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Summary

The aim of this Thesis is the study how the interplay of nonlinear deterministic

dynamics and stochastic dynamics of semiconductor laser (SCLs) influences infor-

mation processing and synchronization in these devices, based on the numerical

study of two well-known models for SCLs.

In Part I we discuss the basic features of semiconductor lasers and the different

dynamical regimes that can be induced in these devices. In Chapter 1 we describe

the main characteristics of the two types of SCLs used in this Thesis. Vertical-cavity

surface-emitting lasers (VCSELs) are characterized by allowing the emission of two

linear orthogonal polarizations due to the cylindrical geometry of the cavity and

emit a single-longitudinal mode due to the small length of the active region. Edge-

emitting lasers (EELs) can emit multi-longitudinal-modes with a polarization that

is fixed by the rectangular cavity geometry. In Chapter 2 we describe the two rate-

equation models for these SCLs. We use the so-called spin-flip model for VCSELs

and the Lang-Kobayashi model for EELs. Those models are widely accepted and

successfully describe the statistic and dynamic behaviour of these SCLs qualitatively

and quantitatively. In Chapter 3 we introduce various of the dynamical regimes

that can be induced in SCLs by external perturbations. In this chapter, we describe

the effects of current modulation close to a bifurcation point where critical slowing

down takes place. We introduce the different dynamical regimes induced by optical

feedback focusing in the low frequency fluctuations (LFFs) regime and its origin

and different descriptions. The influence of noise in SCLs is also discussed and
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studied in the case of bistable polarization in VCSELs. Finally, different mechanisms

for synchronization in SCLs are discussed and synchronization phenomena such as

zero-lag synchronization, crowd synchrony and quorum sensing synchronization are

presented.

Part II we present the results of our research. In Chapters 4 and 5 we study the

interplay of polarization bistability, spontaneous emission noise and direct current

modulation in VCSELs. In Chapters 6 and 7 we present results of the study of

transient LFFs and synchronization in EELs.

Specifically, in Chapter 4 we present a novel method for the generation of sub-

nanosecond optical pulses in directly modulated VCSELs via asymmetric triangular

modulation of period of a few nanoseconds. We demonstrate the emission of pulses

even when the laser operates, on average, below the cw threshold. For an optimal

modulation asymmetry the effective threshold reduction is about 20%, the pulse am-

plitude is maximum and the dispersion of the pulse amplitude is minimum. We also

show that stochastic resonance can be observed in this system for a realistic amount

of spontaneous emission, maximizing the pulse amplitude and minimizing the am-

plitude dispersion. In Chapter 5 we demonstrate the phenomenon of logic stochastic

resonance (LSR), by which the laser gives robust and reliable logic response to two

logic inputs encoded in an aperiodic three-level signal directly modulating the laser

bias current. We demonstrate that the probability of a correct response is controlled

by the noise strength, and is equal to 1 in a wide region of spontaneous emission

noise strengths.

In Chapter 6 we study the interplay between delay-induced multi-stability, chaotic

transients, and noise, in the case of the low-frequency fluctuations of an EEL with

optical feedback. The time delayed feedback renders the laser multi-stable, with a set

of coexisting fixed points, and induces low-frequency fluctuations. The deterministic

Lang-Kobayashi model predicts that, for a large range of realistic laser parameters,

the LFFs are just a transient dynamics towards a stable fixed point. We analyze the
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statistical properties of this transient LFF dynamics and investigate the influence of

various parameters. We show that realistic values of the noise strength do not affect

the average transient time or its distribution. On the other hand, nonlinear gain

saturation has a strong effect: it increases both the duration of the LFF transients

and the probability of noise-induced escapes from the stable fixed point. Our results

suggest that the LFFs observed experimentally can be, at least in part, sustained by

the interplay of noise and various nonlinear effects, which are phenomenologically

represented by a gain saturation coefficient. Finally, in Chapter 7, we study a

system of non-identical semiconductor lasers optically coupled to a central laser

with a delayed star-type configuration. Our results show that, even though the

lasers have different optical frequencies and the coupling is not instantaneous, zero-

lag synchronization arises when the number of coupled elements is large enough. By

changing a system parameter (namely, the lasers injection current), we can tune the

synchronization transition (switch between a smooth and a sharp transition) which

results in a common framework for crowd synchrony and quorum sensing. The

dependence of the synchronization transition on the delay and coupling parameters

is studied.

In Part III we summarize the main results presented in this Thesis and discuss

the various possible future research lines. Finally in Part IV and Part V we list the

bibliography and the publications and conferences where we presented our results.

The generation and control of different dynamics in lasers is still a topic of intensive

research. We hope that this Thesis will contribute to the better understanding of

the different stochastic and non-linear dynamics in semiconductor lasers and the

constructive interplay that can sometimes occur between non-linearities and noise.





Part I

INTRODUCTION
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Chapter 1

Introduction to semiconductor

lasers

1.1 Historic overview and types of semiconductor

lasers

From the first ideas of photons postulated by Planck in the early 20th century, the

understanding of the light-matter interaction has attracted the interest of the sci-

entific community not only because of the fundamental relevance of the processes

involving photons and atoms but also because of the increasing number of applica-

tions that have appeared after each of the advances in this field. One of the most

helpful devices for the progress of the science and technology in the last half century

has been the laser.

Based on the stimulated emission mechanism suggested in 1917 by Einstein [1],

the studies of Gordon, Zeiger and Townes in 1954 [2] demonstrated the amplification

of microwaves in an ammonium media with a Fabry-Perot interferometer as a res-

onator. The invention was called the maser (microwave amplification by stimulated

7



8 CHAPTER 1. INTRODUCTION TO SEMICONDUCTOR LASERS

emission of radiation) and a few years later was extended to the optical range, which

led to the concept of laser (light amplification by stimulated emission of radiation).

The laser was theoretically predicted by Schawlow and Townes [3] and Prokhorov

[4] and later experimentally achieved by Maiman (1960) [5] in a ruby cylinder. A

few years later, in 1964, Townes, Prokhorov and Basov were awarded the Nobel

Prize “for fundamental work in the field of quantum electronics, which has led to

the construction of oscillators and amplifiers based on the maser-laser principle”.

There are many types of lasers and they all share the following three features:

1. Pumping of energy that provides a large enough population of carriers in an

excited state (the so-called population inversion).

2. Amplification of light that occurs when one photon interacts with an exited

carrier and stimulates it to relax to a state of lower energy, emitting a photon

identical to the original one.

3. Confinement of light inside a cavity is required to achieve large enough laser os-

cillation. The photons cross several times the active medium and are amplified

until a threshold intensity is achieved.

Simultaneously with the appearance of the first lasers, von Neumann first [6] and

Russell [7] and Basov et al. [8], a few years later, suggested the radiative recombina-

tion of electron-hole pairs in a semiconductor to amplify light. The first experimental

laser light amplification based in semiconductor active medium was obtained in 1962

by three different groups [9, 10, 11]. The simple design of a p-n homo-junction (from

a doped semiconductor material) required of high pump currents and cryogenic tem-

peratures because of the absence of mechanisms of confinement for the carriers and

for the optical field in the active region.

At this point, an endless race started to improve the characteristics of semi-

conductor lasers (SCL). In 1963, Kroemer [12] and Alferov and Kazarinov [13]
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suggested the use of hetero-junctions (layers of semiconductors with wider band

gaps clamping the active region) to increase the carriers lifetime. However, it was

not until 1969 when Alferov et al. [14] implemented a SCL with hetero-junctions

operating continuously and at room temperature. This marks the appearance of

the first SCLs emitting light in the parallel direction to the active medium, the so

called edge-emitting lasers (EELs), schematically displayed in Fig. 1.1. In the

early 70’s Nishimura et al. [15, 16] developed the first dynamic theory of SCLs.

In the following years, semiconductor materials that could provide long wave-

lengths sparked off a great interest. The reason was the discover of the window of

low optical loss of wavelengths around 1.5 µm [17] and small or even zero disper-

sion at 1.3 µm [18] propagating in silica fiber optics and prepared the ground for

the commercial optical fiber communications. In 1976 SCLs operating at 1.3 µm

[19, 20] were built and in 1979 was achieved lasing at 1.55 µm [21, 22, 23, 24]. In

1977 the first live telephone traffic was sent through an optical fiber in Long Beach,

California, and the first commercial compact discs (CDs) were distributed in 1979.

The use of periodic structures was proposed in 1972 by Kogelnik and Shank [25]

for obtaining a single longitudinal mode amplification, by using distributed feedback

(DFB) instead of mirrors to confine the field inside the cavity. From that moment

the huge possibilities of periodic structures were exploited.

In 1978, Iga and coworkers suggested a different geometry for the SCLs [26], the

vertical-cavity surface-emitting lasers (VCSELs) and the first VCSEL device

was fabricated in 1979 [27]. As will be discussed later, VCSELs are characterized

by a lasing emission perpendicular to the active region, displayed schematically in

Fig. 1.3, and improve the EELs in many aspects [28]. The use of thin layers of

active medium as well as the distributed Brag reflectors (DBRs) lead to a rapid

progress in the improvement of the SCLs. The small size of the active layer (< 50

nm) leads to the quantum confinement of the carriers (the so called quantum wells

(QW) or multi-quantum wells (MQW) if there is more than one layer) that results
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in an efficient gain section, and the high reflectivity of DBRs (> 99%) increases

drastically the lifetime of the photons inside the cavity. Koyama and coworkers

in 1988 [29] reported the first VCSEL operating at room temperature and their

further improving led to the progressive substitution of EELs for VCSELs in many

commercial applications.

New types of semiconductor lasers are continuously being developed, for example

lasers based in the technology of quantum dots [30, 31, 32]. These lasers use the

three dimensional confinement of the carriers to produce a band structure similar

to the atomic one. Long wavelength lasers based in the quantum cascade process

were invented in 1994 [33] and have been improved to perform cw emission and

high power at room temperature. Furthermore, lasers with shorter wavelengths

are countinously developed since Nakamura invented the first violet and blue laser

diodes [34, 35] and semiconductor lasers currently can be fabricated with in a wide

range of wavelengths in the visible spectra.

In the so-called spin-vcsels the output polarization is controlled by the injection of

spin-polarized electrons and offer the important advantage, in addition to enhanced

polarization stability, of a reduced threshold current [36, 37].

Semiconductor ring lasers are a type of semiconductor laser in which the light is

confined in a circular waveguide structure. As a result, they can generate light in

two opposite directions and are receiving increasing attention as they are attractive

light sources in photonic integrated circuits [38] Recently, semiconductor random

lasers are being developed and fabricated. In these lasers the feedback for laser

action is not provided by an external resonator, but by scatterers that result of

growth imperfections and which are randomly distributed in the active medium, or

which by themselves act as optical amplifiers [39].

Nowadays, lasers are common elements in our daily life and SCLs are broadly

used in many applications. Actually, SCLs covered the 60% of the laser market

in 2004 in terms of revenues [40]. The reasons for this success are their special
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characteristics. Their low cost is an important advantage but, also the small size

and packaging capability, their reliability and safety, the low power consumption

and the wide range of wavelengths that they cover. Therefore, is not surprising

that there are dozens of applications. Some of the most important are related with

fiber-optics communications, without which the Internet could not have grown so

rapidly, and the high density information storage provided by CDs, DVDs and more

recently blue-ray disc players and recorders. They are also used in scanners, barcode

readers, laser printers, laser pointers, or high precision sensors (e.g. in laser Doppler

velocimetry).

In this thesis we have focused our attention in SCLs of two types: Edge-Emitting

Lasers (EELs) and Vertical-Cavity Surface-Emitting Lasers (VCSELs). Both types

are usually pumped electrically (although they can be pumped optically by an ex-

ternal light source), and the active medium is commonly built on MQW structures.

Their main difference is in the geometry of the cavity. While EELs emit light in

the direction parallel to the active medium, in VCSELs the light is emitted in the

perpendicular direction to the active medium. High reflectivity mirrors are required

in VCSELs which are provided by DBRs because of the short time that each photon

spends inside the active region in a round trip. In the two following sections we will

describe the main characteristics and differences between EELs and VCSELs.

1.2 Edge-Emitting Lasers (EELs)

Edge-emitting lasers are semiconductor lasers that emit in the parallel direction

of the active region of the semiconductor p-n junction where the recombination of

carriers (holes and electrons) takes place due to the high density of both. The

carriers can be excited by an electric source applied in the metallic contacts at the

ends of the device. When the photons propagate along the active region and interact

with excited carriers, the radiative recombination of electron-hole pairs takes place
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and stimulated emission occurs. If the population inversion in the active layer is

large enough to overcome the losses, laser light is obtained.

The active layer in EELs has a typical length of 200-500 µm (Fig. 1.1). It

provides a relatively long propagation time of the photons inside the active medium

that enhances the probability of stimulated emission. The longitudinal length of

an EEL is large compared with a VCSEL (but short compared with other lasers),

providing a large gain that does not require a high carrier and photon confinement

which simplifies the structure of the device. This characteristic of the EELs leads to a

spacing of longitudinal modes of the order of 100-200 GHz, allowing the amplification

of many longitudinal modes. Thus, frequently, the EELs are multi-longitudinal mode

lasers.

Figure 1.1: Schematic structure of an EEL. From [41].

In semiconductors, the carriers diffuse in the transverse direction of the junction

surface, which reduces their density, so several mechanisms have been developed

to improve their confinement. Carrier confinement can be achieved by using het-

erostructures, characterized by clamping the active region between layers of two

oppositely doped semiconductors. This structure also improves the confinement of

the electric field inside the cavity of the laser, due to the different refractive index
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of the doped semiconductor layers. Furthermore, reducing the size of one of the

metallic contacts or adding an insulator, enhances the population inversion in a re-

duced region of the active medium, leading to the so-called gain-guided structures.

In index-guided structures, a semicoductor of a different refractive index is grown

in the sides of the active medium and is used to act as a waveguide that provides

a lateral confinement of the field. These restrictions allow the emission of a single

transverse mode. The different lateral dimensions of the active region’s cross section

produce an asymmetric divergence that results in an elliptical profile of the emit-

ted output beam that makes it difficult to couple to an optical fiber. Furthermore,

the linear polarization of the electric field is selected by the structure of the cavity

geometry.

The confinement of the electric field in the longitudinal direction is required in

order to increase the amount of stimulated light. The relatively high gain of the

EELs does not require large reflectivities for the amplification of the light. A reflec-

tivity of ∼30% provided by carefully polished facets of the cavity is usually enough

for lasing in the so called Fabry-Perot SCLs. Other mechanisms are proposed to im-

prove the characteristics of the emitted light such as distributed feedbacks (DFBs),

characterized by a periodic structure in the active region, or distributed Bragg re-

flectors (DBRs), characterized by a grating in the refractive index outside the active

region. These structures have the advantage of selecting a longitudinal mode with

a frequency directly related with the periodicity of the structure.

The single- or multi-longitudinal mode performance of the laser are due to the

amplification of the cavity modes inside the gain curve with a modal gain larger

than the losses (Fig. 1.2(a)). Because the gain bandwidth is in the range of tens of

THz, 10-20 longitudinal modes can be emitted in multimode lasers. As mentioned

above, DFBs and DBRs are frequency-selective gratings that can be used to obtain

a single mode emission (Fig. 1.2(b)) that is suitable for communications in single-

mode optical fibers. Furthermore, DBRs allow to decrease the length of the cavity,

as occurs in VCSELs, which will be described in the next section. In many of
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Figure 1.2: Optical spectra of an EEL. (a) In multi-longitudinal mode lasers the net

gain bandwidth is larger than the spacing between modes, ∆νL, and several modes can

be emitted. (b) In single-longitudinal mode lasers the cavity losses are such that only one

mode at frequency ν0 is emitted.

the applications where SCLs are used, the emitted light can be reflected by an

external element, e. g. the surface of a CD or DVD or the coupling junction end

of an optical fiber, acting as a mirror that reinjects the light again into the laser.

Commonly, EELs are very sensitive to external perturbations such as feedbacks due

to the high transmitivity (∼70%) of their facets. The external mirror creates an

external cavity that can produce undesirable destabilization of the output light.

The external mirror allows the appearance of external cavity modes of a smaller

spacing than the spacing of the laser cavity modes, increasing the linewidth [42]

and inducing complex dynamics even in single mode lasers [43]. This dynamics

was already reported in the 70’s [44] and, in the last 40 years, many efforts have

been devoted to investigate and control the output light of a SCL subjected to

optialmoderate feedback [45]-[51].
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1.3 Vertical-Cavity Surface-Emitting Lasers (VC-

SELs)

The appearance of VCSELs was a revolution in optical communication technologies.

Their innovative geometry provided specific characteristics for these devices. To

better understand what does the VCSELs so particular we will describe their general

features in detail.

Figure 1.3: Schematic structure of a VCSEL. From [52].

As discussed in Sec. 1.1, the key idea was to reduce the size of the active layer

by changing the direction of the light being amplified inside the cavity, making it

perpendicular to the junction and the substrate, as shown in Fig. 1.3. The huge

effective reduction of the size of the cavity compared with the EELs has important

consequences in the laser threshold and efficiency, among others.

In commercial VCSELs the active region is usually a structure of one to four QW

layers, each of 5 to 10 nm. The small thickness of the active region implies that on

each roundtrip of the photons inside the cavity, the gain produced by the stimulated



16 CHAPTER 1. INTRODUCTION TO SEMICONDUCTOR LASERS

emission is very low. To solve this, high reflective mirrors (with reflectivity >98%)

are required for cw emission at room temperature. The most commonly used mirrors

are distributed Bragg reflectors (DBRs).

DBRs are index-modulation gratings of pairs of layers of doped semiconductor

(or dielectric) materials with high and low refractive index where each pair has

a length of λ/2n̄, where n̄ is the averaged refractive index of the pair and λ is the

reflected Bragg wavelength. By adding a large enough number of layers, it is possible

to obtain reflectivities >99% due to the constructive superposition of the reflected

light. Usually, DBRs of 99.9% are used for the mirror at the output of the VCSELs

and DBRs of almost 100% reflectivity for the mirror at the bottom of the cavity,

which requires a number of layer pairs that goes from less than 10 for dielectrics to

40 for semiconductors.

By construction, the confinement of the field inside the cavity produces a standing

wave from the top DBR to the bottom one of a few λ′s. In order to optimize the

efficiency of the stimulated emission, the active region is placed in the anti-nodes of

the standing wave with a width limited to λ/4n, where λ and n are the wavelength

and the effective refractive index inside the cavity.

The threshold current Ith is

Ith = SJth =
eV Nth

ηiτN

(1.1)

where S is the transverse section of the cavity, Jth is the threshold current density,

e is the electron charge, V is the volume of the active region, Nth is the threshold

carrier density, ηi is the injection efficiency, defined as the fraction of the injected

current that actually contributes to the injected carriers in the active region, and τN

is the recombination lifetime of the carriers. This equation shows that the threshold

current is proportional to V , where V = Sd with d the thickness of the active layer.

In VCSELs d is comparable to that in EELs (Table 1.1). However,in VCSELs S can

be reduced drastically because the gain, given by the overlap between the field inside

the cavity and the carriers in the active layer, is independent of the cross section of
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Table 1.1: Comparison of parameters between a conventional EEL and a VCSEL [41].

Parameter Symbol EEL laser Surface Emitting Laser

Active layer thickness d 100Å-0.1µ m 80Å-0.5µ m

Active layer area S 3×300 µ m2 5× 5 µ m2

Active volume V 60 µ m3 0.07 µ m3

Cavity length l 300 µ m ≃ 1 µ m

Threshold current Ith & 1 mA < 1 mA

Longitudinal mode spacing ∆νL 100-200 GHz >10 THz

the cavity [41]. So, e.g. typically an EEL has an active volume of ∼ 60µm3 while a

VCSEL, of ∼ 0.06µm3. This directly affects the threshold current of VCSELs that

is of the order of a few mA or lower, while of EELs, it is of the order of several mA

or higher. Furthermore, the so called power conversion efficiency can be larger than

50% in VCSELs [41].

In VCSELs the small cavity length (allowed by the use of DBR mirrors) enlarges

the spacing between longitudinal modes of the cavity. The emission wavelength of

the laser is given by the overlapping of the longitudinal modes of the cavity and the

gain bandwidth of the semiconductor QW, which is smaller than the longitudinal

mode spacing. Therefore, VCSELs are single-longitudinal-mode lasers by construc-

tion.

The control over the transverse geometry allows the use of a circular aperture,

which gives an output beam with a circular intensity profile. This circular geometry

makes the coupling of the laser to an optical fibers easy and efficient. However, the

intensity profile depends on the pump current, among other parameters, resulting

in different transverse modes. For low pump currents close to the threshold cur-

rent, which is the parameter region explored in this thesis, only the fundamental

transverse mode is emitted while far from threshold higher transverse modes can be
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excited or emitted [53, 54, 55].

In summary, due to their improved design, VCSELs provide a number of advan-

tages:

• Low threshold operation and power consumption.

• Single-longitudinal-mode operation.

• Circular beam for direct fiber coupling.

• Easy integrability in large-scale two-dimensional (2D) arrays.

