalta en esta perspectiva
es que, para valores de acoplamiento cercanos a cero (A = 0.00), empieza a haber valores de
NPFE a partir de € > 0.01. Esto se debe al hecho que estamos considerando componentes
conectados con tiempo de vida finitos, de tal suerte que a valores de acoplamiento bajos los
puntos estan lo suficientemente separados entre si y a esas distancias de enlazamiento no se
generan nuevos componentes conectados que extingan a componentes conectados formados
s6lo por un punto, lo cual no sucede cuando la red esta sincronizada, es decir, a valores
de acoplamiento A > 0.30, para los cuales puede observarse que se generan y extinguen
componentes conectados a partir de e = 1072, sugiriendo que en estado sincrono, la NPE
es sensible informacion a micro escalas. Esta caracteristica también es identificada en la red
experimental (Figura 5.8|d]), con la particularidad que para algunos casos de acoplamiento
(0.25 < k < 0.35), existen componentes conectados a menor escala que para acoplamiento
k > 0.35, lo cual puede deberse a la naturaleza de los datos.

5.2.2. Efecto de la Conectividad de la Red

Con base en los resultados presentados en las Figuras 5.6, 5.7 y 5.11, se observa que se
obtienen resultados diferentes para la NPFE de los tridngulos segtin sea la estructura de
conectividad de la red, lo que sugiere que, al menos cualitativamente hablando, la NPE
es capaz de distinguir entre tipos de redes para ciertos estados de sincronizacién. A fin
de ilustrarlo, comparamos los resultados obtenidos en estados incoherente (acoplamiento
A = 0.00), dentro del intervalo de transicién (acoplamiento A = 0.50) y sincronizado
(acoplamiento A = 1.50) como se muestra en la Figura 5.9 para las redes simuladas.

Puede verse de la Figura 5.9]a] que en estado incoherente (A = 0.00) las redes son
indistinguibles entre si, 1o que es de esperarse puesto que cuando la red esté desacoplada
los osciladores evolucionan de manera independiente gobernados por su propia frecuencia
natural y sin retroalimentacion del resto de nodos que conforman la red, de tal suerte que
la variabilidad en los valores de la N PE es tinicamente ocasionada por efectos de finitez
numeérica del experimento. Note que el estado de transiciéon de incoherente a sincronizado
(ilustrado para A = 0.50 en la la Figura 5.9[b]), se distingue claramente la red Aleato-
ria (simbolos marrones) respecto de las redes Erdos-Rényi (simbolos verdes) y Scale-Free
(simbolos azules). Observe ademés que para este valor de acoplamiento las redes tipo
Erdos-Rényi y Scale-Free han empezado a sincronizarse (como se muestra en los paneles
[a] y [b] de la Figura 5.6), por lo que no es posible distinguirlas para todo el espectro de
filtracion. En estado sincronizado (A = 1.50), todas las redes se vuelven indistinguibles a
valores de filtracion bajos, lo cual es consistente, puesto que una vez la red se ha sincroni-
zado se minimiza la evolucion detallada de los osciladores a baja escala de los datos y en
consecuencia de ello, para valores de filtracion altos la red Aleatoria es ligeramente distinta
de las redes Erdos-Rényi y Scale-Free, puesto que la red Aleatoria no esta completamente
sincronizada.
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Figura 5.9: NPE de tridangulos vs pardmetro de filtraciéon. Los simbolos representan la
N PE promedio de Hj para las redes simuladas de Kuramoto con conectividad tipo Erdos-
Rényi (simbolos verdes), Scale-Free (simbolos azules) y Aleatoria (simbolos marrones) en
estado incoherente o asincrono (panel [a], A = 0.00), de transicion (panel [b], A = 0.50) y
sincronizado (panel [c], A = 1.50). Las barras verticales representan la desviacion estandar
calculada sobre 10 triangulos y 10 realizaciones independientes variando las frecuencias
iniciales del modelo.

Con base en lo anterior, los resultados sugieren que la estructura de conectividad de la
red influencia la “rapidez” a la que se sincroniza el sistema, siendo mas rapida la transicion
en redes tipo Scale-Free que en la red tipo Erdos-Rényi y en esta tultima la transicion es
mas rapida comparada con la red Aleatoria. Estos resultados concuerdan con lo sugerido
en [26] sobre el efecto de la conectividad de la red con la trayectoria de transicion de
estados asincronos a sincronizados.

5.2.3. Distinguiendo Triangulos de Tripletas

Por otra parte, a fin de corroborar que realmente la informacién proporcionada al ana-
lizar el sistema a triadas cerradas (tridngulos) es mas informativa que la proporcionada
por tres nodos no adyacentes entre si y que tampoco hacen parte de un triangulo (triple-
tas), comparamos los resultados obtenidos con la N PFE para cada una de estas estructuras
de interaccion directa. Los resultados se presentan en la Figura 5.10, usando la red tipo
Scale-Free (paneles [a]-[c]) como caso representativo de las redes simuladas y la red expe-
rimental (paneles [d]-[e]) en estados asincrono (columna de la izquierda) a acoplamiento
A = 0.00 (k = 0.00), de transicion (columna central) a acoplamiento A = 0.25 (k = 0.10), y
sincronizado (columna de la derecha) a acoplamiento A = 1.50 (x = 0.50), respectivamente.

Observarse que para para todos los casos, la NPFE de tridngulos captura informacion
a escala de los datos méas bajas (la curva de NPE de triangulos representada con sim-
bolos verdes inicia a valores méas bajos comparado con la de tripletas representada con
simbolos negros). Note que para el estado desacoplado de la red (A = 0.00 y « = 0.00,
respectivamente) tanto la red Scale-Free (Figura 5.10[a]) como para la red experimental
(Figura 5.10[d]) no hay diferencias distinguibles de la NPFE en el espectro de filtracion,
lo cual es de esperarse por la evolucion individual de los osciladores en este estado. Sin
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embargo, cuando la red estd parcialmente sincronizada (A = 0.25 y k£ = 0.10, respectiva-
mente), tanto en la red Scale-Free (Figura 5.10[b]) como en la red experimental (Figura
5.10[e]) se observan diferencias entre triangulos y tripletas. Esta distinguibilidad se pierde
cuando la red se sincroniza (A = 1.50 y x = 0.50, respectivamente), como se ilustra para
la tipo red Scale-Free (Figura 5.10|c|) donde las curvas se superponen, o en el caso de la
red experimental (Figura 5.10[f]), donde las diferencias son minimas.
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Figura 5.10: NPFE de tridangulos y tripletas vs pardametro de filtracion. Los simbolos (verde
para tridngulos y negro para tripletas, respectivamente) representan la N PFE promedio de
H,, en tanto que las barras verticales representan la desviacion estandar, calculada sobre 10
elementos (tridngulos o tripletas, segtn sea el caso) y para 10 realizaciones independientes
cambiando las frecuencias iniciales del modelo para el caso de la red tipo Scale-Free (fila
superior) y sobre 5 elementos para en caso de la red experimental (fila inferior) a estados
asincrono (panel [a], A\ = 0.00, y panel [d], x = 0.00 para Scale-Free y Experimental,
respectivamente), de transicion (panel [b], A = 0.25, y panel [e], k = 0.10 para Scale-Free
y Experimental, respectivamente) y sincronizado (panel [c|, A = 1.50, y panel [e|, k = 0.50
para Scale-Free y Experimental, respectivamente).

Con la intenciéon de corroborar la posibilidad de distinguir entre la dimensionalidad
de la interaccion de los nodos, para el conjunto de datos experimentales, comparamos la
NPE de enlaces, bipletas (dos osciladores que no son adyacentes entre si) tridngulos y
tripletas. Los resultados son presentados en la Figura 5.11.

Puede observarse que también para este conjunto de datos no es posible dinstinguir de
manera clara si la interaccion diadica (5.11[a]) ocurre entre nodos que no son adyacentes
(bipletas, representadas con simbolos huecos de con color rojo) o si los nodos/osciladores
son adyacentes (enlaces, representadas con simbolos solidos de con color azul). Mientras
que cuando el analisis es realizado a triadas (5.11[b]), si es posible distinguir cuando estas
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Figura 5.11: NPE de enlaces, bipletas, triangulos y tripletas vs acoplamiento. Los simbo-
los representan la N PFE promedio para Hy, las barras verticales representan la desviacion
estandar, calculados sobre 5 elementos para enlaces y bipletas (panel [a], simbolos azules
y rojos, respectivamente), y triangulos y tripletas (el panel [b|, simbolos verdes para trian-
gulos y negros para tripletas, respectivamente), para la red Experimental.

no son cerradas (tripletas, representadas con simbolos de triangulos huecos de color negro)
a cuando los nodos que conforman la triada si son adyacentes (tridngulos, representados con
simbolos de tridngulos sélidos de color verde). Note que, como es de esperarse, cuando la
red esté en estado asincrono (k = 0.00), tanto en las interacciones diadicas como a triadas
no existen diferencias en los valores de la NPE. Sin embargo, cuando los osciladores
empiezan a retroalimentarse (k > 0), la NPFE es capaz de distinguir claramente entre
tridangulos y tripletas, lo cual no ocurre para enlaces y bipletas, corroborando que el analisis
tridimensional, ademéas de detectar de forma robusta la transiciéon de un estado asincrono
a estado sincronizado, es capaz de disntinguir entre la conectividad de la estructura local.
Vale la pena mencionar que los resultados descritos en esta seccion, obtenidos al aplicar
nuestra estrategia de anélisis fueron publicados en Scientific Reports. El lector puede
consultar los detalles de esta publicacion en la referencia [131].



Capitulo 6
CONCLUSIONES Y PERSPECTIVAS

En este trabajo adaptamos el concepto de entropia de persistencia y formulamos la
entropia de persistencia normalizada, N PE, para caracterizar el fenémeno de sincroniza-
cion en redes de osciladores acoplados con dindamicas de tipo Kuramoto (simuladas nu-
méricamente, para redes con estructura de conectividad tipo Erdos-Rényi, Scale-Free y
Aleatoria), y Rossler (datos experimentales reproducidos por [107]), al cuantificar la in-
certidumbre promedio de tiempos de vida de los diagramas de persistencia en grupos de
homologia de dimension cero, Hy, uno, H; tanto en interacciones a pares (bidimensionales)
como a triadas (tridimensionales), consiguiendo identificar y distinguir estados asincrono,
de transiciéon o sincronizado en que se encuentra el sistema cuando se estudia el estado de
sincronizacion del sistema (red) como funcion del parametro de filtracion.

Los resultados obtenidos muestran que la informacién proporcionada por la NPE a
diferentes escalas de los datos recuperada a diferentes valores de filtraciéon permite carac-
terizar de forma robusta el sistema, toda vez que captura informacién a micro, meso y
macro escalas de las senales, y sugieren ademés que la estructura de conectividad global
de la red condiciona la “rapidez” de transiciéon de estado asincrono a estado sincronizado al
notar que en redes con estructuras de conectividad aleatorias la transicién es méas “lenta”
que en aquellas con conectividad global definidas como Erdés Rényi y Scale-Free.

Los triangulos, estructuras de conectividad local compuestas por tres nodos adyacentes
en la conectividad global de la red, aportan informaciéon consistente para caracterizar el
estado de sincronizacion de sistemas con dindmica y tipo de red analizadas (Kuramoto
[Erdés-Reényi, Scale-Free y Aleatoria| y Rossler [experimental]). Para este tipo de redes,
nuestra aproximacion proporciona mayor informaciéon comparada con métricas clasicas
como el phase locking value y el parametro de orden. Adicionalmente, la informacién
obtenida al analizar estas estructuras locales (tridngulos) en la conectividad de la red no
es posible obtenerla de estructuras tales como tripletas (tres osciladores no adyacentes
ni formando parte de un triangulo), enlaces (dos osciladores adyacentes) o bipletas (dos
nodos no adyacentes y que no hacen parte de un tridangulo). Asi, el espectro de filtracion
de la NPFE de triangulos, es decir, la NPE como funciéon del parametro de filtracion,
es una herramienta que permite caracterizar de manera robusta y efectiva el estado de
sincronizacion las redes analizadas, con gran potencial de aplicabilidad a sistemas cuyo
proceso de anélisis se asemeje a los aqui estudiados.
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Una de las limitaciones en aplicar estrategias de analisis de datos basados en homo-
logia persistente es el costo computacional. Pese a los esfuerzos que hicimos en reducir
el tiempo de calculo al umbralizar adaptativamente el valor maximo de enlace que usa el
algoritmo de Gudhi para generar el complejo simplicial a un valor 6ptimo para nuestro
caso de estudio, los tiempos de calculos aumentan con la cantidad de puntos y la dimen-
sionalidad de la nube de puntos, de tal manera que este fue un factor que, por cuestiones
de tiempo dentro del proyecto doctoral, limité extender nuestros experimentos a sistemas
con otro tipo de dinamica, dejando abiertas algunas preguntas interesantes como jes po-
sible inferir la estructura de conectividad de una red usando homologia persistente?, o
ien redes densamente conectadas donde se forman estructuras de conectividad local de
mayor orden como tetraedros, pentaedros y de mayor dimension, tales estructuras locales
también son capaces de extraer “informacion privilegiada” de la red?, siendo estos algunos
de los horizontes que en investigaciones futuras exploraremos, para lo cual existen con-
juntos de datos experimentales tales como los reportados por [106], quienes reprodujeron
experimentos con osciladores de Rossler en estado cadtico usando circuitos eléctricos para
una variedad de estructuras de conectividad de redes reales; asi como algunos conjuntos
de datos generados particularmente en contexto simplicial y de sincronizacion como los
reportados en las referencias [132, 133], los cuales seran de ayuda para responder lagunas
de estas preguntas. Adicionalmente, como perspectivas futuras es de interés explorar el
analisis de sincronizacion usando homologia simplicial en sistemas biolégicos, climéticos y
financieros, configurados como red compleja, combinando las ideas aqui desarrolladas con
diversas estrategias y propuestas en la comunidad investigadora de este fenémeno.

En resumen, en este trabajo:

B Se sentaron bases para identificar y cuantificar sincronizacion en redes de osciladores
de Kuramoto acoplados como punto de partida para el estudio de este fendémeno en
sistemas complejos usando homologia persistente como herramienta.