The cylindrical symmetry of the VCSELs cavity has important consequences for

the polarization of the emitted light. This geometry allows the emission of orthog-

onal linear polarizations that display a variety of dynamical phenomena, involving

polarization fluctuations, as will be discussed in detail in Chap. 3. This is com-

monly considered a drawback of these devices and many efforts have been devoted

to control their polarization [56, 57, 58, 59, 60].

However, anisotropies such as birefringence and dichroism, in the cavity and in the

gain medium break the circular transverse symmetry, which results in the existence

of two preferred linear orthogonal directions. The different gain-to-loss ratio in

different directions of the crystal can be attributed to dichroism and considered as

an amplitude anisotropy while the phase anisotropies are given by the differences in

the refractive indexes associated with the linear birefringence.

Birefringence produces a splitting in the optical frequencies of orthogonal linear

polarizations that can be of the order of a few GHz to tens of GHz. The birefringence

can be related to the electro-optic effect [61] and to the elasto-optic effect [62]. The

separation in frequencies can be observed in the optical spectra of the lasers. When

two linear orthogonal polarizations are allowed, commonly referred as x for the mode

with lower frequency and y for the mode with higher frequency, the optical spectra
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shows peaks at different frequencies, one for each linear polarization (Fig. 1.4). In

elliptically polarized light the two peaks are frequency-locked.

Figure 1.4: Basic polarization states. The optical spectra of the complex electric field

amplitudes Ex (continuous line) and Ey (dashed line) is shown. The frequency splitting

between the two linearly polarized modes is given by the linear birefringence. Top: x

polarization and middle: y polarization. They frequency lock in the elliptically polarized

state (bottom), but have different power strengths. From [63].

1.3.1 Polarization switching and bistability

A relevant feature of VCSELs is related to the stability of the two orthogonal linear

polarizations. When the VCSEL begins to lase one linear polarization dominates,

and, in many devices, when the injection current is increased above a certain value,

it is observed that the emission switches to the orthogonal linear polarization. The

relative intensity of the polarization peaks in the optical spectra changes abruptly,

leading to the polarization switching (PS) effect. The dominant mode of polar-

ization emitted at low currents turns off and the orthogonal mode turns on. Which
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mode, x or y, dominates at low current levels depends on the specific device and is

usually considered a consequence of the dichroism.

The PS phenomenon usually involves hysteresis, as when the current decreases

the switch back occurs at a lower current value (Fig. 1.5 upper panel). The precise

values of injection current at which the PS occurs, that define the boundaries of the

bistability region, depends on several parameters and on the rate of variation of

the injection current. If the current is continuously varied, dynamical PS occurs,

as will be discussed in detail in Chap. 3. Stochastic polarization switching can

also occur (Fig. 1.5, (lower panel)) and has been interpreted in terms of Kramers’

hopping in an effective 1D double-well potential [65, 66].

Figure 1.5: Polarization-resolved optical power as a function of the pump rate for two oxide

confined single-transverse-mode VCSELs. VCSEL A (upper panel) displays polarization

hysteresis while VCSEL C (lower panel) displays stochastic polarization switching. Inset:

time series of the optical power of one polarization at the center of the switching region

(RP = 1.1). From [64].

Several physical mechanisms can be involved in the PS, and various explanations

for this effect have been proposed. The different modal gain due to thermal effects,



1.3. VERTICAL-CAVITY SURFACE-EMITTING LASERS (VCSELS) 21

the different optical frequencies in birefringent media, but also the combination of

the birefringence and the spatial-hole burning have been described as a mechanisms

that could lead to PS. In the first case [67], an increase of the pump current produces

a self-heating of the device. A red-shift of the cavity mode frequencies occurs and

a red-shift of the gain spectrum, which is larger than the red-shift for the cavity

resonances. As a consequence, the mode with larger gain changes (Fig. 1.6(a)).

A second explanation is proposed in [68, 69]. By considering frequency dependent

losses, at low pump current one mode is suppressed because the cavity losses are

larger than the material gain while the orthogonal mode has a positive net gain. At

high pump currents, the PS occurs when the modes exchange the sign of the net

gain (Fig. 1.6(b)). These explanations are intuitive and simple but do not explain

some experiments involving hysteresis and PS at constant temperature [70, 71]. An

alternative explanation for PS and hysteresis without considering thermal effects was

proposed in [72, 73, 74] as a combined effect of birefringence and saturable dispersion

associated with the α factor. The spin-flip model developed in Refs. [72, 73, 74] will

be the model employed in this Thesis for describing the polarization of VCSELs.

Figure 1.6: Schematic representation of the gain-to-loss ratio of the polarizations x and

y. (a) Red-shift effect for small (left) and large (right) pump currents and (b) frequency

dependent losses for small (left) and large (right) pump currents. Arrows show the lasing

mode.





Chapter 2

Rate-equation models of

semiconductor lasers

The rate equations that describe the dynamics of lasers can be derived for the

semiclassical Maxwell-Bloch equations for the optical field, population inversion and

material polarization [75]. These variables decay with different time scales, and when

one decay rate is comparatively fast the corresponding variable adiabatically adjusts

to the other variables. A general classification of lasers can be obtained in terms of

the number of variables that can not be adiabatically eliminated [75]. Single-mode

semiconductor lasers are class-B lasers, characterized by a fast relaxation of the

polarization, thus only two equations, one for the optical field and another for the

carriers, are required to describe their dynamics.

Semiconductor lasers can be modelled with different degrees of detail by using

models with partial derivatives, the travelling wave models, microscopic models,

etc. In this chapter, we discuss in detail the simple rate-equation theoretical models

used in this thesis to describe the influence of optical feedback in EELs and current

modulation in VCSELs.

23



24 CHAPTER 2. RATE-EQUATION MODELS OF SCLS

2.1 Lang-Kobayashi model for an Edge-Emitting

Laser with optical feedback

Many efforts have been devoted in last decades to study EELs and, nowadays,

these lasers are very well understood theoretically. In this section we introduce the

model of an EEL with optical feedback from an external mirror (Fig. 2.1). A

simple modification of this model will give us the rate equations for an EEL with

optical injection, which will be used in the study of coupled SCLs. In 1980 Lang

Figure 2.1: Schematic representation of a laser with optical feedback from an external

mirror placed at a distance L from the laser. The electric field, E, reflected in the external

mirror returns to the laser after a time τ . l is the length of the internal cavity of the laser

and R1 and R2 are the reflectivities of the laser mirrors.

and Kobayashi proposed a model for an EEL with optical feedback [76], the so

called Lang-Kobayashi model (or simply LK model), which had great success

in describing the characteristics of dynamics induced by feedback from an external

mirror. According to this model, the rate equations for a single mode EEL with

optical feedback can be written in terms of the slowly-varying complex amplitude
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of the optical field, E, and the carrier number, N , as

dE

dt
= k(1 + iα) (G(E, N) − 1)E + κfbE(t − τ)e−iω0τ + FE(t), (2.1)

dN

dt
= γN

(

µ − N − G(E, N)|E|2
)

+ FN (t). (2.2)

Both E and N are dimensionless variables, |E|2 is proportional to the number of

photons in the cavity and N is the carrier population in excess of its value at

transparency normalized to the value of that excess at the lasing threshold. The

function G is the optical gain, given by

G(E, N) =
N

1 + ε|E|2 , (2.3)

with ε being the gain saturation coefficient. This term is introduced phenomeno-

logically and is specially important at high optical powers, because it represents

nonlinear saturations such as the spatial hole burning and the carrier heating. The

standing wave produced inside the cavity burns the carriers non-uniformly. The

saturation of the gain occurs when the carrier diffusion is not fast enough to fill

the holes of carriers left in the active region. On the other hand, carrier heating

appears due to the self-heating of the active medium. It moves the excited carriers

to higher energy levels that reduce the amount of carriers in the stimulated emission

transition.

The linewidth enhancement factor, α, is characteristic of semiconductor lasers and

describes the coupling between the amplitude and the phase of the electric field [77].

The refractive index of the active region changes when the carrier number varies.

It produces an asymmetric enhancement of the linewidth of the laser, that affects

the frequency chirp, and the response under modulation and under the action of an

external feedback [78]. α can be modified by changing the relative position between

the gain profile and the emission wavelength, as substantial changes in α can be

obtained by tuning the emission wavelength far from the maximum gain without

changing the gain profile [47, 79].
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The field decay rate, k, takes into account the losses of the field inside the cavity.

The light generated remains inside the cavity for a time τp, which is the time required

for the intensity to decay a factor 1/e due to the losses of the mirrors. The field

decay rate is k = 1/2τp being proportional to 1
l
ln( 1

R1R2

) in a Fabry-Perot resonator,

where R1 and R2 are the reflectivities of the mirrors and l is the length of the cavity.

So k can be reduced by increasing the reflectivity of the mirrors but decreased if the

cavity length is reduced (which occurs in VCSELs).

The spontaneous carrier recombination rate is given by γN . This factor is the sum

of the radiative and the non-radiative recombination rates, excluding the contribu-

tion from the stimulated recombination process. µ is the pump current normalized

such that at threshold µth = 1.

The amount of light reinjected in the laser is modeled with the feedback strength,

κfb. Due to the finite velocity of the light, the optical field E(t−τ) is delayed a time

τ , whit τ being the round trip time of the external cavity in the case of the optical

feedback. We are considering only one reflection at the external mirror which is a

good approximation in the case of weak and moderate feedback strengths.

The spontaneous emission process is taken into account as a Langevin noise source

in FE(t) as

FE(t) =
√

βspγNNξ(t) (2.4)

where βsp is the coefficient of spontaneous emissions, the spontaneous emission rate

being Rsp = 4βspγNN (i. e., the fraction of the spontaneously emitted photons that

goes into the lasing mode), and ξ(t) is an uncorrelated Gaussian white noise with

zero mean and unit variance. Since above the laser threshold the carrier density is

clamped, in (2.4) the carrier is often approximated as N ∼ N0 = 1 and the noise

strength parameter is defined as D = βspγNN0. FN (t) is also a Langevin noise

source that takes into account the contributions from the spontaneous emission and

shot noise to the carrier number. This quantity is usually small and it can be often

neglected. From now on we will not consider this term in the equations. With these
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simplifications, the model becomes

dE

dt
= k(1 + iα)

(

N

1 + ε|E|2 − 1

)

E + κfbE(t − τ)e−iω0τ +
√

Dξ(t), (2.5)

dN

dt
= γN

(

µ − N − N

1 + ε|E|2 |E|2
)

. (2.6)

The phase of the reinjected field is modified in a quantity ω0τ where ω0 is the

frequency of the solitary laser given by ω0 = 2πc/λ0 (c is the speed of light and λ0

the wavelength of the solitary laser). Due to the large value of ω0τ , even a very

small change in the length of the external cavity can induce a large variation in the

phase of the optical reinjected field.

2.1.1 Steady state solutions of the Lang-Kobayashi model:

the external cavity modes

From a mathematical point of view, the LK model is infinite dimensional due to

the time delayed term. The complex dynamics that occurs for a large range of

parameters can be highly dimensional and difficult to analyze in a finite dimensional

phase space. However, the steady state solutions of the model (called the external

cavity modes, ECMs) can be found and projected in a 2D phase space (∆ωτ , N)

or in a similar way (∆ωτ , |E|2), ∆ω being the frequency variation with respect to

the solitary laser frequency. The position and stability of the steady state solutions

of the model gives important information about the dynamical evolution of the

trajectories, however, the high dimensionality of the attractors explains that there

are few analytical results.

The steady state solutions can be written as:

E(t) = Ese
i(ωs−ω0)t, (2.7)

N(t) = Ns. (2.8)

Substituting in equations (2.5) and (2.6) we obtain the three equations that deter-
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mine the values of Es, Ns and ωs

ωsτ = ω0τ − κfbτ
√

1 + α2 sin(ωsτ + arctan α), (2.9)

Ns =
1 − (κfb/k) cos (ωsτ)

(1 + ε)
+

µε

1 + ε
, (2.10)

|Es|2 =
µ − Ns

Ns − (µ − Ns)ε
. (2.11)

When ε = 0 the ECMs fall in an ellipse that can be calculated with eqs. (2.9) and

(2.10), resulting in

((ωs − ω0) − kα(Ns − 1))2 + (k(Ns − 1))2 = κ2
fb. (2.12)

The solutions can be plotted in the phase space (∆ωτ , N). The stable points are

placed in the lower branch of the ellipse, while the saddle points are in the upper

branch of Fig. 2.2. By increasing the feedback strength the ECMs are created in

pairs in a saddle-node bifurcation, and the initially stable points lose their stability

via a Hopf bifurcation. It has been demonstrated that at least one ECM, called the

maximum gain mode (MGM), is stable [80]. The MGM is the mode with the

highest intensity and the lowest carrier number, but several stable ECMs can exist

in the vicinity of the MGM when the feedback strength is increased (Fig. 2.2(b)).
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Figure 2.2: (a) Ellipse of steady states in the phase space of the carrier number, N , and

the feedback phase, ∆ωτ . The saddle points or anti-modes are represented by circles and

the initially stable modes by squares. The stable ECMs are placed in the bottom left of

the ellipse. The feedback strength is (a) κfb = 0.3ns−1 and (b) κfb = 30ns−1.
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Figure 2.3 shows typical trajectories in the vicinity of the attractors for a small

value of κfb in the (∆ωτ , N) plane. When the initial conditions are chosen in the

vicinity of a stable mode, the trajectory falls in the MGM (Fig. 2.3(a)) and remains

there indefinitely if the noise strength is small or zero. When the initial conditions

are in one of the unstabilized modes, the trajectory is repelled (Fig. 2.3(b)) and

after a large enough time, it falls in a stable complex attractor (Fig. 2.3(c)). When

the initial conditions are set for a carrier number just below the saddle point the

trajectory relaxes back to the MGM.

Figure 2.3: Deterministic trajectories (without noise) starting from different initial con-

ditions in the phase space of the carrier number, N , and the feedback phase, ∆ωτ . The

saddle points or anti-modes are represented by circles and the modes by squares. (a)

Trajectory starting in the vicinity of the MGM, (b) starting in the vicinity of an unstable

ECM and (c) initial conditions just above an anti-mode produce a global trajectory in the

phase space reaching a complex attractor. In (c) a trajectory that starts in the vicinity

(just below) of an anti-mode, can reach the MGM.
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2.2 SFM Model for a Vertical-Cavity Surface -

Emitting Laser

As discussed in Chapter 1, the different characteristics of VCSELs as compared to

EELs lead to the consideration of a different model to represent its dynamics. More

precisely, the polarization dynamics that is fixed and thus not relevant in EELs is

often important and has to be considered in models that describe VCSELs.

One of the most successful models for VCSELs was that proposed in 1995 [72].

This model incorporated the cavity and material properties of the quantum-wells

and describes the dynamical properties of the phase of the optical field. It consid-

ers the emission of two circular polarized states in a four level model. Radiative

recombination of carriers occurs between levels of energy with angular momentum

Jz =-1/2 to Jz =-3/2 that is associated with right circularly polarized light and

Jz =1/2 to Jz =3/2 is associated with left circularly polarized light as depicted in

Fig. 2.4.

Figure 2.4: Four level model for polarization dynamics in QW VCSELs. Adapted from

[73].

The original model in [72] was developed from the Maxwell-Bloch equations that

describe the circular polarized optical field variables, associated with the radiative

transitions between the four magnetic sublevels of the material, and was reduced
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to a simpler form by considering rate equations. In [73] the authors included linear

birefringence and dichroism in those rate equations, resulting in the so called spin-

flip model (SFM). The model is defined in terms of the slowly-varying complex

amplitudes, E+ and E−, for the orthogonal circular polarizations, the total carrier

number, N , and the carrier difference, n

dE±

dt
= k(1 + iα)[(N ± n − 1)E±] − (γa + iγp)E∓, (2.13)

dN

dt
= γN [µ − N(1 + |E+|2 + |E−|2) − n(|E+|2 − |E−|2)], (2.14)

dn

dt
= −γsn − γN [N(|E+|2 − |E−|2) + n(|E+|2 − |E−|2)], (2.15)

where the variable N = N+ + N− represents the total carrier number, given by the

sum of the carrier populations with opposite spin in excess of its value at trans-

parency, normalized to the value of that excess at the lasing threshold. Here, n

is defined as n = N+ − N−, which takes into account the difference of the carrier

numbers of the two magnetic sublevels, and it is normalized in the same way as N .

As discussed in Chapter 1, VCSELs usually emit one of two orthogonal linear po-

larizations due to the effect of linear anisotropies, so it is more convenient to rewrite

the above equations in terms of the orthogonal linearly polarized optical fields. The

projection of the circular polarized states over the linearly polarized states is given

by:

Ex =
E+ + E−√

2
, Ey = −i

E+ − E−√
2

(2.16)

Thus, by substituting eq. (2.16) in the equations (2.13)-(2.15) we obtain the SFM

equations in terms of the orthogonal linearly polarized slowly-varying complex am-

plitudes, Ex and Ey, the total carrier number, N , and the carrier difference, n [73]:

dEx,y

dt
= k(1 + iα)[(N − 1)Ex,y ± inEy,x] ∓ (γa + iγp)Ex,y

+
√

βspγNNξx,y, (2.17)

dN

dt
= γN [µ − N(1 + |Ex|2 + |Ey|2) − in(EyE

∗
x − ExE

∗
y)], (2.18)

dn

dt
= −γsn − γN [n(|Ex|2 + |Ey|2) + iN(EyE

∗
x − ExE

∗
y)]. (2.19)
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The field decay rate, k, the linewidth enhancement factor, α, and the decay rate

of the total carrier population, γN , have the same meaning as in the LK model

(Sec. 2.1). µ is the injection current parameter, normalized such that the static cw

threshold in the absence of anisotropies is at µth,s = 1.

To characterize the mixing of populations with different spin, this model intro-

duces the spin-flip rate γs as a phenomenological parameter. From the point of view

of the origin of the parameter, the recombination of the carrier populations in the

magnetic sublevels involves a large variety of processes such as scattering by defects

and exchange interactions between electron-hole or exciton-exciton [63]. It is worth

remarking that γs acts as a coupling between the two populations of carriers in each

pair of levels. For a very slow mixing (i. e. γs = γN) equations (2.17)-(2.19) are

decoupled in two sets of independent equations, one for E+, N+ and another for E−,

N−. In the limit of γs → ∞, corresponding to an instantaneous mixing between the

two populations, the orthogonal polarizations become independent of n and coupled

through the same population N .

The anisotropies in the cavity are represented by the parameters γa and γp. The

frequency splitting of the linearly polarized modes is modeled with the birefringence

γp. Its value corresponds to the frequency detuning above and below a central

frequency, so the frequency difference between the two modes x and y is given by

2γp. γa is the dichroism that takes into account different gains for the polarization

modes of the cavity, the asymmetric position of the modes in the gain-frequency

curve and different asymmetric geometries of the cavity [63]. This parameter can

be positive or negative depending on which mode has a larger gain-to-loss ratio.

As in the LK model, βsp is the coefficient of spontaneous emission, and ξx,y are

uncorrelated Gaussian white noises with zero mean and unit variance.

VCSELs can be very different depending on their characteristics and can show a

relatively large dispersion on their characteristic parameters. We show in Table 2.1

a range of values for typical VCSELs [81].
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Table 2.1: Typical VCSEL parameters and values used in this thesis.

Parameter Symbol Range of values Values used

Linewidth α 2 to 5 3

enhancement factor

Field decay rate k 100 to 400 ns−1 300 ns−1

Total carrier γN 0.5 to 2 ns−1 1 ns−1

decay rate

Spin-flip rate γs 1 ns−1 to 100 ns−1 50 ns−1

Amplitude anisotropy γa >-1 ns−1 to <1 ns−1 0.5 ns−1

Phase anisotropy γp 1 to 150 ns−1 50 ns−1

Noise strength D 10−6 ns−1 to 10−3 ns−1 10−6 ns−1

2.2.1 Steady state solutions of the SFM model

Different states of polarization can be found for different parameters of the model.

Here we analyze two paradigmatic scenarios characterized by the positive or negative

values of γa.

We can define the steady state solution for the orthogonal linear polarizations as

Ex,y = Qx,ye
i(ωx,yt+Ψx,y)+iθ, N = N0, n = n0 (2.20)

where θ is an arbitrary phase that can be set to zero without lose of generality and

Ψ is a relative phase between the polarizations.

By substituting eqs. (2.20) in (2.17)-(2.19) we obtain the solutions for the x
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polarization

Qx =

√

1

2

µ − N0

N0
, (2.21)

ωx = −γp + γaα, Ψx = 0, (2.22)

N0,x = 1 +
γa

k
, n0 = 0, (2.23)

and for the y polarization is given by

Qy =

√

1

2

µ − N0

N0
, (2.24)

ωy = γp − γaα, Ψy = 0, (2.25)

N0,y = 1 − γa

k
, n0 = 0. (2.26)

Analyzing these solutions we can observe that the amplitude anisotropy gives slightly

different thresholds for the x and y polarizations. The mode with smaller threshold

is selected at low pump currents, in such a way that for positive γa, the y mode

turns on. When γa < 0 the lower threshold is for the x mode and this is the mode

that will be emitted close to threshold. A detailed scenario can be obtained by

calculating the boundary of stability for each polarization. The stability of the x

and y polarizations, as obtained from a linear stability analysis of Eqs. (2.13)-(2.15)

is shown in Fig. 2.5. Three regions of stability can be identified in Fig. 2.5: only

the polarization x is stable, only the polarization y is stable or both polarizations

are stable. A fourth region emerges outside the stability boundaries where neither

x or y are stable and their intensities oscillate in time. In the bistable region both

polarizations are stable and one of the two polarizations can be emitted depending

on the initial conditions. Ellipticaly polarized steady-state solutions also exist.

An example of this bistable behavior can be found in the case of γa > 0 and

γp = 50ns−1 (Fig. 2.5(a), vertical line). When µ is set just above threshold the

y polarization is slightly favored by its greatest gain and becomes stable to the

detriment of the x. By further increasing µ, and around µ = 1.12, the x polarization

becomes stable but the VCSEL will keep emitting the y polarization. At µ ∼ 1.16,
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Figure 2.5: Polarization stability diagram in the parameter space (γp, µ) for (a) γa = 0.5

ns−1 and (b) γa = −0.2 ns−1. The vertical dashed line shows a change of stability crossing

a bistable region.

the y polarization becomes unstable and the polarization turns to the x direction.

At this point, if µ is decreased, the x mode will be on until its stability boundary

(at µ = 1.12). This hysteresis is the footprint of bistability. A similar behavior

exchanging x’s and y’s can be seen in Fig. 2.5(b) if we consider γa < 0 and γp =

4ns−1.

The SFM model above described is a combination of phenomenological and de-

tailed theoretical analysis of the light-matter interactions in VCSELs. However, the

model has certain limitations that have to be considered. Several approximations

have been made to obtain the model equations.

A first simplification is to consider that the dipole polarizations have a much faster

relaxation rate than the other characteristic time scales of the system and can be

adiabatically eliminated. Furthermore, we use the simplest version of the SFM model

that does not take into account the transverse modes of the emitted light, thus we

restrict our analysis to low pump currents not very far from the threshold, where the

fundamental transverse mode dominates. The model also neglects the thermal effects

in the carriers and gain. Finally, the amplitude and phase anisotropies are considered
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parallels, i.e. in the same x and y axis, for simplicity, thus the contribution of both

parameters can be expressed, in the model, as a function of the same polarization.



Chapter 3

Nonlinear and stochastic dynamics

of semiconductor lasers

Semiconductor lasers have many important applications, and their study is impor-

tant to improve the performance and characteristics of the next generation of SCLs.

However, there is another important motivation for the study of these devices. Semi-

conductor lasers display a large variety of nonlinear dynamics also present in other

nonlinear systems. Excitability [82, 83, 84], bistability [65, 66], low frequency fluctu-

ations [85, 86], chaos [87] and nontrivial synchronization phenomena [88, 90, 91, 92]

are some examples.

Due to the fact that these dynamics can be observed and controlled experimen-

tally, semiconductor lasers are good devices for improving our understanding of the

origin of these dynamics. In this chapter we will consider dynamics induced by mod-

ulating the injection current of the laser in section 3.1, by an external reflector in

section 3.2 and by spontaneous emission noise in section 3.3. Finally, the dynamics

of coupled lasers will be discussed in the framework of synchronization of networks

of nonlinear oscillators in section 3.4, by focusing in two types of synchronizations

transitions: the crowd synchrony and the quorum sensing.

37
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3.1 Effects of the current sweep across a bifurca-

tion point

In nonlinear systems, when a control parameter is varied in time and is swept across

a bifurcation point, the phenomenon of critical slowing down occurs near the

bifurcation point and results in dynamical hysteresis [93]. In semiconductor lasers

this phenomenon has been demonstrated experimentally near a bifurcation, such as

the laser threshold, and it produces a delay in the laser turn-on, as shown in Fig.

3.1. This delay depends on the pump current sweep rate and on the noise strength,

among other parameters [93, 94, 95].

Figure 3.1: (a) Laser intensity and pump voltage as a function of time when a triangle

wave of frequency 40 kHz is applied by the function generator. The laser switches on at

a voltage V ∗ larger than the static threshold at Vth = 1.78, while the turn-off occurs at

V ≈ Vth for decreasing pump. (b) A plot of the laser intensity as a function of pump

voltage shows bistability in the interval Vth < V < V ∗. The time traces, plotted with

points to better highlight the effect, are slightly separated on the diagonal branch: the

lower occurs for increasing pump, the higher for decreasing pump because of the speed at

which the laser is driven. From [94].

The quasi-static intensity-current response is obtained with a very slow increase of

the pump current, as that shown in Fig. 3.2(a), and is a good representation of the



3.1. EFFECTS OF THE CURRENT SWEEP... 39

polarization response of a VCSEL when the injection current variation is slower than

the longest time scale of the laser. Figure 3.2(a) is as the static intensity-current

obtained by increasing the pump current in small steps after the stationary state

is reached. However, the stability scenario shown in Fig. 3.2(a) changes drastically

when the injection current variation is not slow or quasi-adiabatic, as compared to

the laser characteristic time-scales, and fails to describe the laser polarization with

faster modulation.

The influence of current modulation near the laser threshold and PS points can be

investigated numerically by simulating the SFM rate equations [96]. Figure 3.2(b)

shows the polarization intensities vs. the pump current, when the current varies

between µi = 0.95 and µf = 1.4 in 25 ns [note that in Fig. 3.2(a) the current varies

between the same extreme values but in 40 µs]. By comparing both figures one can

observe that, with a faster current modulation:

(i) The threshold is delayed to a higher current value, i.e., the dynamic lasing

threshold is larger than the static one, µs,th = 1 in the absence of anisotropies.

(ii) The laser turns on with relaxation oscillations leading to pulses of intensity

that relaxe to the dynamical stable state.

(iii) The PS for increasing current is delayed to a higher current value.

(iv) The PS for decreasing current is delayed to a lower current value and can

even disappear (in Fig. 3.2(b) one can notice that the x polarization remains on

until the laser turns off).

(v) As a consequence of (iii) and (iv), the size of the bistability region increases, as

compared to that predicted by both, the linear stability analysis and the simulations

with quasi-static current variation.

The above-described phenomena near the polarization switching points, have been

demonstrated experimentally in directly modulated VCSELs [97].

The multiple applications of VCSELs in optical communications have prompted
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Figure 3.2: (a) Intensities of the x and y polarizations when the injection current increases

and decreases linearly, from µ0 = 0.95 to µf = 1.4 in 40 µs. x polarization in gray for

increasing (▽) and decreasing (gray solid line) current; y polarization in black for increasing

(©) and decreasing (black solid line) current. (b) As panel (a), but the current varies from

µ0 = 0.95 to µf = 1.4 in 25 ns. Other model parameters are shown in Table 2.1.

a large interest in the study of the response of these devices to current modulation.

A signal of period equal to the period of the modulation can be transmitted and

encoded as a logic signal in bits of high and low intensities. For this purpose, is

necessary to use a laser that is capable of responding at high modulation frequencies.

VCSELs can be directly modulated at high speeds and a lot of effort has focused

on achieving a wide small-signal modulation bandwidth. Under large amplitude

current modulation, nonlinear effects arise (such as period doubling, chaos, multi-

stability, etc. [98, 99, 100, 101]). In VCSELs, the polarization and transverse-mode

competition greatly enhance the complexity of the nonlinear dynamics [102, 103,

104, 105, 106].

3.2 Optical feedback induced dynamics

When the light of a semiconductor laser is reflected in an external mirror and rein-

jected into the laser it may produce a destabilization of the laser output that is not
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suitable for many applications. Even a small amount of reinjected light can induce

large fluctuations in the intensity and a broad optical spectrum. This is the case

of weak optical feedback. Especially sensitive to this feedback are the EELs, due

to the relatively low reflectivity of their internal cavity mirrors. However, most of

the dynamics observed in EELs can also be observed in other SCLs such as VC-

SELs [107]. In this section, we will analyze the influence of optical feedback from

an external cavity in the dynamics of an EEL.

One of the important characteristics of a laser with feedback is related with the

current-intensity curve (Fig. 3.3). The threshold condition can be determined from

Eqs. (2.10) and (2.11) by imposing |Es|2 =0. From this condition one can see that

the optical feedback reduces the threshold current in a factor that is proportional

to the feedback strength, κfb. By increasing the pump current in small steps, the

laser with feedback turns on at a µfb
th smaller than the solitary laser threshold (i.e.

without feedback) at µsol
th = 1 and the intensity increases linearly with the pump

current, as seen in Fig 3.3.
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Figure 3.3: Intensity-current response of a solitary EEL (gray line) and of a EEL with

optical feedback (black line). κfb=30 ns−1 and k =300 ns−1.

A rich variety of nonlinear dynamics appears when the different model param-

eters are varied. A simple classification can be done according to the behavior of
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the output intensity that distinguish three domains (Fig. 3.4(a)): the steady-state

regime, the low frequency fluctuations regime and the coherence collapse regime.

Figure 3.4: Dynamical regimes of a SCL with optical feedback. (a) Boundaries of the

regimes in the injection vs. current-feedback strength phase space. Adapted from [47].

The time traces for the regimes labeled as b, c and d correspond to the panels (b), (c) and

(d) respectively. (b), (c) and (d) Intensity time traces for the regimes of LFFs, coherence

collapse and coexistence of stable emission and LFFs respectively. Adapted from [108].

For injection currents close to the threshold, the laser output becomes unstable

and shows large fluctuations in the intensity and phase. A fast pulsed dynamics

occurs in the range of ps with an irregular amplitude modulated by a slow envelope

in the range of hundreds of ns [85]. In fact, experimental limitations in the time

resolution may filter the fast dynamics and only the slow envelope can be observed.

This slow envelope exhibits the so called low frequency fluctuations (LFFs). The

LFFs are characterized by sudden dropouts of intensity followed by a slow recovery

process, after which the intensity reaches a nearly constant value and remains there

for a certain time before the occurrence of a new dropout (Fig. 3.4(b)).

The coherence collapse regime occurs for large enough pump currents and mod-
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erate feedbacks [42, 83, 109] (Fig. 3.4(c)). In this regime, the relaxation oscillations

are excited by the feedback and a chaotic dynamics of high dimensionality emerges.

The high number of ECMs involved in this regime produces an enlargement of the

linewidth that can be of the order of GHz, and the intensity fluctuations become

completely irregular. When the relaxation oscillation frequency matches the exter-

nal cavity resonance, a period doubling route to chaos can be found by increasing the

feedback strength [110] while, when this condition is not satisfied, a quasiperiodic

route to chaos can be observed [111, 112].

For low pump currents close to the threshold and moderate feedback strength,

the stable steady-state regime can be observed, in a large range of parameters,

alternated with periods of LFFs (Fig. 3.4(d)). In this regime called coexistence

regime, groups of LFFs containing up to thousands of dropouts occur, followed by

regions of constant intensity. When the trajectory in phase space reaches one of

the stable ECMs, in the absence of noise or in the presence of a small amount of

noise, the system remains there indefinitely, leading to noisy cw emission with a very

narrow linewidth. A large enough perturbation, e.g. a fluctuation induced by noise,

can induce escapes from the fixed-point attractor after which a new set of LFFs

occurs. The probability of escape from the stable ECM has been described in terms

of the Kramers problem in a potential well [107]. In these regimes both dynamics

alternate in a coexistence between the stable emission and LFFs (Fig. 3.4(d)). The

process by which the cw emission is reached is not fully understood yet and suggests

the transient nature of the LFFs which has been observed numerically in the LK

model [107].

The low frequency fluctuations regime in SCLs (Fig. 3.5(a)) was observed ex-

perimentally for the first time in 1977 [44], and progressively attracted attention.

Different explanations have been proposed for the nature of the LFFs involving

stochastic and deterministic processes. A first explanation was given by Henry and

Kazarinov [113]. The authors used a potential well model where the laser leaves

the steady state due to the spontaneous emission noise, and the system describes a
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trajectory in the phase space by remaining in successive minima of potential wells.

A generalization of this framework was published in [45] by introducing a multimode

traveling wave model driven by noise that can be understood as a bistable system

with a MGM and a temporally stable mode with lower intensity. In this model,

even without noise, the authors observed LFFs and suggested the existence of a

chaotic attractor as a mechanism for LFFs. The existence of a chaotic attractor was

experimentally confirmed and interpreted as a time-inverted type II intermittency

[114]. Another description of LFFs was proposed by Sano [115] based on the analysis

of the deterministic LK model in the phase space of (∆ωτ , N). According to this

description, the trajectory in the phase space follows the locally chaotic attractors

(around the modes, see Fig. 2.2(a)), drifting from a low-gain mode (low intensity)

to a higher-gain mode (higher intensity), as depicted in Fig. 3.5 (label 1). The high

gain modes are closer to the saddle-points (anti-modes), which increases the prob-

ability that the trajectory collides with one of the saddle-points (label 2). After the

collision, the trajectory is repelled towards the lower gain modes (label 3) when the

power dropout occurs and the process starts again. Subsequent experimental obser-

vations showed evidences of the stochastic nature for the initiation of dropout events

by comparing the results obtained in a semiconductor laser with optical feedback

with the escape of a Brownian particle from a metastable state [116].

A commonly used measure to characterize the statistical properties of the LFFs is

the time interval between consecutive dropouts, T . Figure 3.6 shows typical prob-

ability distribution functions of the inter-dropout intervals obtained experimentally

(Fig. 3.6 (a)) and numerically by integrating the LK model (Fig. 3.6 (b)).

Sukow et al. [117] studied the effect of the pump current in the inter-dropout

average time and found a refractory time just after the dropout with a zero proba-

bility for the occurrence of a new event. They related this with the recovering of the

intensity after the dropout. Depending on which parameter is changed, the inter-

dropout time varies in a different way (Fig. 3.7). In particular, the average of the

inter-dropout time, 〈T 〉, decreases for increasing the injection current [117, 118] (Fig.
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Figure 3.5: (a) Time trace of the laser intensity in the low frequency fluctuation regime.

The fast picosecond dynamics (black line) has been filtered out at 120 kHz (red line). The

laser is initially in the solitary steady state and at time t=0 the optical feedback is turned

on. (b) The filtered time trace in the phase space (∆ωτ , |E|2). The squares and circles

show the modes and the anti-modes respectively.

0 200 400 600 800 1000 1200 1400
0

0.02

0.04

0.06

0.08

0.1

T (ns)

P
D

F

(a)

0 200 400 600 800 1000 1200 1400
0

0.02

0.04

0.06

0.08

0.1

T (ns)

P
D

F

(b)

Figure 3.6: (a) Probability distribution function (PDF) of time between consecutive

dropouts, T . Figure courtesy of J. Tiana-Alsina. (a) PDF obtained experimentally and

(b) PDF obtained by integrating the LK model. The parameters used are: τ =6 ns, µ =

0.95, κfb =30 ns−1, α =5, ε = 0.07, γN = 1 ns−1, k = 300 ns−1 and D = 10−8 ns−1.

3.7(a)). When the time delay is increased, 〈T 〉 increases monotonically [119, 120]

(Fig. 3.7(b)) which also occurs for increasing the feedback strength [118, 120] (Fig.

3.7(c)).

A good agreement between the model and experiments was found by including a

noise in the LK model [83, 121, 122]. A novel interpretation of LFFs was reported
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Figure 3.7: Averaged inter-dropout time as a function of (a) the bias current, (b) external

cavity length and (c) the feedback ratio. (a) and (b) are adapted from [120] and (c) from

[118].

experimentally and numerically in [123], based on the deterministic LK model, where

the laser behaves as a deterministic chaotic self-excitable system.

Actually, the LK model has succeeded in the description of the LFF regime even

in multi-mode lasers where the dynamics of total intensity is very similar to that of a

single model laser. However, the interactions between modes require a generalization

of the LK model and a discussion of the multimode extensions of the LK model is

out of the scope of this thesis.

In some parameter regions, the LFFs show excitability [82, 83]. In these regions,

a different model for the LFFs was proposed by Eguia, Mindlin and Giudici [124].

The authors considered a phenomenological model (the EMG model from now on)

in which, after an Andronov bifurcation, a pair of fixed points (a node and a saddle)

is created. The unstable manifolds of the saddle, S, are the stable manifolds of the

node, N, as depicted in Fig. 3.8. The third fixed point is a repeller, R, inside the

heteroclinic orbit with the unstable manifold being one of the stable manifold of the

saddle.

An appropriate amount of noise produces escapes from the stable node and, even-

tually, the system can reach the unstable manifold of the saddle, describing a long

excursion in the phase space. Due to the proximity between the stable manifolds
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Figure 3.8: Schematic representation of the fixed points and manifolds descriving phe-

nomenologically the LFFs as proposed in [124]. Adapted from [127].

of the saddle and the node, the system can describe some oscillations around the

repeller before falling into the node. Yacomotti et al. [125] associated the two pa-

rameters of the model to the bias current and the feedback strength, obtaining a

good agreement in the distribution of the inter-dropout intervals, between the model

and experiments. In 2005, Méndez et al. found that the excitable behavior in LFFs

is present only in a subset of the region where LFFs can be observed [126] and, more

recently [127], the existence of coarse grained variables, that describes the LFFs, was

discussed in terms of the phase space of the EMG model. A similar trajectory in

the phase space of the intensity and its derivative was also obtained experimentally

and numerically, with the LK model.

3.3 Noise induced dynamics

Usually considered as a drawback, noise is present in many systems in nature, per-

turbing their evolution. The interaction of the system with different external factors

not considered in the deterministic model may produce fluctuations difficult or even

impossible to predict. The (large) number of degrees of freedom that descrive these

fluctuations, from e.g. a thermal bath, can be considered as noise. Thus, an intrinsic

deterministic dynamics of the system becomes modified by stochastic fluctuations

of the parameters or variables of the systems that can sometimes produce counter-
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intuitive effects.

Semiconductor lasers have a main source of noise that comes from the sponta-

neous emission process. It occurs when an excited carrier decays spontaneously

to a lower energy level emitting a photon. Those photons are emitted randomly in

direction and phase, unlike what occurs with stimulated emission, where the emit-

ted photons have the same direction and phase. The spontaneous emission rate is

strongly influenced by the temperature of the device and the energy of the band

gap and, in semiconductor lasers, is not negligible when working at room temper-

ature [41]. It was demonstrated [128] that the effect of spontaneous emission in a

semiconductor laser can be simulated numerically by using non-correlated Gaussian

white noise terms added to the rate-equations for the real and imaginary parts of

the complex electric field.

Spontaneous emission noise is not only present in the optical field but also in the

carrier recombination. The consideration of the noise term in the equations for the

optical field implies also a noise term in the carrier equation. Furthermore, small

fluctuations in the electronics that control the pump current of the laser could also

be considered as a noise term in the injection current. However, the carrier and

current noise sources are, in general, small enough to be neglected, despite some

dynamics can not be explained without the influence of carrier noise [129].

From the dynamical point of view, the spontaneous emission in SCLs induce

perturbations that can trigger escapes from the stable steady states. In the case of

a solitary laser after the perturbation the system returns to the fixed point describing

relaxation oscillations around it.

Noise can often help a nonlinear system to find a new stable stationary solution. In

many systems, when a control parameter is varied continuously, either periodically

or not, across a bifurcation point, critical slowing down occurs as explained in section

3.1, for which the system remains in the initial state even above the static bifurcation

point. Noise can help the system to reach the new stable state anticipating the
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parameter value at which the dynamical transition occurs.

In semiconductor lasers with optical feedback, in certain parameter regions, noise

can also induce important differences in the chaotic itinerancy organizing the dy-

namics, in such a way that the noise reduces the fluctuations of the trajectory around

the ECMs and increases the time to collide with an anti-mode, i.e. increasing the

inter-dropout time [122].

3.3.1 Stochastic dynamics in multi-mode semiconductor lasers

Nonlinear systems often display multi-stability, i.e., several stable attractors can

coexist in the phase space and a large enough perturbation can induce jumps from

one attractor to another. This is the case of a particle in a bistable system, such as a

double well potential, under the influence of Gaussian white noise. The probability

of transition from one well to the other decreases with the height of the potential

and increases with the noise strength. The transition rate is given by the Kramers

rate, Rk ∝ e−∆V/D being ∆V the height of the potential barrier and D the noise

strength [130].

As discussed in sections 1.3 and 3.1, VCSELs show bistability in the polarization

of the electric field for an appropriate range of pump currents. Near the polarization

switching (PS) points, stochastic, i.e. noise-induced, switching can also occur. It has

been shown that, in spite of the potentially complicated polarization dynamics, key

features of the PS (such as the distribution of residence times in each polarization

state) can be well understood as stochastic hopping in an effective 1D double-well

potential as shown in Fig. 3.9 [65, 66].