B En los experimentos teéricos reproducidos mediante simulaciones numéricas, las ca-
racteristicas de redes fueron elegidas de tal forma que este tipo de estudios sean
reproducibles y replicables en sistemas similares.

B Con base en los fundamentos tedricos, se identificaron parametros computacionales
relevantes, a fin de que estos puedan ser optimizados segtin sea el caso de aplicabi-
lidad, para disminuir el costo de computo, que como instancia final implica menos
gasto energético, siendo esto un aporte de mitigacién al cambio climético.


https://gudhi.inria.fr/python/latest/simplex_tree_ref.html

Capitulo 7

REFERENCIAS

1]
2l
3]

4]

[5]
(6]

17l

8]

9]
[10]
11)
12]

[13]

J. Ladyman, J. Lambert y K. Wiesner. «What is a complex system?» En: Eur.
Jour. Phil. Sci. 3 (2013). pOL: 10.1007 /s13194-012-0056-8.

J. Newman. «Resource Letter CS—1: Complex Systems». En: Amer. Jour. Phys.
79.8 (2011). poL: 10.1119/1.3590372.

Y. Liuy A. Barabasi. «Control principles of complex systemsy». En: Rev. Mod. Phys.
88 (2016). poI: 10.1103/RevModPhys.88.035006.

A. Zeng, S. Shen, Z. Zhou, J. Wu, Y. Fan, Y. Wang y H. Stanley. «The science of
science: From the perspective of complex systems». En: Phys. Rep. 714-715 (2017).
DOI: 10.1016/j.physrep.2017.10.001.

R. Albert y A. Barabasi. «Statistical mechanics of complex networks». En: Reuv.
Mod. Phys. 74 (2002). porL: 10.1103/RevModPhys. 74.47.

J. Newman. «The Structure and Function of Complex Networks». En: SIAM 45.2
(2003). DOT: 10.1137/5003614450342480.

S. Boccaletti, V. Latora, Y. Moreno, M. Chavez y D.-U. Hwang. «Complex net-
works: Structure and dynamics». En: Phys. Rep. 424.4 (2006). DOIL: 10.1016/j.
physrep.2005.10.009.

P. Erdos y A. Rényi. «On random graphs». En: Pub. Math. 6 (1959). DOI: 10.5486%
2FPMD.1959.6.3-4.12.

D. Watts y S. Strogatz. «Collective dynamics of ‘small-world networks». En: nature
393.6684 (1998). DOIL: 10.1038,30018.

M Newman, A. Barabasi y D. Watts. The Structure and Dynamics of Networks.
Princeton University Press, 2006. DOT: 10.1515/9781400841356.

R. Albert, H. Jeong y A. Barabési. «Diameter of the world-wide web». En: nature
401.6749 (1999). Do1: 10.1038/43601.

A. Barabasi, E. Ravasz y T. Vicsek. «Deterministic scale-free networks». En: Phy-
sica A 299.3 (2001). por: 10.1016/S0378-4371(01)00369-7.

R. Albert. «Scale-free networks in cell biology». En: Jour. Cell Sci. 118.21 (2005).
DOI: 10.1242/jcs.02714.

67


https://doi.org/10.1007/s13194-012-0056-8
https://doi.org/10.1119/1.3590372
https://doi.org/10.1103/RevModPhys.88.035006
https://doi.org/10.1016/j.physrep.2017.10.001
https://doi.org/10.1103/RevModPhys.74.47
https://doi.org/10.1137/S003614450342480
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.5486%2FPMD.1959.6.3-4.12
https://doi.org/10.5486%2FPMD.1959.6.3-4.12
https://doi.org/10.1038/30918
https://doi.org/10.1515/9781400841356
https://doi.org/10.1038/43601
https://doi.org/10.1016/S0378-4371(01)00369-7
https://doi.org/10.1242/jcs.02714

CAPITULO 7. REFERENCIAS 68

[14]

[15]

[16]

[17]

[18]
[19]
[20]

21

[22]
23]
[24]

[25]

[26]

[27]

28

29]

A. Barabasi. «Scale-Free Networks: A Decade and Beyond». En: Science 325.5939
(2009). DOTL: 10.1126 /science.1173299.

J. Esquivel-Gomez, E. Stevens-Navarro, U. Pineda-Rico y J. Acosta-Elias. «A growth
model for directed complex networks with power-law shape in the out-degree dis-
tribution». En: Sci. Rep. 5.1 (2015). DOIL: 10.1038/srep07670.

A. Broido y A. Clauset. «Scale-free networks are rare». En: Nat. comm. 10.1 (2019).
DOI: 10.1038/s41467-019-08746-5.

X. Zhang, Z. He, L. Zhang, L. Rayman-Bacchus, S. Shen e Y. Xiao. «The Analysis
of the Power Law Feature in Complex Networks». En: Entropy 24.11 (2022). DOL:
10.3390/e24111561.

X. Meng y B. Zhou. «Scale-free networks beyond power-law degree distribution».
En: Chaos 176 (2023). DoIL: 10.1016/j.chaos.2023.114173.

J. Guillaume y M. Latapy. «Bipartite graphs as models of complex networks». En:
Physica A 371.2 (2006). DOIL: 10.1016/j.physa.2006.04.047.

P. Holme y J. Saraméki. «Temporal networks». En: Phys. Rep. 519.3 (2012). DOI:
10.1016/j.physrep.2012.03.001.

M. De Domenico, A. Solé-Ribalta, E. Cozzo, M. Kiveléd, Y. Moreno, M. A. Porter,
S. Gomez y A. Arenas. «Mathematical Formulation of Multilayer Networks». En:
Phys. Rev. X 3 (4 2013). DOI: 10.1103/PhysRevX.3.041022.

F. Battiston, V. Nicosia y V. Latora. «Structural measures for multiplex networks».
En: Phys. Rev. E 89 (3 2014). pOI: 10.1103/PhysRevE.89.032804.

A. Pikovsky, M. Rosenblum y J. Kurths. Synchronization: A Universal Concept in
Nonlinear Sciences. Cambridge University Press, 2003. I1SBN: 9780521533522.

S. Strogatz. Sync: The Emerging Science of Spontaneous Order. Hyperion Press,
2003. 1SBN: 0786868449.

R. Fisher, W. Boas, W. Blume, C. Elger, P. Genton, P. Lee y Engel J. «Epileptic
Seizures and Epilepsy: Definitions Proposed by the International League Against
Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)». En: Epilepsia
46.4 (2005). DOI: 10.1111/5.0013-9580.2005.66104 x.

A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno y C. Zhou. <<Synchronization in
complex networks». En: Phys. Rep. 469.3 (2008). DOI: 10.1016/].physrep.2008.09.
002.

A. Winfree. «Biological rhythms and the behavior of populations of coupled osci-
latorsy. En: Jour. of Theo. Biol. 16.1 (1967). DOIL: 10.1016,/0022-5193(67)90051-3

Y. Kuramoto. «Self-entrainment of a population of coupled non-linear oscillators».
En: International Symposium on Mathematical Problems in Theoretical Physics.
Ed. por Huzihiro Araki. Springer, 1975. DOI: 10.1007/BEFb0013365.