Time traces for three different pump currents are shown in Fig. 3.10(a)-(c) and the

effective potential associated to the polarization switching scenario is displayed

schematically in Fig. 3.10(d). In the low current region, labeled I, the laser can only

emit the y polarization, which is represented as an effective potential with only one



50 CHAPTER 3. NONLINEAR AND STOCHASTIC DYNAMICS OF SCLS

Figure 3.9: Experimental distribution of residence times of polarization switching in a

VCSEL for a pump current that shows polarization bistability. The dashed doted line

shows an exponential fit. The inset shows part of the time trace used to calculate the

distribution. From [65].

well. A typical time-trace of the two polarizations is shown in Fig. 3.10(a). For

increasing pump there is a region of pump current values, labeled II, where there is

bistability and a small probability of emission of the x polarization. The effective

potential is a double-well potential, with a small right well. In this region of pump

current values, if the laser emits the x polarization, a weak perturbation or a small

amount of noise has a large probability to trigger a PS to the y polarization. On the

contrary, if the laser emits the y polarization, there is only a small probability that a

fluctuation will trigger a PS. As the pump increases the switching probabilities vary

(Fig. 3.10(b)) and at the right boundary of the bistable region, label III, the most

probable polarization is the x polarization. If the laser emits the y polarization, a

weak perturbation or a small amount of noise can trigger a switch to the x polar-

ization. In this region the effective potential is the double-well potential which has

a small left well. Finally, for high pump current (region label IV), the laser emits

the x polarization and the effective potential has only one well (Fig. 3.10(c)).

A periodic modulation of the pump current can periodically modify the stability of
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Figure 3.10: (a) Time trace for the x (gray) and y (black) polarizations for a pump current

µ =1.05, (b) µ =1.14 and (c) µ =1.25. The noise strength is D = 10−3ns−1. (d) Averaged

intensities of the x and y polarizations when the injection current increases and decreases

linearly, from µ0 = 0.95 to µf = 1.4 in 40 µs. x polarization in gray for increasing (▽)

and decreasing (gray solid line) current; y polarization in black for increasing (©) and

decreasing (black solid line) current. The black curves are schematic representations of the

effective one-dimensional potential at four pump current values, corresponding to labels I

to IV. The noise strength is D = 10−6ns−1.

the above described potential wells. When an appropriate amount of noise is added

to the system, the switching between one well to the other becomes synchronous

with the modulation leading to the stochastic resonance effect (SR). The SR

occurs when a nonlinear system amplifies a small periodic signal under the influence

of an appropriate amount of noise [131]. This concept, first introduced as a possible

explanation for the ice ages [132, 133], has been observed in a large variety of systems

such as electronic circuits [134], bistable ring lasers [135], neuronal systems [136],

in the inter-dropout time in SCL with optical feedback [137, 138] and in the PS in

VCSELs [139, 140]. Different mechanisms for SR have been reported (see [131] and

[141] for reviews).

However, it is not necessary a periodic modulation to observe an optimal response

of the nonlinear system under the right amount of noise. In general, the SR can be

characterized by the synchronous response between a weak input and the output of
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the system when the desired output is not obtained without noise. This is the case

of a new type of SR reported by Murali et al. in 2009 [142] in the framework of

digital signal processing. Considering the relatively high level of noise that affects

the small electronic devices, the authors proposed and demonstrated the reliability

of a bistable electronic system acting as a logic gate under the influence of the right

amount of noise, leading to the so called logic stochastic resonance that will be

studied in more detail in Chapter 5.

3.4 Synchronization of nonlinear oscillators

Synchronization is a phenomenon that appears frequently in neuronal systems

or networks, interacting cells and, from a more general point of view, in coupled

oscillators [143, 144]. Synchronization is a general concept that can be summarized

as an adjustment of rhythms of oscillating elements due to their interactions. Vari-

ous forms of synchronization have been described such as identical synchronization,

phase synchronization, lag synchronization, and generalized synchronization. This

dynamics was described for the first time by Huygens in the XVII century when

he observed that two pendulum clocks with slightly different periods hanged on the

same beam synchronized [145]. Early examples of synchronization in natural sys-

tems with a large number of elements are found in swarms of bioluminescent insects

as the glowworms or the fireflies that glow periodically at the unison despite the

fact that their natural frequencies, without external stimulus, are different [146].

Another example, maybe more familiar to all of us, is the case of an applauding

audience where we can hear a transition from noise (each person applauding at

different rhythm and phase) to rhythmic or synchronously applause.
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3.4.1 Synchronization phenomena in semiconductor lasers

One of the most intuitive and simple way to synchronize an ensemble of oscillators

is by using a common driving signal. When a number of independent oscillators are

influenced by the same external forcing, in a unidirectional coupling scheme, syn-

chronization of all or almost all the oscillators will arise for large enough coupling

strength. Synchronization can be achieved under the influence of a determinis-

tic forcing but also under a stochastic one [144]. The driving signal determines

the characteristics and dynamics of the synchronized elements which results in a

transmitter-receiver configuration and can produce a rich variety of bifurcations

and dynamics [147].

A practical application of synchronization by a common external signal can be

found in the synchronization of a semiconductor laser array [148, 149]. SCLs can be

manufactured in arrays of tens of lasers each of them emitting a small output power.

Typically, the optical field of each laser is slightly different from the others due to

inhomogeneities in the manufacturing process and because the phase of the electric

field is randomly modified by spontaneous emission. Therefore, the laser array

produces an output that is the sum of the output of each laser. Synchronization via

an external signal, e.g. when they are injected by an external laser as schematically

shown in Fig. 3.11(a), can be used to obtain large intensities with low power devices.

An external single mode laser was used in [150] as a master laser to inject light

on each laser of an array. This mechanism, known as injection locking, allowed

obtaining outputs of 105 mW in the far-field beam at a single frequency with an

array of 10 EELs of 3 mW each. Notice that this output is larger than the direct

sum of the individual powers of the lasers of the array, since interference occurs in

the electric field and the power depends on the square of the sum of electric fields.

The synchronization of a large number of uncoupled EELs (schematically repre-

sented by units 1 and 3 in Fig. 3.11(a)) driven by a common noise source (unit 2 in

Fig. 3.11(a)), that can be obtained for example from the incoherent light emitted
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Figure 3.11: Schematic representation of unidirectional and bidirectional coupling

schemes. (a) Unidirectional coupling where the laser 2 drives the lasers 1 and 3. (b)

Bidirectional coupling in a chain of lasers. 1 and 3 are not directly coupled, thus they are

coupled through 2.

by a laser pumped below threshold, is also possible and was theoretically studied in

[151]. The author reported a synchronization transition, by increasing the coupling

strength, when the α parameter is equal to zero. When a non-zero α factor is consid-

ered in the equations, there is a significant loss of synchronization for intermediate

coupling strengths and for stronger external forcing a revival of synchronization was

observed. This was described in terms of the destabilization of the synchronous

solution via a stochastic bifurcation to chaos.

The synchronization transition changes significantly when bidirectional coupling

is considered. When the common laser is also receiving the signal of the outer ones,

it modifies its dynamics according to the other lasers acting as a communication

relay [152]. The simplest coupling scheme for this scenario can be found in a chain

of three bidirectionally coupled semiconductor lasers as shown schematically in Fig.

3.11(b). Two of the lasers (1 and 3) are coupled through the central one (2) that

receives the input of the two outer lasers. If the lasers are different, for example if

two lasers are pumped below the lasing threshold and the third one above the lasing

threshold, the latter can induce dynamics to the other lasers acting as a master laser,

which strongly determines the dynamics of the whole system. When the lasers are

identical or similar enough, the system can be mutually synchronized in the sense

that a master laser can not be clearly identified and the final states result from
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the collective dynamics of the system. It was shown in [153, 154] that identical

lasers, without intrinsic chaotic dynamics when they are not coupled, can show

identical synchronization of chaotic dynamics between the outer lasers for moderate

coupling strengths while the central one is not synchronized with the outer lasers.

Differences in the synchronization can be observed when the oscillators are chaotic

in the absence of coupling. Using the same coupling topology but in identical Chua

circuits [155], identical synchronization was observed between the outer oscillators

while the outer and the central oscillators show generalized synchronization.

When the time delay of the coupling, that is the time required for the signal to

propagate from the emitter to the receiver laser, is much shorter than the character-

istic time scales of the devices, it can be neglected. The coupling can be considered

instantaneous if the lasers are separated short enough distances. However, when the

delay is comparable or larger than the characteristic time scales, it has to be consid-

ered in the coupling with important consequences in the dynamics [156, 157, 158].

A nontrivial case of synchronization arises when two or more oscillators coupled

with time delay synchronizes at zero-lag under the appropriate conditions [152].

Isochronal synchronization has been identified as an important mechanism in neu-

ronal activity between distant regions of the brain [159] and can also be observed in

coupled chaotic oscillators.

When considering the synchronization of two identical mutually coupled, i.e. bidi-

rectionally coupled, chaotic oscillators with time delay and feedbacks, e.g. lasers

with feedback or iterative maps, zero-lag synchronization can be found for cer-

tain ratios of coupling and feedback time delays [160, 161, 162]. In the case of only

two bidirectionally coupled lasers without feedback, the identical synchronization

has been found to be unstable when there are no detunings between their optical

frequencies. When there is a small detuning the laser with higher optical frequency

leads the dynamics [86, 163]. Furthermore, anticipated synchronization was ob-

served in SCLs unidirectional coupled with time delay [89, 90] where the slave laser

anticipates the chaotic dynamics of the master laser. These concepts were used in
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[164] to design a mechanism of transmitter-mediator-receiver without time delay

between the transmitter and the receiver signal.

A general and robust mechanism for isochronal synchronization can be achieved

when two delay-coupled oscillators are only connected through a third mediating el-

ement [152]. By using semiconductor lasers, and numerically validated for other sys-

tems, identical zero-lag synchronization between the outer lasers is observed while,

the central laser lags the dynamics a time equal to the time delay of the coupling

as can be seen in Fig. 3.12.

Figure 3.12: (A), (B) and (C) Pairs of time trances for the outer lasers LD1 and LD3

and the central laser LD2. The time trace for LD2 is shifted one time delay for better

comparison. (D), (E) and (F) cross-correlations between those pairs of time traces. From

[152].

This mechanism is still valid for mismatches in the parameters of the individual

lasers in such a way that when the spectral detuning between lasers is of the order

of 15 GHz correlations of the time traces larger than the 80% can be observed, and
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identical synchronization can be achieved for large mismatches in the time delay but

with a temporal shift equal to the difference between them.

3.4.2 Synchronization phenomena controlled by the system

size

As it was previously discussed, coordinated activity can emerges spontaneously when

there is not a clear leader of the dynamics and the resulting dynamics of the group

can be different from the dynamics of its components. In these cases, the synchro-

nization is the result of the contribution of each non-identical individual element

and a consequence of the interactions of the group as was discussed for the case of

three bidirectionally coupled SCLs.

An unexpected example of spontaneous collective synchronization occurred in the

Millennium Bridge in London in 2000. Two days after its opening, the pedestrian

bridge had to be closed because its excessive wobbling in the transverse direction.

Subsequent investigations [165] revealed that the pedestrians, initially walking with

different frequencies and phases, fell into step spontaneously when the number of

pedestrians but only if large enough. That effect was modeled and understood

a few years later in terms of the so-called crowd synchrony. The system was

successfully described as a group of M independent Kuramoto oscillators, modeling

the pedestrians, with a small dispersion in their frequencies, coupled through a

weakly damped and driven harmonic oscillator as a common medium, representing

the bridge [166, 167]. The authors found that below a critical number of pedestrians,

each oscillator evolves almost independently, doing a null averaged force to the

bridge (Fig. 3.13(a)). Above the critical value, the pedestrians become progressively

synchronized (Fig. 3.13(b)) and the bridge oscillates with small amplitude while for

large M almost all the pedestrians oscillate in phase (Fig. 3.13(c)).

Wobbling and synchrony emerge simultaneously at a value M = Mc (Fig. 3.14(a)
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Figure 3.13: Left panel: time traces for the phase of the pedestrians in radians sorted by

their solitary frequencies for (a) M = 30, (b) M = 80 and (c) M = 120. Right panel: the

ideal Gaussian cumulative distribution (solid line) and the pedestrians’ frequencies (dots).

and (b)) given in terms of the parameters of the model as

Mc =
A

GCP (Ω0)
(3.1)

where A is a constant value that depends on the bridge characteristics, G is the

maximum force imparted by each pedestrian, C is the sensitivity of the pedestrians

to the bridge movement and P (Ω0) is the density distribution of the pedestrian

frequency at the bridge natural frequency Ω0.

Other examples can be found in the literature where a certain critical number

of elements are required for the appearance of a collective behavior. First intro-

duced in the framework of biology, quorum sensing is a mechanism of cell-cell

communication which involves the production, release and community wide detec-
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Figure 3.14: (a) Normalized amplitude of the bridge, defined as A
√

M , as a function of

the crowd size. (b) Normalized order parameter, defined as |∑ eiφ|/
√

M where φ is the

phase of each pedestrian, as a function of the crowd size. From Eq. (3.1), Mc =112.

tion of signaling molecules. When the number of cells and the conditions of the

medium surrounding the cell, which contains the signaling molecules, are appropri-

ated, each member of a population undergoes a sudden change in behavior with a

supercritical increase in the concentration of signaling molecules in the extracellular

solution, leading to the quorum sensing transition [168]. Quorum sensing has

inspired research in other fields extending this behavior to whole organisms, chemi-

cal reactions and swarm robots [169, 170, 171]. Recently, it has been reported that

chemical oscillators also show a transition to a synchronized state when the number

of elements is above a certain number [170]. In that experiment, a large number of

catalyst particles were introduced in a catalyst free Belousov-Zhabotinsky reaction

mixture. The particles induce a periodic chemical reaction locally changing the color

of the medium. While the period of the catalyst particles was slightly different due

to their different sizes, a transition from no-oscillations or incoherent oscillations

to coordinated behavior was found for a large enough number of catalysts in the

surrounding. Furthermore, how the transition to the synchronized state occurs can

be controlled by the exchange rate of chemical species, proportional to the stirring

rate of the system, between the catalysts and the surrounding. For low stirring

rates (Fig. 3.15(A)), a low density of particles leads to incoherent oscillations of

them while above a certain density, more and more catalysts modify their periods
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to oscillate synchronously, thus, a smooth transition to the coherent state occurs.

For large stirring rates (Fig. 3.15(B)), oscillations are no longer supported for small

densities but a sharp transition to the coherent state occurs above a critical density

equivalently to what can be observed in the quorum sensing transition.

Figure 3.15: Transition to the synchronized state for (A) small stirring rate and (B) large

stirring rate. From top to bottom: the voltage of the surrounding medium, the intensity

of the color change and the period of the oscillations as a function of the catalyst density.

From [170].
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Chapter 4

Generation of optical pulses in

VCSELs below the static threshold

In this chapter we will consider the dynamics induced by asymmetric modulation of

the injection current of a VCSEL. The goal is to study if, by using a suitable asym-

metric shape, optimal laser intensity pulses can be obtained. Different methods

have been proposed for optimizing the performance of directly modulated semicon-

ductor lasers [172, 173] by shaping the current input and exploiting the nonlinear

and stochastic light-matter interactions. Appropriate square-shaped current inputs

allow to control the laser time-evolution in the plane (photon density, carrier den-

sity). In [172] the aim was to avoid dynamical memory effects that arise because

even if the observable intensity has returned to its stationary value after a current

waveform was applied, the unobservable carrier density may not have reached its

stationary value. By suppressing dynamical memory effects the laser output is not

influenced by previously communicated information, which improves its performance

in digital data communication systems. In [173] adequate square-shaped injection

current inputs were demonstrated numerically and experimentally, to switch on a

semiconductor laser without relaxation oscillations (first a large pump value was

63
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applied to speed up the switch-on, followed by a lower value, temporarily below

threshold, tailored to eliminate just the right amount of the accumulated carriers,

whose excess would otherwise cause damped relaxation oscillations). The method

presented in this chapter [174] for the generation of optimal pulses with low average

injection current via asymmetric modulation is motivated by an experimental and

theoretical study using a Nd3+:YVO4 diode-pumped laser [175], where asymmetric

modulation was applied to the power delivered by the pumping diode laser. It was

shown that an asymmetric triangular signal with a slow raising ramp can lead to

the emission of pulses, even when the laser is operated, on average, below threshold.

In contrast, a signal with a fast raising ramp and the same averaged value does

not lead to pulse emission, the intensity remains at the noise level during all the

modulation cycle. Here we show that a similar effect can be observed in VCSELs

but with much faster modulating signals. We show that under suitable modulation

parameters subnanosecond pulses on two orthogonal linear polarizations can be

obtained even through the injection current is, on average, below the cw threshold.

Additionally, we find a stochastic resonance phenomenon as an optimal amount

of noise leads to maximum pulse amplitude accopmpanied by minimum amplitude

dispersion.

4.1 Asymmetric triangular current modulation

As described in Section 2.2, the SFM model [73] successfully reproduces the polar-

ization dynamics of a VCSEL and is a suitable model in order to study the response

of a VCSEL under current modulation. Equations (2.17), (2.18) and (2.19) have

been integrated using the explicit Euler method with a time step of 10−2ps, short

enough to ensure the convergence of the integration algorithm. The dynamics is

studied in terms of the intensity for the two orthogonal polarizations, |Ex|2 and

|Ey|2, and the total intensity as |ET |2 = |Ex|2 + |Ey|2.
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The time dependent pump current, µ(t), is modulated with an asymmetric tri-

angular signal of amplitude ∆µ, rising from µ0 (which coincides with the minimum

value of µ) a time interval T1, and falling back to µ0 a time interval T2, as shown in

Fig. 4.1. One modulation cycle is given by

µ(t) = µ0 + ∆µ (t/T1) for 0 ≤ t ≤ T1, (4.1)

µ(t) = µ0 + ∆µ[1 − (t − T1)/T2] for T1 ≤ t ≤ T1 + T2. (4.2)

and according to these definitions the mean pump current is µm = µ0 + ∆µ/2 and

is independent of the modulation period, T = T1 + T2. The asymmetry of the

modulation is characterized by the parameter αa = T1/T with 0 ≤ αa ≤ 1, which is

the ratio between the signal rising time and the modulation period.
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Figure 4.1: Time trace of the current variation and its characteristic parameters.

Equations (2.17), (2.18) and (2.19) were simulated with the typical VCSEL pa-

rameters shown in Table 2.1: k = 300 ns−1, α = 3, γN = 1 ns−1, γa = 0.5 ns−1,

γp = 50 rad/ns, γs = 50 ns−1, and D = 10−6 ns−1 as . We chose these parameters

not only because they are typically used in the literature [73], but also, because

there is no polarization coexistence or elliptically polarized light, i.e., the laser emits
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either the x or the y polarization for a constant pump current, and this gives the

chance to show how the stability of these polarizations changes with the current

modulation.

4.2 Characterization of optical pulses

As discussed in Sec. 3.1, when sweeping a control parameter slowly through a

bifurcation point, the phenomenon of critical slowing down occurs and results in

dynamical hysteresis [93]. In Fig. 4.2 we illustrate this effect at the laser threshold

by plotting the time traces for a periodic and asymmetric current modulation,

for a slow increasing and a fast decreasing of the pump current parameter, µ, and four

different periods. In Fig. 4.2(a) the current is swept slowly through the cw threshold

(at µs,th =1), and is progressively increased in Fig. 4.2(b)-(d), where the sweep is

much faster. In the slow sweep, Fig. 4.2(a), when µ grows above the dynamic lasing

threshold, the laser turns on with a few relaxation oscillations. If the sweep is faster

the amplitude of those oscillations grows (Fig. 4.2(b)) and, eventually, the intensity

falls to 0 before the second oscillation (Fig. 4.2(c)). If we now repeat periodically

the linear increase and decrease of the pump current parameter with a period short

enough, only one pulse per cycle is emitted due to the transition from the non-lasing

to the lasing state through those relaxation oscillations, as shown in Fig. 4.2(d).

Therefore, a fast triangular current modulation (symmetric or not symmetric)

crossing the cw threshold can result in the emission of short pulses of both orthogonal

polarizations even when the current is, on average, below the static threshold, µs,th

(Fig. 4.3(a)). Because of the presence of noise, which is crucial at threshold, these

pulses are irregular, both in amplitude and in timing. The characteristics of these

pulses depend on the shape of the triangular signal modulating the current, µ(t), that

can be characterized in terms of the four parameters, µ0, ∆µ, T , and αa described

above.
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Figure 4.2: Time traces of the intensities of the orthogonal linear polarizations: |Ex|2

(gray solid line), |Ey|2 (black solid line), and the injection current as µ(t) − µ0 (dashed)

when the injection current increases and decreases linearly, from µ0 = 0.6 to µf = 1.4 for

different periods. (a) T=100 ns, (b) T=20 ns, (c) T=10 ns and (d) T=3 ns. For αa =0.8.

The modulation period and amplitude are chosen such that the laser emits only

one sharp pulse per modulation cycle, that is triggered at the end of the cycle. The

emission starts when µ(t) is still above 1, as can be seen in Fig. 4.3(a). This is in

good agreement with the observations of [175], and can be interpreted as due to the

nonlinear interplay of the photons and the carriers in the VCSEL active region, as

will be discussed later.

In Figs. 4.3(b)-(d) the dashed lines represent three different asymmetries: slow-

rising and fast-decreasing (αa =80%), almost symmetric (αa =60%) and fast-rising

and slow-decreasing (αa =20%). Those plots also show the resulting time traces of

the intensities of the two linear polarizations, |Ex|2 and |Ey|2, for three values of

the asymmetry parameter, αa. For αa = 80% large pulses are emitted, Fig. 4.3(b).

A detail of a pulse in Fig. 4.3(b) is shown in Fig. 4.3(a). For decreasing αa, i.e.
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Figure 4.3: (a) In the left axis the time traces of the intensities of the orthogonal linear

polarizations: |Ex|2 (gray solid line), |Ey|2 (black solid line), and in the right axis the

injection current µ(t) (dashed) for a period T=3 ns. (b)-(d) As in (a), time traces of

the intensities for an asymmetry parameter (b) αa=80%, (c) 60% and (d) 20%. The

modulation amplitude is ∆µ=1, the DC value is µ0=0.37 and µm = 0.87 < 1. Notice that

panel (a) is a detail of panel (b).

going to a more symmetric modulation, the pulse amplitude gradually decreases

(see Fig. 4.3(c) where αa = 60%). If we continue decreasing αa (considering the

opposite asymmetric shape, with a fast-rising and slow-decreasing ramp) the pulses

become smaller and eventually there are no pulses as the intensities of the two

polarizations remain at the noise level (see Fig. 4.3(d) where αa = 20%).

Therefore, when the current modulation is asymmetric, there is a clear difference

between the two asymmetry shapes: a slow-rising ramp followed by a fast-decreasing

one and the opposite situation, a fast-rising ramp followed by a slow-decreasing one.

The effect of the asymmetry of the current modulation on the characteristics of

the intensity pulses is presented in Fig. 4.4. Figure 4.4(a) displays the time averaged

intensities of the two linear polarizations, 〈|Ex|2〉 and 〈|Ey|2〉, and the time averaged
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total intensity, 〈|ET |2〉 = 〈|Ex|2 + |Ey|2〉, vs. the asymmetry parameter, αa. In

Fig. 4.4(b) we display the time averaged pulse amplitudes given by the maximum

intensity in a cycle for the x polarization, 〈Ax〉, for the y polarization, 〈Ay〉, and

for the total intensity 〈AT 〉 (when there is more than one pulse per modulation

cycle, we calculate the average amplitude of the largest pulse). The amplitudes are

one order of magnitude larger than the intensities because the laser emits sharp

pulses and is off during most of the modulation cycle. Figure 4.4(c) displays the

dispersion of the amplitude of that pulses, characterized in terms of the standard

deviation normalized to the mean amplitude. In all three measures there is an

optimal modulation asymmetry αa
∼= 80% for which the averaged intensity and

pulse amplitude reach their maximum value, and for this asymmetry the dispersion

of the pulse amplitude exhibits its minimum value.

The emitted pulses strongly depend on the initial conditions of the cycle which

are given by the dominance of one of the following mechanisms: the spontaneous

emission and the radiation left by the previous pulse. When the radiation left by

the previous pulse is absorbed by the carriers during the fall part of the cycle,

spontaneous emission is the dominant mechanism for triggering the next pulse in

the next cycle. On the contrary, when the radiation left has not been completely

absorbed, it dominates over spontaneous emission for triggering the next pulse. We

interpret our results as in [175], where the authors found that for small asymmetries

the spontaneous emission is the dominant mechanism while for large asymmetries

dominates the radiation left by the previous pulse.

The averaged total amplitude of the pulses is shown in Fig. 4.4(d) as a function of

αa and µm for a fixed ∆µ =1 [∆µ is the same as in Figs. 4.4(a)-(c), thus, Fig. 4.4(b) is

an horizontal scan in Fig. 4.4(d)]. We have used µm instead of µ0 to emphasize that

the laser emission occurs with a pump current that is on average below µs,th = 1. As

the pump current is modulated, it is suitable to define an effective lasing threshold

as the averaged pump current above which the laser turns on. The modulation

reduces the effective threshold which depends on the asymmetry, giving the largest
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Figure 4.4: (a) Time averaged intensities, (b) pulse amplitudes, and (c) normalized stan-

dard deviation of the pulse amplitude as a function of the asymmetry parameter, αa. In

(a)-(c) x polarization (△), y polarization (©) and total intensity (�). (d) Color plot of

the average pulse total amplitude, 〈AT 〉 in the parameter plane for the asymmetry param-

eter, αa, and the averaged pump current, µm = µ0 + ∆µ/2. The modulation amplitude is

∆µ=1 and the period is T=3 ns. The DC value µ0=0.37 is fixed in captions (a)-(c) and

is varied in (d).

threshold reduction and the maximum amplitude for an optimal αa ∼ 80%. For

increasing µm the maximum amplitude moves to lower asymmetries, for which it

has a fast rising ramp followed by a slow decreasing one.

The effective threshold depends also on the modulation parameters µ0 and ∆µ.

Figures 4.5(a)-(c) show the averaged intensities, 〈|Ex|2〉, 〈|Ey|2〉 and 〈|ET |2〉, for

αa = 0.8 and three values of ∆µ. In each caption ∆µ and αa are kept fixed while

µ0 varies, but in the horizontal axis we plot µm instead of µ0 to show that, for large

∆µ and small µ0, there is laser emission with µm < 1. 〈|ET |2〉 increases with µm,

and for large ∆µ, Figs. 4.5(a) and (b), the relation is nonlinear; kinks appear which

are due to the emission of additional pulses in each modulation cycle. Notice that

the modulation of the current leads to emission of both polarizations even when the
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x one is unstable for a constant injection current.
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Figure 4.5: (a)-(c) Time averaged intensities [x polarization 〈|Ex|2〉 (red), y polarization

〈|Ey|2〉 (blue) and total intensity 〈|ET |2〉 (black)] vs. average current, µm, for different

modulation amplitudes (a) ∆µ=1.0, (b) 0.5, and (c) 0.15. (d) Color plot of 〈|ET |2〉. The

asymmetry parameter αa=0.8 and the period T=3 ns are fixed.

The variation of the effective threshold with both µ0 and ∆µ is illustrated in

Fig. 4.5(d), that presents a color-coded 2D plot of 〈|ET |2〉. Also here the horizontal

axes displays µm instead of µ0, and Figs. 4.5(a)-(c) correspond to horizontal scans

in 4.5(d). In the bottom-left corner of Fig. 4.5(d), ∆µ and/or µ0 are too small,

the black color representing the intensity at the noise level, and the laser does not

turn on. We observe a smooth turn-on: as ∆µ and/or µ0 increase, 〈|ET |2〉 gradually

increases.

Figure 4.6 displays the time averaged pulse amplitude, 〈AT 〉, for the same param-

eters as Fig. 4.5. It can be noticed that near the effective threshold 〈AT 〉 increases

nearly linearly with µm, while for larger µm, 〈AT 〉 saturates but 〈|ET |2〉 continues

increasing with µm, as seen in Fig. 4.5. This is due to the fact that the laser emits

more than one pulse per modulation cycle and the carriers that generate one short

pulse for small µm now generate two pulses in a longer time interval.
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Figure 4.6: (a)-(c) Time averaged pulse amplitudes [x polarization 〈Ax〉 (red), y polariza-

tion 〈Ay〉 (blue) and total amplitude 〈AT 〉 (black)] vs. average current, µm, for different

modulation amplitudes (a) ∆µ=1.0, (b) 0.5, and (c) 0.15. (d) Color plot of the average

total intensity, 〈AT 〉. Parameters are as in Fig. 4.5.

4.2.1 Influence of noise in pulse generation

As previously discussed, near the lasing threshold noise plays a key role in the

emission of the pulses and the interplay between the pump current modulation and

the noise strength is expected to produce constructive effects enhancing the input

signal.

In Fig. 4.7(a)-(c) we show the time traces of the intensities of the polarizations

for a fixed modulation asymmetry, αa = 0.8, and three different noise strengths,

D. Large spontaneous emission triggers the pulses at the end of the rising ramp,

Fig. 4.7(a). An optimal noise strength D ∼ 10−3 ns−1 produces pulses with the

largest amplitude triggered at the very beginning of the falling ramp when the pump

current reaches its maximum value, Fig. 4.7(b). For lower D values the pulses are

emitted at the end of the falling ramp of the cycle and their amplitude gradually

decreases to zero, Fig. 4.7(c).
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Figure 4.7: (a)-(c) Time traces of the intensities for fixed asymmetry parameter αa =0.8

and three noise strengths (a) D=10−1 ns−1, (b) D=10−3 ns−1 and (c) D=10−8 ns−1.

In the left axis the time traces of the intensities of the orthogonal linear polarizations:

|Ex|2 (gray solid line), |Ey|2 (black solid line), and in the right axis the injection current

µ(t) (dashed). (d) Time averaged intensities, (e) pulse amplitudes, and (f) normalized

standard deviation of the pulse amplitude as a function of the noise strength. In (d)-(f) x

polarization (△), y polarization (©) and total intensity (�). The modulation amplitude

is ∆µ=1, the DC value is µ0=0.37, the asymmetry parameter is αa=0.8 and the period is

T=3 ns.

In Figs. 4.7(d), (e) and (f) we show the time averaged intensities, pulse ampli-

tudes and dispersion of the pulse amplitudes, respectively, as a function of the noise

strength, D. While the intensity grows monotonically with the noise strength until

it saturates, the amplitude of the pulses shows a maximum at D ∼ 10−3 ns−1, which

is accompanied by the minimum dispersion. This optimal emission for a finite noise

strength is a hallmark of stochastic resonance [131] in our system. Here, the effect

of the noise over the amplitude of the pulses is much more clear than in the period

of the pulses which occurs almost synchronized with the current modulation.

The appearance of a stochastic resonance highlights the interplay between the
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pulse triggering mechanisms. As we discussed before, the radiation left by the

previous pulse dominates for large αa. Thus, by increasing D we are enhancing the

effect of the spontaneous emission in the triggering process. The turn-on occurs

earlier, in a pump current modulation cycle, since the noise perturbation makes the

system easier to reach the lasing state. On the other hand, the earlier pulse, the

lower radiation left to the next pulse. The maximum amplitude in Fig. 4.7(e) gives

the optimal noise intensity for which the radiation left is not too low and the noise

is not too large.

4.3 Conclusions and discussion

The dynamics of a VCSEL driven by asymmetric triangular current modulation

was studied numerically using the spin-flip model. When the injection current is

on average below the cw threshold, irregular optical pulses in two orthogonal linear

polarizations can be generated by using large amplitude modulation of period of a

few nanoseconds. For an optimal modulation asymmetry, with a slow rising ramp

followed by a fast decreasing one, the effective threshold reduction is about 20%, the

pulse amplitude is maximum and the dispersion of the pulse amplitude is minimum.

In contrast, when the averaged current value is above the static threshold, the

optimal modulation asymmetry that leads to maximum pulse amplitude has a fast

rising ramp followed by a slow decreasing one.

The pulsed dynamics can be optimized by modifying the noise strength. The

system shows a stochastic resonance for a finite amount of noise that leads to the

maximum pulse amplitude and the minimum dispersion of the amplitude.

Those results are interpreted in terms of the interplay between the two mechanisms

triggering the emission of a pulse: the spontaneous emission and the radiation left

by the previous pulse.



Chapter 5

Logical stochastic resonance in

VCSELs

As discussed in the previous chapter, stochastic resonance [131] is a common ef-

fect in nonlinear systems. Recently, a new kind of stochastic resonance has been

demonstrated, named logical stochastic resonance (LSR). In this chapter we

demonstrate that LSR occurs in current-modulated VCSELs.

LSR uses the non-linear response of a bistable system to reproduce logical opera-

tions such as the AND and OR operations, under the influence of the right amount

of noise. The main idea behind LSR is that the input levels can be chosen such

that the probability of the switchings between two logical outputs is controlled by

the noise strength [142]. In [142] the authors demonstrated that a two-state sys-

tem with two adjustable thresholds, modeled by a 1D double-well potential, can

act as a reliable and flexible logic gate in the presence of an appropriate amount of

noise. LSR has also been numerically and experimentally demonstrated in a large

variety of systems such as electronic circuits, tunneling diodes or chemical systems

[176, 177, 178, 179, 180].

In the last years much research has been devoted to the study of optical devices

75
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acting as logical operators, an application limited mostly to the electronic circuits

so far. Specially interesting is the use of pump current or optical modulation as the

input signal to generate a logical output when it is applied to a bistable laser. In this

chapter we discuss the implementation of a VCSEL-based stochastic logical operator

using an aperiodic current modulation and the linearly polarized light as the

output signal.and we Here, we propose a novel method for exploiting polarization

bistability in VCSELs, based on the interplay of nonlinearity, bistability and noise

[181]. We performed numerical simulations of the spin-flip model and showed that

VCSELs operating in polarization bistable regimes can display LSR, which can used

to realize VCSEL-based robust logic gates that give a reliable logic response to two

logic inputs, even in the presence of a significant amount of noise. The two logic

inputs are encoded in a three-level aperiodic signal directly applied to the laser bias

current. Exploiting polarization bistability, one can consider that the laser response

is a logic 1 if one polarization is emitted, and a logic 0 if the orthogonal polarization

is emitted. Then, the truth table of the fundamental logical operators AND and OR

(and their negations, NAND and NOR) can be reproduced and we show that the

probability of a correct response is equal to one in a wide range of noise strengths

and laser parameters.

5.1 Aperiodic current modulation

As in the previous chapter, we use the framework of the SFM model [73], as described

in section 2.2, to describe the response of a VCSEL to aperiodic current modulation.

Equations (2.17), (2.18) and (2.19) have been integrated using the explicit Euler

method with a time step of 10−1ps, short enough to ensure the convergence of

the integration method. The dynamics is studied in terms of the intensity for the

two orthogonal polarizations, |Ex|2 and |Ey|2, and the total intensity as |ET |2 =

|Ex|2 + |Ey|2.
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Figure 5.1: Time trace of the current variation within a bit

The shape of the three-level signal applied to the time dependent laser pump

current, µ(t), is shown in Fig. 5.1. Within each modulation bit, the current is

constant during a time interval T1, referred to as the step time, then, there is a

ramp (up or down) to the current level encoding the next bit. The time required

for the signal to change from one value to the next (the rise time or the fall time

depending on the bit sequence), T2, is such that T2 ≪ T1. Each bit begins at the

middle of one ramp and finishes at the middle of the next one, as indicated in Fig.

5.1, and thus the length of the bit is T = T1 + T2. As will be discussed in the next

section, the value of T1 strongly influences the reliability of the VCSEL logic gate,

but the value of T2 does not affect significantly the operation, as long as T2 ≪ T1.

The model equations were simulated with the parameters shown in Table 2.1:

k = 300 ns−1, α = 3, γN = 1 ns−1, γa = 0.5 ns−1, γp = 50 rad ns−1 and γs = 50

ns−1, unless otherwise specifically stated. As will be discussed later, the operation

of the VCSEL-based stochastic logic gate (SLG) is robust and does not require fine

tuning of the parameters. In the following we focus on the logic OR operation and,

unless otherwise specifically stated, we use the following parameters for the three-
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level aperiodic signal: µm = 1.3, ∆µ = 0.27, T = T1 +T2 = 31.5 ns, T1 = 31 ns, and

T2 = 0.5 ns. When the time duration of the bit T is varied, T1 and T2 are varied

such that their ratio is kept constant.

5.1.1 Encoding scheme of the VCSEL logical response

In this section we analyze how two logic inputs can be encoded in a three-level

aperiodic modulation directly applied to the laser pump current, and how to define

the laser logical response.

Let us consider that the pump current parameter, µ(t), is the sum of two aperiodic

square-waves, µ(t) = µ1(t)+ µ2(t), that encode the two logic inputs. Since the logic

inputs can be either 0 or 1, we have four distinct input sets: (0, 0), (0, 1), (1, 0), and

(1, 1). Sets (0, 1) and (1, 0) give the same value of µ, and thus, the four distinct

logic sets reduce to three µ values. Then, it is more convenient to introduce as

parameters the mean value, µm, and the amplitude of the modulation, ∆µ, which,

without loss of generality, determine the three current levels as µm − ∆µ, µm, and

µm + ∆µ.

The laser response is determined by the polarization of the emitted light. We

chose parameters such that the laser emits either the x or the y polarization (pa-

rameter regions where there is anti-correlated polarization coexistence or elliptically

polarized light are avoided). The laser response is considered a logical 1 if, for in-

stance, the x polarization is emitted, and a logical 0, if the y polarization is emitted.

Which polarization represents a logic 1, and which a logic 0 can depend on the logic

operation, as will be discussed latter.

In this way, the polarization emitted at the three current levels, encoding the four

possible combinations of the two logic inputs, allows to implement the operations

OR, AND, NOR, NAND, according to Table 5.1. One should notice that by detect-

ing one polarization one obtains a logic response and, by detecting the orthogonal
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Table 5.1: Relationship between the two inputs and the output of the logic operations.

Logic inputs AND NAND OR NOR

(0,0) 0 1 0 1

(1,0)/(0,1) 0 1 1 0

(1,1) 1 0 1 0

polarization, one obtains the negation of that logic response. In the following we

focus only on the non-negation operations AND and OR.

There are two ways to associate the four possible logic inputs, (0,0), (1,0), (0,1),

(1,1), to three current levels. The first one is schematically illustrated in Fig. 5.2.

In the presence of a right amount of noise, the levels µI , µII , µIII can lead to the

operation AND, and levels µII , µIII , µIV , to the operation OR.

I II III IV

AND

OR
Bistable region

Figure 5.2: Schematic representation of the effective potential at four different pump cur-

rent values, corresponding to labels I to IV in Fig. 3.10(d). The solid square indicates the

three values that can be used for implementing a logic AND; the dashed square indicates

the three values that can be used for implementing a logic OR (see text for details).

Let’s explain the idea by first considering the operation AND. Assuming that x

represents a logical 1 and y represents a logical 0, and assuming that the laser is

emitting the y polarization, only the current level µIII , representing the logic input
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Table 5.2: Encoding scheme I: Relationship between the logic inputs, the encoding current

levels, the output polarization and the logic output for the AND and OR operations.

Logic AND: OR:

inputs Current x/y Logic output Current x/y Logic output

(0,0) µI y 0 µII y 0

(1,0)/(0,1) µII y 0 µIII x 1

(1,1) µIII x 1 µIV x 1

(1,1), will induce a switch to the x polarization; however, the probability of this

switch will be controlled by the noise strength.

Let’s now consider the operation OR: if the laser is emitting the y polarization,

the current levels µIII and µIV , representing the inputs (0,1), (1,0) and (1,1), will

both induce a switch to the x polarization. The main idea behind LSR is that the

current levels can be chosen such that the probability of the switchings is controlled

by the noise strength.

Table 5.2 summarizes the relationship between the logic inputs, the current levels

encoding these inputs, the expected laser polarization and its associated logical

output. A main advantage of this scheme is that it allows to switch from AND to

OR and vice versa, just by changing the cw value of the injection current, µm, while

the modulation amplitude, ∆µ, can be kept constant. In other words, an appropriate

choice of ∆µ, allows switching from regions (I, II, III) represented schematically in

Fig. 3.10(d), that implement the AND operation, to regions (II, III, IV), that

implement the OR operation, by changing µm only. A main drawback is that, for

the AND operation, it does not allow very fast modulation. This is due to the fact

that, as discussed previously in relation to Fig. 3.2(b), under fast modulation the

PS for decreasing injection current disappears, and thus, there might be no level µI

for which the y polarization turns on when the current decreases from levels µII or
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Table 5.3: Encoding scheme II: Relationship between the logic inputs, the encoding cur-

rent levels, the output polarization and the logic output for the AND and OR operations.

Logic AND: OR:

inputs Current x/y Logic output Current x/y Logic output

(0,0) µIV x 0 µII y 0

(1,0)/(0,1) µIII x 0 µIII x 1

(1,1) µII y 1 µIV x 1

µIII to µI .

Table 5.3 illustrates the second encoding possibility. Here the current levels em-

ployed for the AND and for the OR operation are the same (they are those described

for the OR operation previously). It should be noticed that for the AND operation

the definition of the laser logic response changes: now a logic 0 is assigned if the

x polarization is emitted, and a logic 1 if the y polarization is emitted. Also the

encoding criterion changes, in the sense that the lower current level µII encodes the

input (0, 0) for the OR operation, while it encodes the input (1, 1) for the AND

operation; the highest current level µIV encodes the input (1, 1) for OR and encodes

(0, 0) for AND; the middle level µIII encodes (1,0) and (0, 1) for both operations.

Because the AND and OR operations are implemented with the same three cur-

rent levels, this scheme has the advantage of allowing fast modulation in both AND

and OR operations, by preventing the drawback that at level µI the PS disappears

for decreasing current, as discussed previously in section 3.1. In the following we

will focus on the OR operation implemented with the encoding scheme described in

Table 5.3 as the results apply also for the symmetric AND operation.
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5.2 VCSEL-based stochastic logic gate via polar-

ization bistability

Figures 5.3(a)-5.3(c) display the laser response for the same logic input and three

values of the noise strength. The three current levels are such that the laser emits

one polarization (x) for two of them, while for the third one, it can switch to the

orthogonal polarization (y), in the presence of the right amount of noise. Figures

5.3(d)-5.3(f) display a detail of the dynamics to show the effects of the noise and

the current modulation in the PS. With weak noise the PS is delayed with respect

to the current modulation (Fig. 5.3(a) and 5.3(d)); with too strong noise, both

polarizations are emitted simultaneously within the same bit (Fig. 5.3(c) and 5.3(f)).