M. Rosenblum, A. Pikovsky y J. Kurths. «Phase Synchronization of Chaotic Osci-
latorsy. En: Phys. Rev. Lett. 11 (1996).


https://doi.org/10.1126/science.1173299
https://doi.org/10.1038/srep07670
https://doi.org/10.1038/s41467-019-08746-5
https://doi.org/10.3390/e24111561
https://doi.org/10.1016/j.chaos.2023.114173
https://doi.org/10.1016/j.physa.2006.04.047
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1103/PhysRevX.3.041022
https://doi.org/10.1103/PhysRevE.89.032804
https://doi.org/10.1111/j.0013-9580.2005.66104.x
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/0022-5193(67)90051-3
https://doi.org/10.1007/BFb0013365

CAPITULO 7. REFERENCIAS 69

[30]

[31]

[32]

33
[34]
[35]
[36]

[37]

[38]
[39]
|40]

[41]

[42]

[43]

|44]

M. Rosenblum y J. Kurths. «Analysing Synchronization Phenomena from Bivariate
Data by Means of the Hilbert Transform». En: Nonl. Anal. of Phys. Data. Springer,
1998. DOI: 10.1007/978-3-642-71949-3 6.

M. Rosenblum, A. Pikovsky, J. Kurths, C. Schafer y P. Tass. «Chapter 9 Phase
synchronization: From theory to data analysis». En: Neuro-Informatics and Neural
Modelling. Ed. por F. Moss y S. Gielen. Vol. 4. Handbook of Biological Physics.
North-Holland, 2001. pot1: 10.1016,/51383-8121(01)80012-9.

J. Acebron, L. Bonilla, C. Pérez-Vicente, F. Ritort y R. Spigler. «The Kuramoto
model: A simple paradigm for synchronization phenomena». En: Rev. Mod. Phys.
77 (2005). DOTL: https://10.1103/RevModPhys.77.137.

G. Carlsson. «Topology and datay. En: Bull. Amer. Math. Soc. 46.42 (2009). DOI:
10.1090/S0273-0979-09-01249-X.

A. Zomorodian. «Topological Data Analysis». En: Adv. Appl. Comp. Top. 70 (2012).
DOI: 10.1090/psapm /070.

L. Wasserman. «Topological Data Analysis». En: Ann. Rev. Stat. Appl. 5.1 (2018).
DOI: 10.1146 /annurev-statistics-031017-100045.

H. Edelsbrunner, D. Letscher y A. Zomorodian. «Topological Persistence and Sim-
plification». En: Disc. Comput. Geom. 28 (2002). DOIL: 10.1007 /s00454-002-2885-2.

A. Zomorodian y G. Carlsson. «Computing persistent homology». En: Proceedings
of the Twentieth Annual Symposium on Computational Geometry. Association for
Computing Machinery, 2004. DoI: 10.1145/997817.997870.

G. Carlsson, A. Zomorodian, A. Collins y L. Guibas. «Persistence barcodes for
shapes». En: Int. Jour. Shape Mod. 11.02 (2005). DOIL: 10.1142/50218654305000761.

H. Edelsbrunner y J. Harer. «Persistent homology-a survey». En: European Con-
gress of Mathematics. Vol. 453. 26. 2008. DOI: 10.1090 /conm /453 /08802.

H. Edelsbrunner y D. Morozov. «Persistent homology: theory and practice». En:
California Digital Library (2013). DOL: 10.4171/120.

F. Takens. «Detecting strange attractors in turbulence». En: Dynamical Systems
and Turbulence, Warwick 1980. Ed. por D. Rand y L. Young. Springer, 1981. DOI:
doi.org/10.1007/BFb0091924.

E. Edelsbrunner y J. Harer. Computational topology: an introduction. QA3-611-
E353. American Mathematical Society, 2010. 1SBN: 978-0-8218-4925-5.

F. Chazal y B. Michel. «An Introduction to Topological Data Analysis: Fundamen-
tal and Practical Aspects for Data Scientistsy. En: Front. in Art. Intel. 4 (2021).
DOI: 10.3389/frai.2021.667963.

C. Shannon. «A mathematical theory of communication». En: The Bell system
technical journal 27.3 (1948). DOIL: 10.1002/j.1538-7305.1948.th01338.x.


https://doi.org/10.1007/978-3-642-71949-3_6
https://doi.org/10.1016/S1383-8121(01)80012-9
https://doi.org/https://10.1103/RevModPhys.77.137
https://doi.org/10.1090/S0273-0979-09-01249-X
https://doi.org/10.1090/psapm/070
https://doi.org/10.1146/annurev-statistics-031017-100045
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1145/997817.997870
https://doi.org/10.1142/S0218654305000761
https://doi.org/10.1090/conm/453/08802
https://doi.org/10.4171/120
https://doi.org/doi.org/10.1007/BFb0091924
https://doi.org/10.3389/frai.2021.667963
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

CAPITULO 7. REFERENCIAS 70

[45]

|46]
[47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

M. Rucco, F. Castiglione, E. Merelli y M. Pettini. «Characterisation of the idiotypic
immune network through persistent entropy». En: European Conference on Com-
plex Systems (ECCS14). Proceedings of ECCS 2014. Sep. de 2014. por: 10.1007
978-3-319-29228-1\ 11.

V. De Silva y R. Ghrist. «Coverage in sensor networks via persistent homology».
En: Algebraic and Geometric Topology 7.1 (2007). DOL: 10.2140/agt.2007.7.339.

G. Davila, A. Morante y J. Vallejo. Synchronization of dynamical systems: an ap-
proach using a Computer Algebra System. 2018. DOT: 10.48550 /arXiv.1809.05271.

K. Xia y G. Wei. «Persistent homology analysis of protein structure, flexibility, and
foldingy. En: Int. Jour. for Num. Meth. in Biom. Eng. 30.8 (2014). DOIL: 10.1002
cnm.2655.

O. Vipond, j. Bull, P. Macklin, U. Tillmann, C. Pugh, H. Byrne y Harrington
H. «Multiparameter persistent homology landscapes identify immune cell spatial
patterns in tumorsy». En: Proc. of the Nat. Acad. of Sci. 118.41 (2021). pOI: 10.
1073 /pnas.2102166118.

Y. Chung, C. Hu, Y. Lo y H. Wu. «A Persistent Homology Approach to Heart Rate

Variability Analysis With an Application to Sleep-Wake Classification». En: Fron.
in Phys. 12 (2021). DOI: 10.3389/fphys.2021.637684.
A. Bois, B. Tervil, A. Moreau, A. Vienne-Jumeau, D. Ricard y L. Oudre. «A topolo-

gical data analysis-based method for gait signals with an application to the study of
multiple sclerosis». En: PLoS ONFE 17.5 (2022). DOI: 10.1371/journal.pone.0268475.

A. Lombardi, N. Amoroso, D. Diacono, A. Monaco, S. Tangaro y R. Bellotti. «In-
dividual Topological Analysis of Synchronization-Based Brain Connectivity». En:
Appl. Sci. 10.9 (2020). DOIL: 10.3390/app10093275.