Therefore, the operation of the VCSEL as a logic gate depends on the noise strength,

in good agreement with [142]. For an intermediate amount of noise (Fig. 5.3(b) and

5.3(e)), PS occurs a short time after the beginning of a bit while the noise is not

strong enough to stimulate the emission of large intensities on both polarizations.

5.2.1 Analysis of the reliability of the stochastic logic gate

To evaluate the reliability of the VCSEL-based stochastic logic gate we calculate

the success probability, i. e., the probability to obtain the desired logic output. For

the two logic inputs we generate two random uncorrelated sequences of N ≥210 bits

and compute the success probability, P , as the ratio between the number of correct

bits to the total number of bits. We define that a bit is correct, as follows. When x

is the “right” output polarization (according to Table 5.3), we count a bit as correct

if a given percentage (say, 80%) or more of the emitted power is emitted in the x

polarization; if x is the “wrong” polarization, we count a bit as correct if a given

percentage (say, 20%) or less of the emitted power is emitted in the x polarization.

Figure 5.4(a) displays P as a function of the noise strength, for three success crite-

ria: 80%-20%, 90%-10% and 70%-30%. One can notice that there is a range of noise
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Figure 5.3: Laser response under aperiodic three-level current modulation. Time traces of

the x polarization (gray), y polarization (black), and the injection current µ− 1 (dashed)

for different noise intensities: (a), (d) D =5×10−7 ns−1, (b), (e) D =4×10−4 ns−1 and

(c), (f) D =6×10−3 ns−1. (d)-(f) display a detail of (a)-(c) to show the main errors in a

bit. The asterisks mark the wrong bits.
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Figure 5.4: (a) Success probability P as a function of the noise strength, D, keeping fixed

the bit time T =31.5 ns and using a success criterion of 80%-20% (solid line), 90%-10%

(doted line) and 70%-30% (dashed line). (b) Success probability as a function of the bit

time T for fixed noise strength D =4×10−4 ns−1. (c) Log-log color plot of the success

probability P as a function of the noise intensity, D, and the the bit time, T . Other

parameters as in Fig. 5.3.
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strengths in which P = 1, and this noise range decreases (increases) when choosing

a restrictive (a permissive) threshold for the emitted power in the x polarization.

Within this noise range there is optimal noise-activated polarization switchings (the

“inter-well” dynamics in the double-well potential picture) and optimal sensitivity to

spontaneous emission in each polarization (the “intra-well” dynamics in the double-

well potential picture). In the following we fix the success criterion to 80%-20%. It

should be noticed that P = 1 occurs for noise strengths D that do not have to be

unusually small, on the contrary, they are realistic values for semiconductor lasers,

which typically have D ∼ 10−4 ns−1.

The success probability depends strongly on the bit time, T , as shown in Fig.

5.4(b). Short bits (. 5 ns) prevent logical operations because of the finite time

needed for the polarization switching. For increasing T , the success probability

grows monotonically until it saturates at P = 1 for long enough bits, for which the

PS time is ≪ T .

The interplay between the duration of the bit and the noise strength is illustrated

in Fig. 5.4(c) and can be interpreted as follows. The time needed to escape from

a potential well decreases with increasing noise [131]. Then, for weak noise, as

D increases the escape time decreases and the probability of a correct response

grows. On the other hand, too strong noise results in spontaneous emission in both

polarizations and thus, for large enough noise, the power emitted in the “wrong”

polarization grows above the threshold for detecting the response as correct, and

thus, above a certain noise level the success probability decreases monotonously. The

dependence of the success probability on the noise strength is due to the interplay

of noise-induced escapes (inter-well stochastic dynamics) and spontaneous emission

noise in the two polarizations (intra-well stochastic dynamics).

Figure 5.5(a) displays the success probability in the plane (D, µm), for constant bit

length and modulation amplitude. It can be seen that for small µm logic operations

can not be obtained for any noise strength. Above µm ∼1.27, there is a noise range
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in which P suddenly grows to 1. This value of µm is such that µII ≥ µth,s = 1, i. e.

the lasing threshold. As µm increases the noise region where P = 1 decreases until

it disappears, due to the fact that for large µm the x polarization is stable in the

three current levels, and switches to the y polarization are rare.
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Figure 5.5: (a) Color plot of the success probability P as a function of the noise intensity,

D, and the cw current value, µm, for fixed bit length T = 31.5 ns and modulation amplitude

∆µ = 0.27. (b) Color plot of the success probability P as a function of the bit time, T ,

and the cw current value, µm for fixed noise strength D =4×10−4 ns−1 and modulation

amplitude ∆µ = 0.27. Other parameters are as in Fig. 5.3.

Figure 5.5(b) displays the success probability in the (T , µm) plane, keeping fixed

the noise strength and modulation amplitude. It can be seen that P = 1 occurs

when T is long enough and µm is within a range of values that depends on T . As

discussed in relation to Fig. 5.5(a), if µm is too small the current level µII is at the

lasing threshold or below and the y polarization turns-on slowly or does not turn on

at all, depending on the modulation speed (if T is too small the y polarization does

not turn on); on the other hand, if µm is too large, then the x polarization is stable

in the three current levels and the y polarization rarely turns on.

Next, let us consider the influence of the modulation amplitude, ∆µ. Figure 5.6(a)

displays the success probability in the (D, ∆µ) plane, keeping constant the bit length

and the modulation cw value. If ∆µ is small the laser emits the same polarization
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in the three current levels and the success probability is small, regardless of the

noise strength. As ∆µ increases there are polarization switchings and P increases,

allowing for the correct logic response in a finite range of noise strengths. For large

∆µ, P decreases abruptly to small values, and this is again because the lowest current

level is at threshold or below threshold [one can notice the similarities between Figs.

5.5(a) and 5.6(a)]. Similar considerations can be done in relation to Fig. 5.6(b),

which displays the success probability in the (T , ∆µ) plane, keeping constant the

noise strength and the modulation cw value.
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Figure 5.6: Color plot of the success probability P (a) as a function of the noise strength,

D, and the current modulation amplitude, ∆µ, for a fixed T = 31.5 ns and (b) as a function

of the bit time, T , and the current modulation amplitude, ∆µ, for a fixed D =4×10−4

ns−1. Other parameters are as in Fig. 5.3.

The step time, T1, and the rise/fall time, T2, are important parameters to obtain a

correct logic response. In Fig. 5.7(a) we show the probability of success as a function

of T1 and T2. P = 1 requires that T1 >> T2 (notice the doubly logarithmic scale).

Furthermore, exist a minimum value of T1 ∼10 ns above which the probability of

success grows to 1.

In practical applications, a VCSEL is often submitted to unwanted optical feed-

back due to external reflections. If the laser is sensitive enough, even a weak amount

of reflected light can induce instabilities. To test the reliability of the LSR under
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Figure 5.7: (a) Color plot of the success probability P as a function of the step time, T1,

and the rise/fall time, T2, the noise level is D =4×10−4 ns−1. (b) P as a function of the

noise strength, D, and the feedback strength, κfb. The bit time is T = 31.5 ns, the time

delay is 3 ns. Other parameters are as in Fig. 5.3.

the influence of a weak external reflection, we included optical isotropic feedback

in the model equations as in [182], and in Fig. 5.7(b) we present the results. By

plotting the success probability in the parameter space (feedback strength, noise

strength) we can see that the logic response is robust for weak feedback but the

optimal response decreases progressively for increasing feedback strength.

We conclude this section with a discussion of the influence of various laser pa-

rameters. As it was previously mentioned, the logic stochastic resonance is a robust

phenomenon in the sense that it occurs in parameter regions where the polarization

switching is abrupt, and does not display polarization oscillations or coexistence.

Figure 5.8(a) displays the success probability in the plane (γp, γa). For negative or

low linear dichroism, γa, only the x polarization is emitted. A probability equal to

1 is achieved in a region of positive γa values, and in a broad range of birefringence

values, γp. Figure 5.8(b) displays the success probability in the plane (γs, γp), and

it can be seen that there is a wide region in which the success probability is equal

to 1, provided that γs ≤ 100. For large spin-flip rate, γs, only the polarization y is

emitted and for small γs both polarizations are emitted simultaneously. Finally, Fig.
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5.8(c) displays the success probability in the plane (γs, γa) where also a parameter

region can be seen where P = 1.

Figure 5.8: Influence of various model parameters. (a) Success probability in parameter

plane (γa, γp), for γs = 50 ns−1; (b) P in the parameter plane (γs, γp), for γa = 0.5 ns−1;

P in the parameter plane (γa, γs), for γp = 50 rad ns−1. Other parameters are as in Fig.

5.3.

5.3 Conclusions and discussion

To summarize the results presented in this chapter, we have shown that a VCSEL

can operate as a logic gate with a success probability equal to 1 in a wide region

of noise strengths, which makes the VCSEL logic gate attractive for applications in

systems subjected to noisy backgrounds.

The phenomenon is based on logic stochastic resonance (LSR) and can be well

understood in the framework of the simple effective double well potential model for

the two orthogonal polarizations emitted by the laser in a certain range of injection

currents. The three levels of the pump current aperiodic signal that encode the four

possible combinations of the two logic inputs are chosen such that the laser emits one

polarization for two of them, while for the third one, it can switch to the orthogonal

polarization, in the presence of the right amount of noise. Thus, the successful

operation of a VCSEL as a stochastic logic gate is associated with optimal noise-

activated polarization switchings (the “inter-well” dynamics) and optimal sensitivity



5.3. CONCLUSIONS AND DISCUSSION 89

to spontaneous emission in each polarization (the “intra-well” dynamics) leading a

range of optimal noise strength.

Our study has been based on the ”bare” spin-flip model, which does not take into

account several mechanisms that could be very relevant for the efficiency of current

modulation to induce polarization switching (e. g., thermal effects, the excitation

of higher-order transverse modes, carrier diffusion, etc. [183, 184]). The spin-flip

model was recently extended to take into account temperature variations [185], and

the study of the interplay of temperature and transverse spatial effects, based on the

extended spin-flip model, is a natural continuation of the present work, that is left

for future work. We think that these effects will not change the main conclusions

of this work, but, since thermal effects are slow, they will probably increase the

minimum bit time needed for achieving successful polarization switchings.

The mechanism underlying LSR has some similarities with that proposed in Ref.

[186] for localizing a Brownian particle in one well of a symmetric bistable potential

through the simultaneous action of two periodic inputs (one tilting the minima and

the other one modulating the barrier height), and a random input. In Ref. [186]

it was shown that the nonlinear mixing of these zero-mean signals was capable

of localizing a Brownian particle in one well, and this could be a mechanism for

controlling the polarization state of the light emitted by a VCSEL.

LSR also resembles the aperiodic stochastic resonance phenomenon, by which

there is noise-assisted transmission of binary information [187, 188], and the informa-

tion transmission, measured by the bit-error rate, exhibits a resonant-like behavior

as a function of the noise strength.

The constructive role of noise in optical systems is nowadays a hot topic of re-

search. Nonlinear self-filtering and amplification of noisy images, the with amplifi-

cation occurring at the expense of noise through nonlinear coupling, was recently

demonstrated in a self-focusing photorefractive medium [189]. The underlying mech-

anism (the energy exchange between the signal and the noise via nonlinear mixing),
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depends on the system parameters and thus noise-assisted image recovery represents

a novel type of dynamical stochastic resonance.

Our proposed implementation of a stochastic logic gate via a polarization-bistable

VCSEL provides yet another example of the nontrivial and constructive role of noise

in nonlinear optical systems. An attractive advantage of the VCSEL stochastic logic

gate for practical applications is the relatively short bit time needed to produce

the correct operation with probability equal to 1 (in our simulations, about 30-40

ns). In addition, the VCSEL stochastic logic gate is robust to stochastic external

perturbations, in the sense that there is a wide range of realistic noise strengths in

which the device gives a reliable and correct logic response. Moreover, its operation is

also robust to variations of the laser parameters, in the sense that it does not require

fine tuning of the parameters, but rather, there is a wide region of parameter values

where the laser gives the correct logic response with P = 1.



Chapter 6

Transient LFFs in a semiconductor

laser with optical feedback

The aim of this chapter is to characterize the statistical features of the transient LFF

regime of a semiconductor laser with optical feedback. The transient time required

for a dynamical system to evolve from initial conditions to a stable attractor can

be due to, depending on the dynamical system, simple relaxation oscillations as in

the damped oscillator or more complex (even chaotic) dynamics. A pioneer study of

the chaotic transients that results from the collision of a chaotic attractor and an

unstable fixed point or unstable periodic orbit was done by Grebogi, Ott and Yorke

[190]. The chaotic attractor changes suddenly and the sustained chaotic dynamics

becomes unstable in such a way that the system eventually reaches a stable steady

state or a stable attractor. In many cases, the chaotic attractor keeps its appearance

before and after the collision but its stability changes. In this chapter we study this

type of phenomenon in a laser with optical feedback.

As discussed in Section 3.2, a well known optical feedback-induced instability is

the so-called low frequency fluctuation (LFF) regime in which the laser intensity

displays fast picosecond pulses. These pulses, when observed with a low-pass filter

91
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(as occurs in experiments, where photodetectors have a limited bandwidth), are seen

as a sequence of sudden dropouts followed by a gradual recovery.

Many studies in the literature, discussed in detail in Sec. 3.2, have tried to

address the question of whether the initiation of LFF dropouts, and the subsequent

recovery, are deterministic or stochastic processes. In this chapter we study in

detain the statistical features of the transient LFF dropouts, and the underlying

unstable chaotic attractor [191, 192]. With this aim, we simulate the laser turn-on

by choosing random initial conditions in the vicinity of the solitary laser steady

state, and integrate numerically the resulting trajectory. The LFF lifetime, TLFF, is

defined as the time taken by the intensity fluctuations to decrease below a chosen

threshold, which occurs when the trajectory falls into the basin of attraction of one

of the stable ECMs. We find that typical noise levels do not significantly affect

the average transient time nor its probability distribution function (PDF): both the

deterministic model, with no noise source included in the rate equations, and the

stochastic model, with typical values of the spontaneous emission noise strength,

predict similar 〈TLFF〉 and PDF. Strong enough noise, however, induces escapes

from the stable ECM, leading the laser output to display coexistence of LFFs and

stable emission, similar to experimental observations [47].

We also show that the nonlinear gain saturation coefficient, ε, which is included

phenomenologically in the LK model to represent a variety of saturation mechanisms

such as carrier heating, carrier diffusion and spatial hole burning, is a key parameter

in determining the duration of the LFF transient: when increasing ε both the average

transient time 〈TLFF〉 and the probability of noise-induced escapes from the stable

ECM increase. Therefore, our results suggest that the LFFs observed experimentally

can be, at least in part, sustained by the interplay of noise and the various nonlinear

effects which are phenomenologically represented by the gain saturation coefficient.

Some characteristics of the LFF dynamics, in particular, the statistical properties

of time intervals between power dropouts, can be explained by a rate-equation model
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proposed by Eguia, Mindlin and Giudici (EMG model) [124], which supports the

scenario that the laser behaves as an excitable system and that the LFFs are induced

by noise. The dependence of the shape of the PDF of inter-dropout intervals on the

pump current or the feedback strength were shown to be equivalent to variations

produced by the two parameters of the EMG model [125]. Moreover, in [193] the

periodic “spike” patterns generated experimentally under external periodic forcing

were compared with the solutions of the EGM model, and it was shown that the

topological organization of the experimentally observed periodic orbits was equiva-

lent, in the parameter region explored, to the one displayed by the model solutions.

The limits of the excitable LFF behavior, and thus, the region of validity of the

EMG model, was studied in [126], where it was shown that excitability deteriorates

in the parameter region where there is a high probability of stable emission; in this

region of “coexistence” the laser dynamics can be separated into stable and bursting

states.

The EMG model is low-dimensional, and thus it offers a good control to test the

influence of the delay-induced high-dimensionality of the LK model on the statistics

of the LFF transient time. Thus in this chapter we also investigate the transient

dynamics predicted by the EMG model with parameters in the excitable region. We

show that by choosing appropriate initial conditions, a qualitatively good agreement

is found with the features of the transient dynamics predicted by the LK model.

However, in this case noise does affect the shape of the PDF of LFF transient times,

which indicates the importance of the high-dimensionality of the unstable chaotic

attractor of the LK model in determining the transient time statistics.

This chapter is organized as follows: Section 6.1 describes the LK model and

discusses the initial conditions chosen for the simulations. Sections 6.1.1 and 6.1.2

present the numerical results, and discuss the statistical features of the LFF transient

lifetime in terms of various parameters. Section 6.1.3 presents the results of the

control simulation of the low-dimensional EMG model. Finally, Section 6.2 contains

a summary of results and the conclusions.
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6.1 Transient Low Frequency Fluctuations in the

LK model

We first describe the dynamics of a single-mode semiconductor laser with optical

feedback by means of the well-known Lang-Kobayashi (LK) delay-differential rate

equations according to the description in section 2.1 for the slowly-varying complex

amplitude of the electric field, E, and the carrier number, N . To integrate the

model, rate equations (2.5) and (2.6) we have to specify the initial conditions, which

we choose to correspond to the steady state of the solitary laser plus a small random

term:

E(t) = Ese
iφ0 + ηξ(t), −τ ≤ t ≤ 0 (6.1)

N(0) = Ns + ρζ, (6.2)

where Es and Ns are the stationary solutions of the system, which correspond, for

a normalized injection current µ below the solitary laser threshold, to the off state,

Es = 0 and Ns = µ, while if µ > µth they correspond to Es =
√

µ − 1 and Ns = 1

(that can be obtained from eqs. (2.10) and (2.11) by considering κfb = 0 and ε = 0)

and φ0 which is a random initial phase.

Alternatively, one could always choose as initial condition the off state of the laser,

regardless of the value of the injection current. As discussed below, we find that the

results are robust with respect to the specific choice of the initial condition. Unless

otherwise explicitly stated, we integrated the LK model with the parameter values

given in Table 6.1, using the stochastic Heun method with an integration time step

of 0.8 ps. The simulations were verified using smaller integration steps and the Euler

integration method, with which we obtained similar results.
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Table 6.1: Typical parameter values of the LK model described by Eqs. (2.5) and (2.6).

Description Symbol Value

Linewidth enhancement factor α 3

Field decay rate k 300 ns−1

Feedback strength κfb 30 ns−1

External round-trip time τ 6.667 ns

Feedback phase ω0τ 0 rad

Carrier population decay rate γN 1 ns−1

Normalized injection current µ 1.02

Gain saturation coefficient ε 0

Spontaneous emission noise strength D 10−4 ns−1

Noise intensity (field initial condition) η 10−3

Noise intensity (carriers initial condition) ρ 10−3

6.1.1 Probability distribution of the stochastic transient time

As discussed in Sec. 3.2, simulations of the LK model show that close to the solitary

laser threshold and with moderately strong optical feedback, the laser intensity

displays fast picosecond pulses, which when subject to a low-pass filter (as occurs

in experiments, where photodetectors have a limiting bandwidth), transform into

a collection of sudden dropouts, characteristic of the LFF dynamics, as shown in

Fig. 6.1. All through this section a filter with a cutoff frequency of 120 MHz will be

applied to the intensity time trace, given by |E(t)|2.

With initial conditions such that the laser is emitting on the stable state without

feedback, at t = 0 the optical feedback is turned on. As a result the laser begins

to experience intensity dropouts during a certain time interval 0 < t < TLFF, as

shown in Fig. 6.1(a). For t ≥ TLFF the laser output is stable, since the trajectory
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Figure 6.1: (a) A typical time trace for the filtered intensity, displaying three LFF

dropouts. A filter with a cut-off frequency of 120MHz is used to obtain this time trace.

(b) Filtered global trajectory in the phase space of intensity, |E|2, and phase difference of

the optical field, (ω − ω0)τ , for the trajectory shown in (a); squares are the modes (upper

branch of the ellipse) and circles are the anti-modes (lower branch of the ellipse). The

triangle and the cross mark the initial conditions and the final state respectively.

falls into the basin of attraction of one of the stable ECMs [fixed points given by

Eqs. (2.9)-(2.11)], and remains trapped there provided the noise strength is not too

large.

The final state of the laser is given by one of the coexisting ECMs. These ECMs

are shown in Fig. 6.1(b) in the phase space of intensity and phase difference. A

typical global trajectory in this phase space begins at (ω − ω0)τ =0 (the triangle in

Fig. 6.1(b)). Then the trajectory is attracted to the stable ECMs for low values of

the phase difference and high values of the intensity, but in this region the system

can reach the vicinity of one of the unstable ECMs (anti-modes) and it can be

ejected towards the phase-space region of low intensities, after which the process

starts again. The LFF dropout dynamics ends when the system’s trajectory finds

one of the stable ECMs (the cross in Fig. 6.1(b)).