I. Donato, M. Gori, M. Pettini, G. Petri, S. De Nigris, R. Franzosi y F. Vaccarino.
«Persistent homology analysis of phase transitions». En: Phys. Rev. E 93 (5 2016).
DOI: 10.1103/PhysRevE.93.052138.

D. Leykam y D. Angelakis. «Photonic band structure design using persistent ho-
mology». En: APL Photonics 6.3 (2021). DOIL: 10.1063/5.0041084.

K. Mittal y S. Gupta. «Topological characterization and early detection of bifur-
cations and chaos in complex systems using persistent homology». En: Chaos 27.5
(2017). DOL: 10.1063/1.4983840.

H. Morita, M. Inatsu y H. Kokubu. «Topological Computation Analysis of Meteo-
rological Time-Series Datay. En: STAM 18.2 (2019). DOIL: 10.1137/18M1184746.

S. Musa, S. Sadiq, M. Mohd, A. Fatimah, I. Munira, M. Alias y S. Hussain. «Using
persistent homology as preprocessing of early warning signals for critical transition
in flood». En: Sci. Rep. 11.1 (2021). DOI: 10.1038/s41598-021-86739-5.

B. Stolz, H. Harrington y M. Porter. «Persistent homology of time-dependent fun-
ctional networks constructed from coupled time series». En: Chaos 27.4 (2017).
DOI: 10.1063,/1.4978997.


https://doi.org/10.1007/978-3-319-29228-1\_11
https://doi.org/10.1007/978-3-319-29228-1\_11
https://doi.org/10.2140/agt.2007.7.339
https://doi.org/10.48550/arXiv.1809.05271
https://doi.org/10.1002/cnm.2655
https://doi.org/10.1002/cnm.2655
https://doi.org/10.1073/pnas.2102166118
https://doi.org/10.1073/pnas.2102166118
https://doi.org/10.3389/fphys.2021.637684
https://doi.org/10.1371/journal.pone.0268475
https://doi.org/10.3390/app10093275
https://doi.org/10.1103/PhysRevE.93.052138
https://doi.org/10.1063/5.0041084
https://doi.org/10.1063/1.4983840
https://doi.org/10.1137/18M1184746
https://doi.org/10.1038/s41598-021-86739-5
https://doi.org/10.1063/1.4978997

CAPITULO 7. REFERENCIAS 71

[59]
[60]
[61]

[62]

|63]
[64]
[65]

[66]

[67]

[68]

[69]
[70]
[71]

72|

(73]

[74]

c. Pereira y R. de Mello. «Persistent homology for time series and spatial data
clustering». En: Fzp. Sys. with Appl. 42.15 (2015). DOL: 10.1016/j.eswa.2015.04.010.

A. Dunton. «Topological Data Analysis for Systems of Coupled Oscillatorsy. Tesis
doct. Claremont: Harvey Mudd College, 2016.

H. Seifert y W. Threlfall. A textbook of topology. British Library Cataloguing-in-
Publication Data. Academic Press, 1980. 1SBN: 0-12-634850-2.

J. Munkres. Elements of algebraic topology. Second. Library of Congress Catalo-
guing in Publication Data. Addison-Wesley Publishing Company, 1984. 1SBN: 0-
201-04586-9.

I. James. Handbook of Algebraic Topology. Elsevier, 1995. DOI: 10.1016 /B978-0-
444-81779-2.X5000-7.

J. Munkres. Topology. Second. British Library Cataloguing-in-Publication Data.
Pearson Education Limited, 2014. 1SBN: 1-292-02362-7.

T. Dey e Y. Wang. Computational Topology for Data Analysis. Cambridge Univer-
sity Press, 2022. por: 10.1017/9781009099950.

F. Chazal, B. Fasy, F. Lecci, A. Rinaldo y L. Wasserman. «Stochastic Convergence
of Persistence Landscapes and Silhouettesy. En: Proceedings of the Thirtieth Annual
Symposium on Computational Geometry. Association for Computing Machinery,
2014. DOI: 10.1145/2582112.2582128.

P. Bubenik y P. Dlotko. «A persistence landscapes toolbox for topological statis-
ticsy». En: Journal of Symbolic Computation 78 (2017). DOL: 10.1016/j.js¢.2016.03.
009.

P. Bubenik. «The Persistence Landscape and Some of Its Propertiesy. En: Topolo-
gical Data Analysis. Springer International Publishing, 2020. por: 10.1007/978-3-
030-43408-3 4.

N. Ravishanker y R. Chen. «An introduction to persistent homology for time se-
ries». En: Wiley Interdisciplinary Reviews: Computational Statistics 13.3 (2021).

P. Bubenik y P. Kim. «A statistical approach to persistent homology». En: Homo-
logy, Homotopy and Applications 9.2 (2007).

M. Kerber. «Persistent homology: state of the art and challenges». En: International
Mathematische Nachrichten 231.15-33 (2016).

Y. Singh, C. Farrelly, Q. Hathaway, T. Leiner, J. Jagtap, G. Carlsson y B. Erickson.
«Topological data analysis in medical imaging: current state of the art». En: Insights
into Imaging 14.1 (2023). DOL: 10.1186/513244-023-01413-w.

M. Uray, B. Giunti, M. Kerber y S. Huber. «Topological Data Analysis in smart
manufacturing: State of the art and future directionsy». En: Jour. of Manuf. Sys.
76 (2024). DOL: 10.1016/j.jmsy.2024.07.006.

H. Chintakunta, T. Gentimis, R. Gonzalez-Diaz, M. Jimenez y H. Krim. «An
entropy-based persistence barcode». En: Patt. Recog. 48.2 (2015). DOIL: 10.1016/].
patcog.2014.06.023.


https://doi.org/10.1016/j.eswa.2015.04.010
https://doi.org/10.1016/B978-0-444-81779-2.X5000-7
https://doi.org/10.1016/B978-0-444-81779-2.X5000-7
https://doi.org/10.1017/9781009099950
https://doi.org/10.1145/2582112.2582128
https://doi.org/10.1016/j.jsc.2016.03.009
https://doi.org/10.1016/j.jsc.2016.03.009
https://doi.org/10.1007/978-3-030-43408-3_4
https://doi.org/10.1007/978-3-030-43408-3_4
https://doi.org/10.1186/s13244-023-01413-w
https://doi.org/10.1016/j.jmsy.2024.07.006
https://doi.org/10.1016/j.patcog.2014.06.023
https://doi.org/10.1016/j.patcog.2014.06.023

CAPITULO 7. REFERENCIAS 72

[75]

|76]

[77]
78]
[79]
[30]

[81]

[82]
[83]

[84]

[85]

[36]

[87]

33

[89]

B. Fasy, F. Lecci, A. Rinaldo, L. Wasserman, S. Balakrishnan y A. Singh. «Con-
fidence sets for persistence diagrams». En: The Ann. of Stat. 42.6 (2014). DOIL:
10.1214/14- AOS1252.

A. J Blumberg, I. Gal, M. A Mandell y M. Pancia. «Robust statistics, hypothesis
testing, and confidence intervals for persistent homology on metric measure spaces».
En: Found. of Comp. Math. 14 (2014). DOI: 10.1007/s10208-014-9201-4.

A. Monod, S. Kalisnik, J. Patino-Galindo y L. Crawford. «Tropical Sufficient Sta-
tistics for Persistent Homology». En: STAM 3.2 (2019). por: 10.1137/17M1148037.

R. Ghrist. «Barcodes: The persistent topology of datay. En: Bull. Amer. Math.
Soc. 45 (2008).

C. Epstein, G. Carlsson y H. Edelsbrunner. «Topological data analysis». En: Inverse
Problems 27.12 (2011). pO™: 10.1088/0266-5611/27,/12/120201.

J. Pereay J. Harer. Sliding Windows and Persistence: An Application of Topological
Methods to Signal Analysis. 2013. DOI: 10.48550/ ARXIV.1307.6188.

n. Atienza, r. Gonzalez-Diaz y M. Soriano-Trigueros. «On the stability of persistent
entropy and new summary functions for topological data analysis». En: Pattern
Recognition 107 (2020). DOI: 10.1016/j.patcog.2020.107509.

S. Maleti¢, Y. Zhao y M. Rajkovi¢. «Persistent topological features of dynamical
systemsy. En: Chaos 26.5 (2016). DOI: 10.1063/1.4949472.

J. Garland, E. Bradley y J. Meiss. «Exploring the topology of dynamical recons-
tructionsy. En: Physica D 334 (2016). DOL: 10.1016/].physd.2016.03.006.

D. Horak, S. Maleti¢ y M. Rajkovié¢. «Persistent homology of complex networks».
En: Jour. of Stat. Mech. 2009.03 (2009). DOIL: https:/ /dx.doi.org/10.1088 /1742-
5468 /2009 /03 /P03034.

A. Myers, E. Munch y F. Khasawneh. «Persistent homology of complex networks for
dynamic state detection». En: Phys. Rev. E 100 (2 2019). por: 10.1103/PhysRevE.
100.022314.

M. Aktas, E. Akbas y A. Fatmaoui. «Persistence homology of networks: methods
and applicationsy. En: Appl. Net. Sci. 4.1 (2019). por: 10.1007 /s41109-019-0179-3.

F. Battiston, A. Barrat, G. Bianconi, G. Ferraz de Arruda, B. Franceschiello, I.
lacopini, S. Kéfi, V. Latora, Y. Moreno, M. Murray, T. Peixoto, F. Vaccarino y G.

Petri. «The physics of higher-order interactions in complex systems». En: Nat.
Phys. 17.10 (2021). DOT: 10.1038/s41567-021-01371-4.

J. Berwald, M. Gidea y M. Vejdemo-Johansson. Automatic recognition and tag-
ging of topologically different regimes in dynamical systems. 2013. DOI: 10.48550
ARXIV.1312.2482.

G. Carlsson. «Topological methods for data modelling». En: Nat. Rev. Phys. 2
(2020). DOI: 10.1038/s42254-020-00249-3.


https://doi.org/10.1214/14-AOS1252
https://doi.org/10.1007/s10208-014-9201-4
https://doi.org/10.1137/17M1148037
https://doi.org/10.1088/0266-5611/27/12/120201
https://doi.org/10.48550/ARXIV.1307.6188
https://doi.org/10.1016/j.patcog.2020.107509
https://doi.org/10.1063/1.4949472
https://doi.org/10.1016/j.physd.2016.03.006
https://doi.org/https://dx.doi.org/10.1088/1742-5468/2009/03/P03034
https://doi.org/https://dx.doi.org/10.1088/1742-5468/2009/03/P03034
https://doi.org/10.1103/PhysRevE.100.022314
https://doi.org/10.1103/PhysRevE.100.022314
https://doi.org/10.1007/s41109-019-0179-3
https://doi.org/10.1038/s41567-021-01371-4
https://doi.org/10.48550/ARXIV.1312.2482
https://doi.org/10.48550/ARXIV.1312.2482
https://doi.org/10.1038/s42254-020-00249-3

CAPITULO 7. REFERENCIAS 73

[90]

91

[92]

93]

194]

[95]
[96]

[97]
(98]

[99]

[100]

[101]
[102]

[103]

[104]

A. Zomorodian y G. Carlsson. «The theory of multidimensional persistence». En:
Proceedings of the twenty-third annual symposium on Computational geometry (2007).
DOI: 10.1145/1247069.1247105.

E. Carlsson, G. Carlsson y V. De Silva. «An algebraic topological method for feature
identificationy. En: Inter. Jour. of Comp. Geom. and Appl. 16.04 (2006). DOI: 10.
1142/5021819590600204X.

P. Christian, C. Chan, A. Hsu, F. Ozel, D. Psaltis e I. Natarajan. «Topological
data analysis of black hole images». En: Phys. Rev. D 106 (2 2022). DOI: 10.1103
PhysRevD.106.023017.

C. Hugenii. «The pendulum clock». En: Trans RJ Blackwell, The Iowa State Uni-
versity Press, Ames (1673). English translation: The Pendulum Clock, Iowa State
University Press, Ames, 1986.

K. Czolczynski, P. Perlikowski, A. Stefanski y T. Kapitaniak. «Clustering and syn-
chronization of n Huygens’ clocks». En: Physica A: Statistical Mechanics and its
Applications 388.24 (2009). DOI: 10.1016/].physa.2009.08.033.

Il. Blekhman. Synchronization in science and technology. ASME press, 1988.

H. Fujisaka y T. Yamada. «Stability Theory of Synchronized Motion in Coupled-
Oscillator Systems:» en: Progress of Theoretical Physics 69.1 (1983). DOI: 10.1143
PTP.69.32.

L. Pecora y T. Carroll. «Synchronization in chaotic systems». En: Phys. Rev. Lett.
64 (8 1990). por: 10.1103/PhysRevLett.64.821.

R. Femat y G. Solis-Perales. «On the chaos synchronization phenomena». En: Phys.
Lett. A 262.1 (1999). por: 10.1016,/50375-9601(99)00667-2.

N. Rulkov, M. Sushchik, L. Tsimring y H. Abarbanel. «Generalized synchronization
of chaos in directionally coupled chaotic systems». En: Phys. Rev. E 51 (2 1995).
DOI: 10.1103/PhysRevE.51.980.

M. Rosenblum, A. Pikovsky y J. Kurths. «From Phase to Lag Synchronization in
Coupled Chaotic Oscillatorsy. En: Phys. Rev. Lett. 78 (22 1997). por: 10.1103
PhysRevLett.78.4193.

C. Li, W. Sun y J. Kurths. «Synchronization between two coupled complex net-
worksy. En: Phys. Rev. E 76 (4 2007). DOIL: 10.1103/PhysRevE.76.046204.

C. Wu. Synchronization in complex networks of nonlinear dynamical systems. World
scientific, 2007.

Y. Tang, Q. Qian, H. Gao y J. Kurths. «Synchronization in complex networks and
its application — A survey of recent advances and challenges». En: Annual Reviews
in Control 38.2 (2014). DOL: 10.1016/j.arcontrol.2014.09.003.