The lifetime of the transient LFF dynamics, TLFF, is defined as the time interval

during which the intensity fluctuations, measured as the standard deviation calcu-
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lated in a time window ∆T , are above a certain threshold, chosen here to be 2%

of the average intensity. To make sure that the system has reached an asymptotic

behavior (in the vicinity of a fixed point), we use a time window ∆T = 1800 ns,

much larger than the characteristic time scale of the fast intensity pulsations. The

total integration time is of the order of 10-100 ms, which thus correspond to the

longest transient times that we can compute.

The duration of the LFF transient depends on the specific realization of the ran-

dom initial condition, and can strongly deviate from its mean value. Figure 6.2(a)

displays the probability distribution function (PDF) of the transient time, TLFF.

The shape of this distribution can be understood as follows: the system has a zero

probability of finding a stable ECM in a very short transient time TLFF, due to the

finite amount of time it takes to go from the initial condition (near the solitary laser’s

steady state) to the phase space region where the stable ECMs are located. The

largest peak in the PDF corresponds to this single-rise travel time, which we refer

to as T1 (typically, T1 < 1 µs depending on parameters). We show this trajectory in

the top trace of Fig. 6.2(b). Note that there is a large probability that the system

finds a stable ECM the first time it is in the region of the phase space where the

stable ECMs are located. The secondary maximum of the PDF (T2) corresponds to

trajectories in which the system finds a stable ECM during its second visit to the

area near it. In this case the transient dynamics contains one dropout, as shown in

the bottom trace of Fig. 6.2(b).

In between T1 and T2 the system has a small probability of finding a stable ECM

because it is in another region of the phase space (i.e., in the recovery process

after the dropout). For larger values of TLFF the PDF decays exponentially, as is

expected in chaotic transients [190]. The inset of Fig. 6.2(a) plots the PDF in both

the presence and absence of noise. The two distributions overlap, which suggests

that the average transient time, 〈TLFF〉, is not affected by noise. We verify this fact

in Fig. 6.3(a), which shows the average duration of the transition from LFFs to

a stable output as a function of the noise strength, D, for different values of the
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Figure 6.2: (a) Probability distribution function (PDF) of the transient time TLFF calcu-

lated from 30000 realizations of the stochastic initial condition. Inset, PDF with vertical

logarithmic scale to show the exponential tails with noise (solid line) and without noise

(dashed, red). (b) Intensity time traces corresponding to the two maxima of the PDF

shown in (a).

injection current and feedback strength. In all cases the average transient time is

not significantly affected by noise, and is approximately equal to the noise-free case.

The transient can be understood as a sequence of NLFF dropouts that are spaced

at an average time 〈T 〉. These values are shown in the Fig. 6.3(b), where we plot

both the average time between dropouts per transient (〈T 〉, left axis) and the aver-

age number of dropouts per transient (〈NLFF 〉, right axis). For large enough number

of dropouts, the product of these two quantities corresponds to the average transient

time, i.e. 〈TLFF 〉 = 〈NLFF 〉〈T 〉 which suggests that the two variables are indepen-

dent. It can be seen in Fig. 6.3(b) where neither 〈NLFF 〉 nor 〈T 〉 depend on the

noise intensity.

It will be shown below that the TLFF distribution strongly depends on the other

laser parameters α and ε, besides µ; therefore, it could be expected that for different

values of these parameters the TLFF distribution is not so insensitive to noise. To

check this point we performed extensive simulations for other values of α and ε,

and we present in Fig. 6.4(a) and (b) two examples of the results. Again, it can

be observed that the average duration of the transient time does not significantly

change with noise strength. Therefore, at least in the parameter region explored,
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Figure 6.3: (a) Transient time (dots) and average transient time, 〈TLFF〉 (solid lines)

for 300 realizations of the stochastic initial conditions as a function of the noise intensity

for different values of the injection current and the feedback strength. ε = 0.0, α = 3,

and additionally, from top to bottom: µ =1.02, κfb =15 ns−1 (blue); µ =1.02, κfb =30

ns−1 (black); µ =0.98, κfb =30 ns−1 (red). Other parameters are as in Table 6.1. (b)

Average time interval between consecutive dropouts (circles, left axis) and average number

of dropouts per transient (squares, right axis) as a function of the noise intensity for

µ =1.02, κfb =30 ns−1 (black); note the logarithmic scale in the right axis.

we can conclude that the duration of the transient dynamics is not qualitatively

affected by random fluctuations. It is important to remark that we have limited

ourselves to explore the parameter region where the average transient time is not too

long; for larger values of µ, α or τ the simulations require too long and unpractical

computational times. Therefore, we cannot exclude that for larger values of µ, α or

τ the noise has an effect on the transient time.

6.1.2 Effect of the parameters of the LK model on the stochas-

tic duration of the LFF transient

To investigate how the LFF lifetime depends on the parameters of the system, we

computed the average transient time, 〈TLFF〉, for varying values of different pa-
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Figure 6.4: Transient time (dots) and average transient time, 〈TLFF〉 (solid lines) for

300 realizations of the stochastic initial conditions as a function of the noise intensity for

different values of the gain saturation and the α. (a) ε =0.06, α =3, µ =1.02, κfb =30

ns−1. (b) ε =0.1, α =2.6, µ =1.02, κfb =30 ns−1. Other parameters are as in Table 6.1.

rameters, classified in terms of laser parameters (ε, α and µ) and optical feedback

parameters (τ , κfb and ω0).

An interesting effect is provided by the gain saturation coefficient, ε. When in-

creasing ε in a realistic range the average transient time 〈TLFF〉 increases three orders

of magnitude, as shown in Fig. 6.5(a). In fact, nonlinear gain saturation acts as a

coupling between the field and the phase in a way similar to the linewidth enhance-

ment factor, α, whose effect is displayed in Fig. 6.5(b).

Recently, Torcini et al. [107] analyzed the relationship between the stability of the

ECMs and the length of the LFF transient, and derived an analytical expression for

estimating the transient time in relation to the eigenvalues of the stable ECMs. In

the specific range of parameters examined in [107], µ < µth and α < 4, a periodic

variation of 〈TLFF〉 with α was found [see the inset in Fig. 6.5(b)], which was well

understood in terms of the analytical expression derived. However, the agreement

worsens for bias currents above the solitary threshold, which is the parameter range

examined here.

Plots (c) and (d) in Fig. 6.5 represents the contributions of the average dropout

number, 〈NLFF 〉, and the average inter-dropout time, 〈T 〉, to the transient time.

The figure shows that 〈NLFF 〉 increases monotonically with both laser parameters
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Figure 6.5: Transient time (dots) and average transient time, 〈TLFF〉 (red circles), for

100 random realizations of the initial conditions, as a function of (a) the gain saturation

coefficient with α = 3 and µ = 1.02, (b) the linewidth enhancement factor with µ = 1.02

and ε = 0. In the inset on figure (b), we show results for the same parameters as in [107].

(c) and (d) The panels on the right column show the dependence of the average time

interval between consecutive dropouts (circles, left axis) and average number of dropouts

per transient (squares, right axis) on the same laser parameters as in (a) and (b); note

the logarithmic scale in the right axis. Other parameters are κfb = 30 ns−1, τ = 6.667 ns

and D = 10−4 ns−1.

considered, while 〈T 〉 decreases. Note that even though the two contributors to

〈TLFF 〉, i.e. 〈NLFF 〉 and 〈T 〉, behave complementarily, their trends do not cancel

out since the increase of 〈NLFF 〉 is supra-exponential for the three parameters, while

〈T 〉 decreases only linearly [cf the different scaling of the left and right y-axes in
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Figs. 6.5(c) and (d)].

The influence of the injection current parameter, µ, is displayed in Fig. 6.6(a),

which shows that the transient time 〈TLFF〉 also increases with µ. Our results are

consistent with those in [107], where it was shown that the transient time increases

with both α and µ. These figures also show the existence of a minimum transient

time, as discussed previously in relation to Fig. 6.2(a).
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Figure 6.6: (a) Transient time (dots) and average transient time, 〈TLFF〉 (red circles),

for 100 random realizations of the initial conditions, as a function of the injection current

with α = 3 and ε = 0. (b) Dependence of the average time interval between consecutive

dropouts (circles, left axis) and average number of dropouts per transient (squares, right

axis) on the same laser parameters as in (a); note the logarithmic scale in the right axis.

Other parameters are κfb = 30 ns−1, τ = 6.667 ns and D = 10−4 ns−1.

The same discussion done for Fig. 6.5(c) and (d) can also be applied to Fig. 6.6(b).

In particular, the decrease in the time interval between consecutive dropouts, 〈T 〉, for

increasing injection current µ agrees qualitatively well with the well-known behavior

observed experimentally in the sustained LFF regime [117, 120] also shown in Fig.

3.7(a).

The influence of the delay time τ is depicted in Fig. 6.7(a). For small delays the

dynamics is not chaotic and all realizations of the stochastic initial conditions lead to

almost the same transient time. As we increase τ , the average transient time 〈TLFF〉
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increases nearly exponentially up to the maximum delay studied. This behavior

is a consequence of the nearly exponential increase of 〈NLFF 〉 [Fig. 6.7(c)] and is

reinforced by 〈T 〉, which in this case also increases monotonically with the feedback

delay time. This latter effect is in qualitatively well agreement with Refs. [119, 120]

(see Fig. 3.7(b)).
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Figure 6.7: Transient time (dots) and average transient time, 〈TLFF〉 (circles) for 100

stochastic realizations of the initial conditions, as a function of (a) delay time with κfb =

30 ns−1 and ω0τ = 0, (b) the feedback strength with τ = 6.667 ns and ω0τ = 0. The panels

on the right column show the dependence of the average time interval between consecutive

dropouts (circles, left axis) and average number of dropouts per transient (squares, right

axis) on the same laser parameters as in (a) and (b); note the logarithmic scale in the

right axis. Other parameters are ε = 0, α = 3, µ = 1.02 and D = 10−4 ns−1.

For increasing feedback strength, κfb, the duration 〈TLFF〉 of the transient de-

creases, as depicted in Fig. 6.7(b). Although the parameter region is different, it is
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interesting to compare this result with [194], where the authors show that for low

feedback levels, i. e. for a small number of ECMs, sustained and transient dynamics

alternate for increasing κfb.

Analyzing 〈NLFF 〉 and 〈T 〉 in Fig. 6.7(d) we see that these quantities depend on

κfb oppositely to the laser parameters (Fig. 6.5 and 6.6). However, 〈NLFF 〉 still

dominates the behavior of the transient time, since for increasing feedback strength

it decreases nearly exponentially, while 〈T 〉 increases nearly linearly. The latter

behavior is in qualitative good agreement with Refs. [118, 120] also shown in Fig.

3.7(c).

Another delay parameter is the feedback phase, ω0τ . Increasing ω0τ , pairs of

modes and anti-modes are created far from the chaotic attractor, and they are

destructed in the region of phase space where the stable ECMs are. Varying ω0τ

also changes the stability of the ECMs with periodicity of 2π. Then it could be

expected that at least one of the ECMs collides with the chaotic attractor and it

may be reflected in 〈TLFF〉 with the same periodicity. Figure 6.8 shows that varying

ω0τ does not change the average transient time in a significant way (neither 〈T 〉 or

〈NLFF 〉 change significantly). This result indicates that the stabilities of the LFF

dynamics and of the ECMs are not directly related, at least for the parameter values

examined here, for which there are global trajectories in phase space.

Even after the laser has settled around the stable ECM once the chaotic transient

has finished, strong enough noise can lead the trajectory to eventually escape and

display another set of LFF dropouts, as shown in Fig. 6.9(a). The ensuing transient

LFF regime is similar to the one studied above, in which the laser was off at t = 0,

when the feedback was turned on. These two situations only differ in the choice of

initial conditions, which as discussed above lead to the same distribution of LFF

durations. Noise-induced escape of the basin of attraction of the stable ECMs was

studied in [107] for large enough noise and interpreted in terms of the Kramers rate.

This provides the system with two time scales that can be tuned separately and
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Figure 6.8: Transient time (dots) and average transient time, 〈TLFF〉 (circles, red) for 100

stochastic realizations of the initial conditions, as a function of the feedback phase with

τ = 6.667 ns and κfb = 30 ns−1. Other parameters are ε = 0, α = 3, µ = 1.02 and D =

10−4 ns−1.

could lead to resonant effects such as stochastic or coherent resonance. One of these

time scales (the excursion duration) is deterministic, as shown in Fig. 6.3, and the

other one (the escape time) is stochastic, as shown in [107].

Finally, we note that if nonlinear gain saturation is included in the simulations,

the probability of noise-induced escape away from the stable ECMs substantially

increases, as shown in Fig. 6.9(b).

6.1.3 Transients in a low-dimensional phenomenological model

Eguia, Mindlin and Giudici proposed a phenomenological model (EMG model) that

describes the dynamics of the time-averaged laser intensity, i.e., not the fast picosec-

ond pulses but the slower dropouts [124]. The model is defined by the following set
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Figure 6.9: (a) Intensity time trace for relatively large noise strength (ǫ = 0, D =10−2

ns−1). (b) Same as in (a) with ǫ =0.05

of ordinary differential equations:

dx

dt
= y +

√
dξ(t), (6.3)

dy

dt
= x − y − x3 + xy + ǫ1 + ǫ2x

2, (6.4)

where ǫ1 and ǫ2 are two control parameters, d is the noise strength and ξ(t) is a

Gaussian white noise.

We choose parameters for which the model operates in an excitable regime, with

three fixed points (xs,ys) with ys = 0 and xs being a solution of the third order

equation x − x3 + ǫ1 + ǫ2x
2 = 0. The three fixed points are a stable focus, a

saddle point, and an unstable focus (repeller), shown as symbols in Fig. 6.10(a).

In a previous work, Yacomotti et al. [125] associated the parameter ǫ1 to the bias

current and ǫ2 to the feedback strength. Exploiting this similarity we chose the

initial conditions as similar as possible to the ones described in the previous Sections.

Specifically, we chose random initial conditions for ǫ2 = 0 inside the region limited
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by the stable manifold of the saddle point and the repeller:

x(t = 0) = x0 + rξ (6.5)

y(t = 0) = y0 + rζ (6.6)

where x0 =0.4, y0 =0 and r =0.25. ξ and ζ are uncorrelated Gaussian random

numbers.

We integrated the EMG model using the stochastic Heun method with an integra-

tion time step of 8·10−3 arbitrary units. Some characteristics of the LFF dynamics

can be satisfactorily reproduced by the EMG model. In particular, the transient

regime can be reproduced approximately, as shown in Fig. 6.10(b).

The distribution of transient times obtained in this case is plotted in Fig. 6.11,

and shows a qualitative agreement with the results found in the LK model above.

In this case, however, noise does play an important role, changing qualitatively the

shape of the distribution for large transient times, as shown in the inset of Fig. 6.11.

In order to understand how this distribution function arises and why noise plays a

more important role in this case, we have examined the dependence of the transient

time on the initial conditions for the deterministic model. This dependence is shown

in color coding in Fig. 6.10(a).

The results presented in this figure reveal that the initial conditions leading to a

given transient time have a well-defined structure in phase space, with the transient

time being larger the closer the initial conditions are to the stable manifold of the

saddle (white dashed line in the figure). In that case, a substantial slowdown is ex-

perienced by the trajectory as it passes nearby the saddle, leading to the exponential

time in the transient time distribution. Noise seems to increase the probability that

trajectories encounter this area of phase space, thus increasing the fraction of large

transient times. Thus, in this region, the transient time depends strongly on the

noise fluctuations, and unlike in the LK model [Fig. 6.2(a)], long transient times are

induced by noise.
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Figure 6.10: (a) Phase space portrait of the EMG model. For the parameters chosen the

system is in an excitable regime, exhibiting a stable node (green circle), a saddle point

(yellow full square) and a repeller (blue open square). The background color represents

the transient time of a trajectory starting at that point in phase space in the absence of

noise. The white dashed line represents the stable manifold of the saddle point, and the

red solid line shows a typical trajectory with noise. (b) Time trace of the EMG model

corresponding to the red trajectory shown in plot (a), for the variable −x(t). The minus

sign is chosen to compare with Fig. 6.1. Noise intensity is d =2·10−3, and the deterministic

parameters of the model are ǫ1 = 0.25 and ǫ2 =0.4.

6.2 Conclusions and discussion

We have studied numerically the transient LFF dynamics of a semiconductor laser

with optical feedback using the well known Lang-Kobayashi model. We defined the
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Figure 6.11: Probability distribution function for the transient time for the EMG model.

Parameters are as in Fig. 6.10. Inset, the same plot with vertical logarithmic scale with

noise (solid) and without noise (red dashed).

transient time as the time taken by the intensity fluctuations to decrease below a

chosen threshold, which occurs when the system leaves the chaotic LFF attractor

and falls into one of the stable fixed points (the so-called external cavity modes,

ECMs). The probability distribution function (PDF) of the transient time has an

exponential tail that is characteristic of chaotic transients, and there is a minimum

transient time due to the finite amount of time needed to go from the fixed point of

the solitary laser to one of the stable ECMs of the laser with feedback.

We found that in the LK model noise does not significantly affect the average

transient time or its distribution for realistic parameter values. This demonstrates

that the transient LFFs is mainly a deterministic phenomenon, its duration being

determined by the various model parameters that affect the time needed to go from

the fixed point of the solitary laser to a stable ECM. We have also shown that

sufficiently large values of the noise strength can induce escapes from the stable

ECM, leading to regimes of power dropouts alternating with intervals of stable

steady-state emission. This behavior provides evidence that transient LFFs are

excitable due to the effect of noise.

We presented an in-depth analysis of the statistical properties of this transient
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dynamics, and investigated the influence of different parameters. Our results show

that the chaotic attractor of the transient LFFs has statistical properties similar

to those of the experimentally observed stationary LFF regime. We also show that

the nonlinear gain saturation coefficient, which represents various gain saturation

effects, plays a key role in determining the duration of the LFF lifetime: a small

variation of the saturation coefficient results in a drastic increase of the duration

of the LFF transient. Nonlinear gain saturation also increases the probability of

noise-induced escapes, and therefore, our results suggest that the LFFs observed

in experiments can be, at least in part, sustained by various nonlinear light-matter

interactions in the laser active medium.

Finally, we have compared the behavior of the delay-differential LK model with

that of a phenomenological ODE model [124] operating in the excitable regime and

with appropriate initial conditions. This comparison shows that noise plays an

important role in the transient dynamics when the dimensionality of the system is

low, but not when it is large (due to the explicit delay in the LK model).



Chapter 7

Quorum sensing and crowd

synchrony in delay-coupled

semiconductor lasers

In this chapter we study the phenomena of crowd synchrony and quorum sensing in

a in a star-type network of mutually delayed-coupled non-identical semiconductor

lasers [195].

As discussed in Chapter 3, studies of crowd synchrony and quorum sensing to date

have considered the coupling with the medium to be instantaneous [166, 167, 170,

196, 197]. This naturally results in synchronous behavior with zero time lag between

any pair of elements in the system. However, in many situations the transmission

of the coupling signal takes an amount of time that is non-negligible with respect

to the characteristic time scales of the system components. This is the case e.g. in

systems of technological importance such as optically coupled semiconductor lasers.

When these devices are separated distances on the order of centimeters, they are

subject to coupling delays on the order of the characteristic time scales of solitary

lasers (shorter than nanoseconds).

111
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In recent years much effort has been devoted to understand the synchronization

of semiconductor lasers. This is important for technological reasons, i.e., to achieve

large output powers, but also for increasing our knowledge of how generic dynamical

systems synchronize. Semiconductor lasers are low-cost, versatile, and many of the

commercial lasers are well-described theoretically. They show a large variety of

non-linear dynamics as discussed in Chapter 3. However, most studies of coupled

lasers so far have considered a small number of elements. Thus, how to achieve

synchronization for a large number of coupled non-identical lasers is still an open

question.

Isochronal synchronization is relevant in both technological [198] and biological

[199] contexts. In this chapter we show that M semiconductor lasers coupled through

a central laser exhibits zero-lag crowd synchronization. Here the central laser oper-

ates in a passive regime (below threshold), and plays the role of a coupling medium

analogous to the bridge structure in pedestrian synchronization [166], and to the

reaction medium in chemical synchronization [170]. Our results show that the gen-

eral properties of both the crowd synchrony and the quorum-sensing transition are

readily reproduced with this setup.

7.1 Modeling framework

A collection of M semiconductor lasers bidirectionally coupled through a central

laser is schematically represented in Fig. 7.1 with the same coupling topology as in

the cases of the Millennium Bridge [166] and the chemical oscillators in [170] but

with a time delay τ in the coupling.

The equations describing this coupling scheme is a generalization of the case of

two identical oscillators coupled through a third central element [153, 154, 155, 152,

164, 200]. In our scheme the central laser is emitting an amount of light that is

injected to each of the outer lasers. The slow envelope of the complex electric field
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Figure 7.1: Scheme of M star-coupled lasers with a central laser, H, with a time delay of

τ .