J. Gomez-Gardenes, Y. Moreno y A. Arenas. «Paths to Synchronization on Complex
Networksy. En: Phys. Rev. Lett. 98 (3 2007). DOIL: 10.1103/PhysRevLett.98.034101.


https://doi.org/10.1145/1247069.1247105
https://doi.org/10.1142/S021819590600204X
https://doi.org/10.1142/S021819590600204X
https://doi.org/10.1103/PhysRevD.106.023017
https://doi.org/10.1103/PhysRevD.106.023017
https://doi.org/10.1016/j.physa.2009.08.033
https://doi.org/10.1143/PTP.69.32
https://doi.org/10.1143/PTP.69.32
https://doi.org/10.1103/PhysRevLett.64.821
https://doi.org/10.1016/S0375-9601(99)00667-2
https://doi.org/10.1103/PhysRevE.51.980
https://doi.org/10.1103/PhysRevLett.78.4193
https://doi.org/10.1103/PhysRevLett.78.4193
https://doi.org/10.1103/PhysRevE.76.046204
https://doi.org/10.1016/j.arcontrol.2014.09.003
https://doi.org/10.1103/PhysRevLett.98.034101

CAPITULO 7. REFERENCIAS 74

[105]

[106]

[107]

[108]

109

[110]

[111]
[112]
[113]

[114]

[115]

[116]

[117]

[118]

[119]

O. Rossler. «Chaotic Behavior in Simple Reaction Systems». En: Zeitschrift fir
Naturforschung A 31.3-4 (1976). DOL: doi:10.1515/zna-1976-3-408. URL: 10.1515
zna-1976-3-408.

V. Vera-Avila, R. Sevilla-Escoboza, A. Lozano-Sanchez, R. Rivera-Durén y J. Bul-
du. «Experimental datasets of networks of nonlinear oscillators: Structure and dy-
namics during the path to synchronization». En: Data in Brief 28 (2020). DOI:
10.1016/j.dib.2019.105012.

R. Sevilla-Escoboza y J. Buldi. «Synchronization of networks of chaotic oscillators:
Structural and dynamical datasets». En: Data in Brief 7 (2016). bot: 10.1016/].
dib.2016.03.097.

E. Forero-Ortiz, G. Tirabassi, C. Masoller y A. Pons. «Inferring the connectivity of

coupled chaotic oscillators using Kalman filtering». En: Sci. Rep. 11.1 (2021). DOI:
10.1038/s41598-021-01444-7.

J. Almendral, I. Leyva e I. Sendina-Nadal. «Unveiling the Connectivity of Complex
Networks Using Ordinal Transition Methods». En: Entropy 25.7 (2023). DOI: 10.
3390/e25071079.

R. Aristides, H. Cerdeira, C. Masoller y G. Tirabassi. «Inferring the connectivity
of coupled oscillators from event timing analysis». En: Chaos, Sol. and Frac. 182
(2024). po1: 10.1016/j.chaos.2024.114837.

F. Rodrigues, T. Peron, P. Ji y J. Kurths. «The Kuramoto model in complex
networksy. En: Phys. Rep. 610 (2016). DOI: 10.1016/].physrep.2015.10.008.

Y. Kuramoto. «Chemical Turbulence». En: Chem. Osc., Wav., and Turb. Springer,
1984. port: 10.1007/978-3-642-69689-3 7.

Florian Dorfler y Francesco Bullo. «On the Critical Coupling for Kuramoto Osci-
latorsy. En: SIAM 10.3 (2011). por: 10.1137/10081530X.

J. Lachaux, E. Rodriguez, J. Martinerie y F. Varela. «Measuring phase synchrony
in brain signals». En: Hum. Bra. Mapp. 8.4 (1999). por: 10.1002 / (SICT) 1097~
0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C.

G. Cui, X. Li y H. Touyama. «Emotion recognition based on group phase locking
value using convolutional neural network». En: Sci. Rep. 13.1 (2023). DO1: 10.1038
s41598-023-30458-6.

A. Kraskov, H. Stogbauer y P. Grassberger. «Estimating mutual information». En:
Phys. Rev. E 69 (6 2004). DOL: 10.1103/PhysRevE.69.066138.

F. Mormann, K. Lehnertz, P. David y C. Elger. «Mean phase coherence as a measure
for phase synchronization and its application to the EEG of epilepsy patients». En:
Physica D 144.3 (2000). pot: 10.1016,/S0167-2789(00)00087-7.

E. Ott. «Strange attractors and chaotic motions of dynamical systems». En: Reuv.
Mod. Phys. 53 (4 1981). DOI: 10.1103/RevModPhys.53.655.

J. de Pedro-Carracedo, D. Fuentes-Jimenez, A. Ugena y A. Gonzalez-Marcos. «Pha-
se Space Reconstruction from a Biological Time Series: A Photoplethysmographic
Signal Case Study». En: Appl. Sci. 10.4 (2020). DOI: 10.3390/ app10041430.


https://doi.org/doi:10.1515/zna-1976-3-408
10.1515/zna-1976-3-408
10.1515/zna-1976-3-408
https://doi.org/10.1016/j.dib.2019.105012
https://doi.org/10.1016/j.dib.2016.03.097
https://doi.org/10.1016/j.dib.2016.03.097
https://doi.org/10.1038/s41598-021-01444-7
https://doi.org/10.3390/e25071079
https://doi.org/10.3390/e25071079
https://doi.org/10.1016/j.chaos.2024.114837
https://doi.org/10.1016/j.physrep.2015.10.008
https://doi.org/10.1007/978-3-642-69689-3_7
https://doi.org/10.1137/10081530X
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
https://doi.org/10.1038/s41598-023-30458-6
https://doi.org/10.1038/s41598-023-30458-6
https://doi.org/10.1103/PhysRevE.69.066138
https://doi.org/10.1016/S0167-2789(00)00087-7
https://doi.org/10.1103/RevModPhys.53.655
https://doi.org/10.3390/app10041430

CAPITULO 7. REFERENCIAS 75

[120]

[121]

122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

D. A Najera-Flores y M. Todd. «State-space reconstruction from partial observables
using an invertible neural network with structure-preserving properties for nonlinear
structural dynamics». En: Nonl. Dyn. 112.20 (2024). po1: 10.1007 /s11071-024-
09642-4.

M. Kennel, R. Brown y H. Abarbanel. «Determining embedding dimension for
phase-space reconstruction using a geometrical construction». En: Phys. Rev. A 45
(6 1992). por: 10.1103/PhysRevA.45.3403.

L. Cao. «Practical method for determining the minimum embedding dimension of a
scalar time series». En: Physica D 110.1 (1997). DoOI: 10.1016,/50167-2789(97)001 18-
8.

H. Zhu y J. Huang. «A New Method for Determining the Embedding Dimension of

Financial Time Series Based on Manhattan Distance and Recurrence Quantification
Analysis». En: Entropy 24.9 (2022). DOIL: 10.3390/¢24091298.

A. Albano, A. Passamante y M. Farrell. «Using higher-order correlations to define
an embedding window». En: Physica D 54.1 (1991). Do1: 10.1016,/0167-2789(91)
90110-U.

A. Fraser y H. Swinney. «Independent coordinates for strange attractors from mu-
tual information». En: Phys. Rev. A 33 (2 1986). DOI: doi.org/10.1103/PhysRevA.
33.1134.

D. Kugiumtzis. «State space reconstruction parameters in the analysis of chaotic
time series — the role of the time window length». En: Physica D 95.1 (1996). DOL:
10.1016/0167-2789(96)00054-1.

L. Guzman-Vargas, A. Zabaleta-Ortega y A. Guzman-Saenz. «Simplicial complex
entropy for time series analysisy. En: Sci. Rep. 13 (1 2023). DOI: 10.1038/s41598-
023-49958-6.

D. Loiseaux, M. Carriére y A. Blumberg. «A Framework for Fast and Stable Repre-
sentations of Multiparameter Persistent Homology Decompositionsy. En: Advances
in Neural Information Processing Systems. Ed. por A. Oh, T. Naumann, A. Glo-
berson, K. Saenko, M. Hardt y S. Levine. Vol. 36. Curran Associates, Inc., 2023.
DOI: 10.48550/arXiv.2306.11170.

A. Bayani, F. Nazarimehr, S. Jafari, K. Kovalenko, G. Contreras-Aso, K. Alfaro-
Bittner, R. Sdnchez-Garcia y S. Boccaletti. «The transition to synchronization of
networked systems». En: Nat. Comm. 15.1 (2024). DOIL: 10.1038 /s41467-024-48203-
6.

A. Zabaleta-Ortega, C. Masoller y L. Guzman-Vargas. «Topological data analysis
of the synchronization of a network of Rossler chaotic electronic oscillatorsy. En:
Chaos 33.11 (2023). DOL: https:/ /doi.org/10.1063/5.0167523.

A. Zabaleta-Ortega, C. Masoller y L. Guzmén-Vargas. «Unveiling synchronization
transitions in networks of coupled oscillators through persistent homology of local
structuresy. En: Sci. Rep. 12 (2025). DOIL: 10.1038 /srep|EnPreparacion].


https://doi.org/10.1007/s11071-024-09642-4
https://doi.org/10.1007/s11071-024-09642-4
https://doi.org/10.1103/PhysRevA.45.3403
https://doi.org/10.1016/S0167-2789(97)00118-8
https://doi.org/10.1016/S0167-2789(97)00118-8
https://doi.org/10.3390/e24091298
https://doi.org/10.1016/0167-2789(91)90110-U
https://doi.org/10.1016/0167-2789(91)90110-U
https://doi.org/doi.org/10.1103/PhysRevA.33.1134
https://doi.org/doi.org/10.1103/PhysRevA.33.1134
https://doi.org/10.1016/0167-2789(96)00054-1
https://doi.org/10.1038/s41598-023-49958-6
https://doi.org/10.1038/s41598-023-49958-6
https://doi.org/10.48550/arXiv.2306.11170
https://doi.org/10.1038/s41467-024-48203-6
https://doi.org/10.1038/s41467-024-48203-6
https://doi.org/https://doi.org/10.1063/5.0167523
https://doi.org/10.1038/srep[EnPreparacion]

CAPITULO 7. REFERENCIAS 76

[132]

133

R. Vera-Avila V. andRivera-Durén, M. Soriano-Garcia, R. Sevilla-Escoboza y J.
Buldu. «Electronic implementation of simplicial complexes». En: Chaos, Solitons
and Fractals 183 (2024). DOT: 10.1016/j.chaos.2024.114915.

V. Vera-Avila, R. Rivera-Durén, O. Orozco-Lopez, M. Soriano-Garcia, R. Sevilla-
Escoboza y J. Buldu. «Experimental datasets on synchronization in simplicial com-
plexesy. En: Data in Brief 57 (2024). Dor: 10.1016/j.dib.2024.111145.


https://doi.org/10.1016/j.chaos.2024.114915
https://doi.org/10.1016/j.dib.2024.111145
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PUBLICACIONES Y
PRESENTACIONES EVENTOS
ACADEMICOS

Publicaciones

Como resultado de investigaciéon asociada a este proyecto doctoral se publicaron los
siguientes trabajos:

Topological data analysis of the synchronization of a network of Rossler chaotic
electronic oscillators. Chaos. DOIL: https://doi.org/10.1063/5.0167523

Unveiling synchronization transitions in networks of coupled oscillators through
persistent homology of local structures. Scientific Reports DOI: 10.1038 /srep|EnPreparacion|.

Ademas, participamos en los siguientes eventos:

Presentaciones en Congresos

“Retos y oportunidades de la Ingenieria Ambiental”. Universidad de Coérdoba.
Ponencia: “Cambio Climatico: Una Perspectiva Numérica desde Homologia Sim-
plicial para el Analisis Sistemas Complejos”. Tipo de Contribucién: Charla. Lugar:
Monteria, Colombia. Fecha: 04/06/2025.

“3ra. Jornada de Divulgacion de la Ciencia y la Investigacion”. Institucion: Escuela
Superior de Computo del Instituto Politécnico Nacional (ESCOM-IPN, México);
Ponencia: Entropia multiescala de complejos simpliciales (MS-SCAE) aplicada al
analisis de interlatido cardiaco. Tipo de Contribucién: Charla. Lugar: Ciudad de
México, México. Fecha: 06/06/2025.
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Presentaciones en Escuelas

“School on Synchronization: from collective motion to brain dynamics”. Institu-
cion: Instituto de Fisica Teodrica de la Universidade Estadual Paulista. Ponen-
cia: “Topological data analysis applied to the synchronization study in complex
time series”. Tipo de Contribucién: Poster. Lugar: Monteria, Colombia. Fecha:
03/02/2025-14/02/2025.

“ENREDANDO 2024 - ESCUELA IBEROAMERICANA DE REDES Y SISTE-
MAS COMPLEJOS”. Instituciéon: Universidad Nacional de Colombia. Ponencia:
“Analisis Topologico de Datos Aplicado al Analisis de Transiciones de Sincroni-
zacion en Redes con Dinamica Tipo Rossler y Kuramoto”. Tipo de Contribucion:

Charla. Lugar: Bogota, Colombia. Fecha: 29/07,/2024-02/08/2024.

Presentaciones de Divulgacion

“Seminario del Programa de Doctorado en Ciencias Agrarias”. Institucion: Univer-
sidad de Cérdoba. Ponencia: “Cambio Climéatico: Una Perspectiva desde Sistemas
Complejos”. Tipo de Contribuciéon: Charla. Lugar: Monteria, Colombia. Fecha:
221/04/2025.

“Seminario del Programa de Doctorado en Ciencias Agrarias”. Institucion: Univer-
sidad de Cordoba. Ponencia: “Analisis Topolégico de Datos Aplicado al Estudio de
Interdependencias en Series de Tiempo Complejas”. Tipo de Contribucion: Charla.
Lugar: Monteria, Colombia. Fecha: 25/04/2024.

“Jornada Académica de Ingenieria en Industrias Alimentarias: Tendencias y Desa-
fios en el Desarrollo de Productos Agroalimentarios”. Institucién: Tecnologico de
San Felipe del Progreso. Ponencia: “Efectos del Cambio Climatico en la Produc-
cion Agricola”. Tipo de Contribucion: Charla. Lugar: Estado de México, México.
Fecha: 16,/05/2022.

representando nuestro aporte en literatura al estudio de sistemas complejos de dindmica
no lineal durante el desarrollo de esta etapa.
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