E and the carrier number N for the M lasers and the central laser are [152]

Ėj = iωjEj + k (1 + iα) (Gj − 1) Ej + κEH (t − τ) e−iω0τ

+
√

Dξj(t) (7.1)

ĖH = iωHEH + k (1 + iα) (GH − 1) EH + κ
M

∑

j=1

Ej (t − τ) e−iω0τ

+
√

DξH(t) (7.2)

Ṅj,H = γN

(

µj,H − Nj,H − Gj,H |Ej,H |2
)

(7.3)

where

Gj,H =
Nj,H

1 + ε |Ej,H |2
, (7.4)

and the subscripts H and j denote the central (hub) laser and jth outer (star) laser,

respectively. In this context, all the parameters have the same meaning as in section

2.1. The field and carrier decay rates are k and γN , respectively, α is the linewidth

enhancement factor, ε is the gain saturation, ω0 is the optical frequency and ωH

and ωj are the detuning of the hub and the star lasers with respect to the reference

frequency ω0. The coupling is characterized by its strength κ and delay τ , both of

which are assumed equal for all lasers. µj = µ and µH are the pump currents of the
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star and hub lasers, respectively. Finally, ξj(t) and ξH(t) are uncorrelated complex

Gaussian white noises, with D being the noise strength. The model was integrated

with the stochastic Heun algorithm with a time step of 0.8 ps, using parameter values

typical for semiconductor lasers: k = 300 ns−1, γN = 1 ns−1, α = 3, D = 10−5 ns−1,

ω0 = 2πc/λ (where c is the speed of light and λ = 654 nm). ωH = 0 without loss

of generality, and ωj is chosen from a Gaussian distribution with zero mean and

standard deviation σ. In what follows we neglect nonlinear gain saturation (ε = 0),

since it does not affect the results obtained as discussed later. Unless otherwise

stated σ = 20π rad/ns, corresponding to ∆λ =0.014 nm, and τ = 5 ns.

7.2 Zero-lag synchronization of a network of cou-

pled lasers

Figure 7.2 shows the stationary emitted intensity for varying number of star lasers

when the star-lasers are pumped above threshold. For small M [Fig. 7.2(a)] the

lasers oscillate independently. By increasing M , synchronized emission at near zero-

lag occurs for lasers with similar frequencies, forming clusters with similar dynamics

as shown in Fig. 7.2(b). The number of synchronized lasers in those clusters grows as

M increases [Fig. 7.2(c)], with an emission characterized by short pulses of irregular

amplitudes with a repetition period around 2τ . Those characteristics become more

evident for large M , where almost all the lasers emit synchronously at zero lag

[Fig. 7.2(d)], with emission pulses taking place simultaneously in most of the lasers.

This situation is reached provided the pump current of the hub laser is set below the

solitary lasing threshold, i. e. µH < µth = 1. In the case that the hub laser is pumped

above the solitary threshold, µH > µth, the synchronized state emerges progressively

but without clustering, as a direct consequence of the intrinsic dynamics of the hub.

When the star-lasers are pumped below threshold, i. e. all the lasers including the

hub are below threshold, the synchronization arises sharply so only a small increase
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Figure 7.2: Synchronization of star-coupled semiconductor lasers for increasing number

of elements, M . The color coding shows the intensity for each star laser as a function of

time. In the vertical axis the lasers are sorted by their solitary frequency, ωj, with number

1 corresponding to the most negative detuning. The black dashed line shows the laser for

which ω = 0. (a) M = 10, (b) M = 25, (c) M = 30 and (d) M = 75. The right column

shows the frequency ωj/2π of the lasers (dots), in relation with the normalized cumulative

Gaussian distribution (solid line). The pump currents are µ = 1.02 and µH = 0.4, and

the coupling strength κ = 30 ns−1.
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in the number of coupled lasers is required in order to synchronize their outputs (Fig.

7.3). Notice that in this case the synchronized dynamics is completely different to

the previous case with the outer lasers above the solitary threshold. When pumped

below the solitary injection current threshold the coherent dynamics is characterized

by a mostly constant intensity with small periodic fluctuations, also with a period

of 2τ , as shown in Fig. 7.3(b) that decreases in amplitude when M increases. It can

be observed that not all the lasers have the same output intensity, reaching higher

intensities the lasers with negative detuning frequency which is a direct consequence

of the asymmetry in the frequencies introduced by the α factor.

Figure 7.3: Same as in Fig. 7.2 for a pump currents of µ = 0.7 and µH = 0.4. (a) M = 40

and (b) M = 45.

In order to quantify the level of zero-lag synchronization, we calculated the total

coherent intensity of the star lasers as

I =

∣

∣

∣

∣

∣

M
∑

j=1

Ej (t)

∣

∣

∣

∣

∣

2

. (7.5)

Figure 7.4 compares the dynamics of this quantity with that of the intensity |EH |2

of the hub for increasing number of lasers. For increasing values of M , Fig. 7.4 shows
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the emergence of large intensity pulses in the total coherent intensity, corresponding

to strongly synchronized activity in Figs. 7.4(b-d). The hub laser reproduces these

dynamics after a time τ . This is reflected in a large peak at time −τ in the cross-

correlation function between |EH |2 and I, shown in Figs. 7.4(e-h). Thus, the hub

laser lags behind the star lasers in the synchronized state.
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Figure 7.4: (a-d) Time trace for the intensity of the hub laser, |EH |2 (top trace, blue),

and for the coherent intensity, I (bottom trace, black). (e-h) Cross-correlation function

between |EH |2 and I. The number of lasers is M = 25 (a,e), M = 30 (b,f), M = 75 (c,g)

and M = 100 (d,h). The parameters are the same as in Fig. 7.2.

7.2.1 Transition to the synchronized state

To investigate the transition to the synchronized state, we use as order parameter the

time-averaged total coherent intensity of the star lasers 〈I〉, where 〈·〉 is the average

over a time window of length T = 4 µs, calculated in the stationary state. In the

absence of synchronization 〈I〉 grows linearly with M , while when synchronization
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arises this linear dependence is lost.

Figure 7.5(a) shows the average coherent intensity as a function of the number of

star lasers for different coupling strengths and pump currents. When the star lasers

are pumped above the solitary threshold and for small coupling, 〈I〉 /M is approx-

imately constant, corresponding to the case of the absence of synchronization. For

moderate values of κ, on the other hand, the system becomes gradually synchronized

as M increases. The transition to synchronization occurs for a critical number of

coupled lasers Mc, which we quantify as the number of lasers for which the growth

rate of 〈I〉 with M changes abruptly. For even larger κ the critical number of lasers

needed for synchronization decreases.

10
1

10
210

−2

10
−1

10
0

10
1

<
I>

/M
 (

ar
b.

 u
ni

ts
)

M

(a)

10
1

10
2

10
−5

10
−3

10
−1

10
1

M

(b)

10
1

10
2

10
1

10
−1

10
−3

10
−5

10
−7

M

(c)

Figure 7.5: Ratio between the averaged coherent intensity 〈I〉 and the number of star

lasers M , as a function of M itself and for different coupling strengths: κ = 10 ns−1 (red),

κ = 20 ns−1 (blue) and κ = 30 ns−1 (black). (a) µ = 1.02, µH = 0.4. (b) µ = 0.99, µH =

0.4. (c) µ = 0.7, µH = 0.4. Each point is averaged over 10 to 40 different initial conditions

and detuning frequencies. The arrows mark errorbars out of the axis limits.

The qualitative character of the synchronization transition can be changed by

tuning the pump current µ of the star lasers below the laser threshold. When µ is

well below threshold [Fig. 7.5(c)], the transition to synchronization is very sharp,

in contrast with Fig. 7.5(a) above, provided coupling is large enough. Note that in

this case both the star and hub lasers are pumped below their solitary threshold,
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but are effectively above threshold due to coupling, and they turn on due to their

spontaneous emission. The transition takes place when the star lasers are pumped at

their solitary threshold [Fig. 7.5(b)], which shows the beginning of a sharp transition

for intermediate κ (blue line) when the star lasers are pumped only slightly below

threshold. We also note that this behavior requires that the hub laser be pumped

below threshold, i. e. µH < µth = 1, otherwise the critical behavior is lost.

7.2.2 Minimum number of lasers for stable synchronization

One of the characteristic features of crowd synchronization is the scaling of the crit-

ical number of elements with the degree of diversity in the population and with the

coupling coefficient [166]. In our case diversity is caused by the different frequencies

ωj of the lasers. Figures 7.6(a) and (b) show the dependence of the critical number

of lasers on the width σ of the frequency distribution and on the coupling strength

κ. The results show that Mc increases linearly with σ, while the dependence with

κ follows a power law with negative exponent, as occurs in [166]. As expected, the

larger σ the more different the lasers, and more lasers are required to generate the

synchronized state. A broad frequency distribution leads to a reduction in the size of

the clusters of lasers with similar ωj showed in Fig. 7.2(b), and a corresponding de-

crease in the coherent intensity. On the other hand, the larger the coupling strength

the smaller the minimum number of lasers required to synchronize the system [Fig.

7.6(b)].

We have also considered the effect of the coupling delay τ on the transition to

the synchronized state. As shown in Fig. 7.6(c), for short delays (compared with

the characteristic time scales of the laser) Mc exhibits a sharp resonance at a τ

corresponding to the cavity decay time, but for longer delays Mc is reduced and is

almost independent of τ . When the coupling delays are not identical[201], results

similar to those of Fig. 7.5 are found, but for larger coupling strengths. In that case

the synchronized dynamics may be characterized by periodic fluctuations of small



120 CHAPTER 7. QUORUM SENSING AND CROWD SYNCHRONY IN...

amplitude, or even steady state emission.
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Figure 7.6: Critical number of lasers, Mc, as a function of different system parameters,

for pump currents µ = 1.02, µH = 0.4. (a) Mc as a function of the width of the frequency

distribution, σ. The dashed line shows a linear fit for σ/2π > 6 GHz (Mc ∝ 1.2σ,

r2 = 0.982). Other parameters are κ = 30 ns−1 and τ = 5 ns. (b) Doubly logarithmic

plot of Mc as a function of the coupling strength κ. The dashed line shows a power-law

fit of the data (Mc ∝ 1/κ2.2, r2 = 0.987). Other parameters are σ = 20π rad/ns and τ =

5 ns. (c) Mc as a function of the time delay, τ . Other parameters are κ = 30 ns−1 and

σ = 20π rad/ns. The simulations are averaged over 20 stochastic realizations of the initial

conditions and frequency distribution.

7.3 Conclusions and discussion

In conclusion, we have shown numerically that a system of non-identical semiconduc-

tor lasers coupled to a common hub laser with time delay can be synchronized with

zero lag. The transition to the synchronization occurs above a certain critical num-

ber Mc of coupled lasers, provided the pump current of the hub laser is smaller than

the solitary pump current threshold µth. The type of synchronization transition can

be controlled via the pump current of the star lasers: a gradual (second-order-like)

transition is observed for star lasers with µ > µth, and an abrupt (first-order-like)
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transition arises for µ < µth. A similar behavior has been exhibited by a chemical

quorum sensing system [170].

The critical number of lasers increases linearly with the width of frequency dis-

tribution, and depends on the coupling strength via a power-law with negative

exponent, in agreement with the crowd synchronization transition reported in the

Millennium bridge [166]. On the other hand, the coupling delay reduces the critical

number of lasers while it has no influence on it for large enough time delays, even

though the delay is evident through the lag time with which the hub laser is syn-

chronized with the star lasers, which are synchronized isochronously to one another.

We have also considered a distribution of time delays which results in a decrease

of the synchronization that can be recovered by increasing the coupling strength.

A further investigation in this results should be interesting to better understand

the synchronization of non-identical time delay couplings that frequently arise in

experiments.

We are currently developing analytical expresions for Mc as a function of the

parameters of the system as an extension of the theoretical analysis done in [202].

We are interested in the instability produced by the transition to the synchronized

state, thus, we want to know for which parameters the unsynchronized state loses

its stability. This problem can be solved by using linear perturbation theory around

the unsynchronized steady state to obtain the critical parameter space boundary for

synchronization. We expect that new analytical results will improve our knowledge

on how the different parameters affect the synchronization transition.
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Chapter 8

Summary of results and future

work

This thesis is a contribution to the understanding of how stochastic and nonlinear

phenomena in semiconductor lasers influences information processing and synchro-

nization in these devices. The technological importance of semiconductor lasers

and their rich variety of nonlinear dynamics have been the main motivation of our

research.

The interplay between deterministic nonlinear dynamics and stochastic dynamics

has been analyzed with the aim of exploiting the constructive effects that appear

combining these two ingredients. The interplay of deterministic nonlinear dynamics,

current modulation and noise leads to phenomena such as low frequency fluctuations,

stochastic and coherent resonances, excitability and synchronization.

Noise is unavoidable in nature and is specially relevant in semiconductor lasers

where random fluctuations due to the spontaneous emission are usually considered

a drawback but, on the other hand, without noise a laser can not turn-on. A main

point of this Thesis has been to demonstrate that the combination of noise and

non-linearities can be exploited for innovative applications of semiconductor lasers.
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8.1 Summary of results

The numerical simulations of rate equations for semiconductor lasers, as devoted in

this Thesis, are important for the prediction and better understand the dynamics in

these devices. The use of nonlinear effects to generate reliable and useful signals have

been proposed in this Thesis and new phenomena have been observed and studied

in laser with optical feedback and in a coupled network with delay. We hope that

the contribution of our research will motivate new studies in laser dynamics and in

non-linear science. Here we briefly highlight the main results obtained.

The critical slowing down that occurs close to the bifurcation points can be used to

generate an optimal signal in VCSELs. In Chapter 4 we showed that VCSELs with

direct asymmetric current modulation emit sharp sub-nanosecond pulses of irregular

amplitude in two orthogonal linear polarizations even for pump currents, on average,

below the solitary laser threshold, leading to an effective threshold reduction of

about 20%. We have shown that pulses with maximum intensity and amplitude

and minimum dispersion are emitted for an optimal current modulation asymmetry.

The interplay between spontaneous emission noise and the radiation left by the

previous pulse are responsible of the emission of that pulses for a slow rising and a

fast decreasing current modulation. On the other hand, for a fast rising and a slow

decreasing ramp the pulses are suppressed. For an average current modulation above

the solitary threshold, the optimal asymmetry moves to the opposite situation with

a fast rising ramp followed by a slow decreasing one. The intensity-current response

show kinks related with the appearance of new pulses on each modulation period for

a large modulation amplitude. We have shown that both polarizations are sustained

for a large range of pump currents contrary to what can be observed without current

modulation where the simultaneous emission of the two polarizations is not allowed.

Stochastic resonance have been observed leading to the maximum amplitude of

pulses and the minimum dispersion for an optimal amount of spontaneous emission.

Logic Stochastic Resonance have been demonstrated as a reliable mechanism to
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obtain a nonlinear logical operator due to the interplay between bistability, noise

and an appropriate current modulation. In Chapter 5 we have shown this effect in

VCSELs that can act as logic operators due to the effect of noise. Two logical input

signals have been encoded in a three-level current modulation that varies the relative

stability of the orthogonal linear polarizations of the laser. A logical response,

encoded in the two orthogonal linear polarizations, have been obtained when the

current modulation is adjusted to favor one polarization for two modulation levels

and to favor the opposite polarization for the third modulation level. The VCSEL-

based logic operator allows to reproduce the truth table for the fundamental logic

operations AND, OR, NAND and NOR when an appropriate amount of noise induces

the transition to the most stable polarization. An appropriate amount of noise

leads to the diminution of the critical slowing down when the current modulation

is varied between consecutive bits. We have demonstrated that VCSELs can act

as reliable logic operators in a wide range of noise strengths and different laser

characteristics, and becomes a promising mechanism for logic operations under a

strong noise background.

Is well known that the regime of coexistence between stable emission and Low Fre-

quency Fluctuations (LFFs) can be observed in semiconductor lasers with optical

feedback for low pump currents and moderate feedback strengths. In this parameter

region, the Lang-Kobayashi model shows chaotic transients, observed when the LFF

dynamics stabilizes to the maximum gain mode after a certain time. In Chapter

6 we demonstrated the deterministic nature of the transient LFFs. In this regime,

a moderate noise level has no influence on the statistics of the transient time. We

studied how various model parameters representing different light-matter interac-

tions affect the duration of these transients. A large enough noise strength allows to

reproduce the coexistence regime, with alternance of chaotic transients and stable

emission, which can lead to excitability and stochastic resonance effects. We have

also found a qualitatively good agreement in the inter-dropout time for the transient

regime with previous results obtained in the literature for the sustained LFFs. We
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have also discussed the role of the chaotic dynamics of the transient LFFs by com-

paring the transients in the Lang-Kobayashi model with a phenomenological ODE

model concluding that the noise plays an important role when the dimensionality of

the system is low but not when it is large.

Finally, synchronization of independent non-identical oscillators coupled through

a common element can be observed above a certain minimum number of coupled

oscillators as occurs in crowd synchrony and in quorum sensing. In Chapter 7 we

presented a general mechanism for the gradual transition observed in the emergence

of crowd synchrony and for the sharp transition to the synchronized state in the case

of quorum sensing. We discussed these in a system of star-coupled semiconductor

lasers with time-delayed coupling and different optical frequencies. The transition

occurs when the common laser, i.e. the hub laser, is pumped below its solitary

threshold. We demonstrated that the kind of transition to the synchronized state

can be controlled by the pump current of the outer, i.e. the star, lasers. A smooth

transition above a critical number of coupled lasers, as occurs in the crowd synchrony

can be observed when the star-lasers are pumped above the solitary laser threshold,

while a sharp transition to the synchronized state, as in the quorum sensing transi-

tion, occurs when the star-lasers are pumped below the solitary laser threshold. We

have studied the effect of different parameters in the minimum number of lasers re-

quired for the emergency of the synchronization. This number decreases as a power

low of the coupling strength, while short time delays reduce the amount of lasers

required for synchronization. We have shown that a large enough time delay, larger

than the characteristic time scales of the system, does not affect the transition.

8.2 Perspectives for future work

During the work performed in this Thesis, several questions have arisen that can

be the natural continuation of the investigations presented here. A few of these
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questions are summarized below.

With respect to the dynamics of VCSELs with direct current modulation:

• Is it possible to control the polarization of the emitted pulses by tuning the

parameters of the asymmetric modulation? Which could be interesting for the

reliable transmission of signals in the pulses.

• Is it possible to implement a stochastic logic gate with VCSELs when the

input logical signal is encoded in an optical injected signal? All-optical logic

operations are the basis of a new generation of information processing devices.

Optical injection in VCSELs can induce chaotic dynamics in both polarizations

and the logic stochastic resonance could be different in this situation.

• Is it possible to increase the bit rate in both pulse generation and logical

stochastic resonance? For practical applications high bit rates are required. A

better control on the critical slowing down and polarization switching could

improve the performance of the generated signals. Successful results could mo-

tivate the design and development of VCSELs with improved characteristics.

• Which is the impact of thermal effects in both pulse generation and stochastic

logic gates? A more realistic model is needed in order to accurately predict

experimental results. Thermal effects modify the polarization stabilities, thus

the results shown in this Thesis could be extended to a more realistic situation.

Furthermore, transverse modes, that also modify the polarization stabilities,

could be considered in future investigations.

With respect to the dynamics studied in EELs:

• Which is the effect of multi-longitudinal mode emission in the duration of the

transient LFF time? Most of the commercial EELs emit multiple longitudinal

modes, and the complex interactions between them change the transient LFFs
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dynamics. Specially interesting is the effect of self- and cross-saturations that

strongly affect the coupling between longitudinal modes and the LFF dynamics

induced by an external reflector.

• How to develop a mathematical framework for studying synchronization tran-

sitions controlled by the system size? A stability analysis of the rate-equation

model presented in this Thesis will help to better understand the crowd syn-

chrony and quorum sensing transitions. We expect that similar mathematical

treatments will be possible in other systems that show system-size dependent

synchronization.

• Are there other coupling topologies that allow for crowd synchrony and quo-

rum sensing transitions? Similar results are expected for other dynamical

network topologies with passive central elements, but there are other network

topologies without a central element, such as scale-free networks, that show a

critical behavior with the system size under appropriate conditions. It could

be interesting, for instance, to study crowd synchrony and quorum sensing

transitions in the framework of percolation theory.

In addition, we hope that the theoretical results presented in this thesis will

motivate new experimental studies, such as:

• Dynamics of SCLs with asymmetric current modulation: experimental demon-

stration of subthreshold pulse generation.

• Experimental demonstration of stochastic logic resonance in VCSELs with

direct aperiodic current modulation and aperiodic optical injection.

• Experimental characterization of the duration of the transient LFFs time.

• Experimental demonstration of the transition to crowd synchrony and quorum

sensing in SCLs by tuning the pump current of the outer lasers.
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Láser Tipo ”Vertical-Cavity Surface-Emitting Laser” usando una Modulación

Asimétrica de la Corriente de Inyección, J. Zamora-Munt and C. Masoller.

|P|

• FISES’09 (Huelva, 2009), Chaotic transient dynamics in a semiconductor laser

with optical feedback, J. Zamora-Munt, C. Masoller, and J. Garćıa-Ojalvo. |P|
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