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We use ordinal patterns and symbolic analysis to construct global climate networks and uncover

long- and short-term memory processes. Data analyzed are the monthly averaged surface air

temperature (SAT field), and the results suggest that the time variability of the SAT field is

determined by patterns of oscillatory behavior that repeat from time to time, with a periodicity

related to intraseasonal oscillations and to El Niño on seasonal-to-interannual time scales. VC 2011
American Institute of Physics. [doi:10.1063/1.3545273]

We analyze climatological data from a complex networks

perspective, using techniques of nonlinear time series

symbolic analysis. Specifically, we employ ordinal

patterns and binary representations to analyze monthly

averaged surface air temperature (SAT) anomalies. By

computing the mutual information of the time series in

regular grid points covering the Earth’s surface and then

performing global thresholding, we construct climate net-

works that uncover short-term memory processes, as well

as long ones (5–6 yr). Our results suggest that the time

variability of the SAT anomalies is determined by

patterns of oscillatory behavior that repeat from time to

time with a periodicity related to intraseasonal variations

and to El Niño on seasonal to interannual time scales.

The present work is located at the triple intersection of

three highly active interdisciplinary research fields in

nonlinear science: symbolic methods for nonlinear time

series analysis, network theory, and nonlinear processes

in the earth climate. While a lot of effort is being done in

order to improve our understanding of natural complex

systems, with many different methods for mapping time

series to network representations being investigated and

employed in complex systems such as the human brain,

our work is the first one aimed at characterizing the

global climate network in terms of oscillatory patterns

that tend to repeat from time to time, with various time

scales. By mapping these processes into a global network,

using ordinal patterns and binary representations, we

find that the structure of the network changes drastically

at different time scales.

I. INTRODUCTION

Complex networks have been intensively studied in the

last years because they represent many real systems such as

the Internet; ecological, social, and metabolic networks;

genes; cells; and the brain.1 Global climate modeling is also

a hot topic nowadays because of its huge economic and

social impact for future generations. Giving the complexity

of the inter-relations between the different elements that

constitute our environment, it is important to analyze clima-

tological data from a complex network perspective. How-

ever, despite the intensive effort in research done in these

two interdisciplinary and fascinating fields, just very few

studies have combined both.2–8 These studies have shown

that network theory can yield light into interesting, previ-

ously unknown features of our climate.

Tsonis and Swanson4 and Yamasaki et al.3 have shown

that the climate network is significantly affected by El Niño,

as during El Niño years many links of the network are broken.

Tsonis and Swanson4 constructed cross-correlation-based net-

works of the SAT field for El Niño and for La Niña years and

investigated their structure. They found that the El Niño net-

work possesses significantly fewer links and lower clustering

coefficient and characteristic path length than the La Niña net-

work. They conjectured and verified that, because El Niño

network is less communicative and less stable than La Niña

one, during El Niño years temperature predictability is lower

compared to La Niña years. Using a different approach,

Yamasaki et al.3 arrived at a similar conclusion. They devel-

oped a method that allows to follow time variations of the

network structure by observations of fluctuations in the corre-

lations between nodes. The method allows to distinguish

between the two qualitatively different groups of network

links, blinking links that appear and disappear in a short time,

and robust links that represent long lasting relations between

temperature fluctuations in two regions. Assuming that broken

links are due to structural changes in the network, by tracking

these changes in several zones a strong response to El Niño

was revealed, even in geographical regions where the mean

temperature is not affected by El Niño.

Donges et al.6 compared the structural properties of net-

works constructed by using, as a measure of dynamical simi-

larity between regions, linear, and nonlinear measures: the

linear Pearson correlation coefficient and the nonlinear

mutual information. They analyzed two sets of data: the SAT

anomalies obtained from large-scale climate simulations by

the coupled atmosphere-ocean general circulation models
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and the SAT anomalies reanalysis data sets. A high degree

of similarity using the two approaches (linear and nonlinear

similarity measures) was found on the local and on the meso-

scopic topological scales; however, important differences

were uncovered on the global scale, particularly in the

betweenness centrality field. In Ref. 7, Donges et al.
employed the mutual information to reveal wavelike struc-

tures of high-energy flow that could be traced back to global

surface ocean currents. Their results point to the major role

of the oceanic surface circulation in coupling and stabilizing

the global temperature field in the long-term mean.

When computing the mutual information, in order to

detect patterns and correlations in the variability of two

nodes, a critical issue is defining probability distribution

functions (PDFs) that fully take into account the temporal

order in which the SAT anomalies occur in the time series.

Histogram-based PDFs do not take into account this tempo-

ral order and, thus, are not optimal for capturing subtle

correlated oscillatory patterns. Alternatively, one can use

time-delay embedding techniques to represent the time series

as a trajectory in a high-dimensional space; however, the

information provided by the mutual information is strongly

dependent on the embedding technique, the time-delay, and

the phase space partition.9

An alternative methodology, originally proposed by

Bandt and Pompe (BP) (Ref. 10) allows to define probability

distribution functions that fully take into account the time

ordering of the SAT anomalies. The BP method is based on

comparing values in the time series to construct “ordinal

patterns.” By computing the PDF of the possible ordinal pat-

terns, various information-theory quantifiers, such as the per-

mutation entropy, the mutual information, complexity

measures, etc., can be computed. The BP method has been

successfully employed to analyze time series generated from

physical, biological, and social systems (see, e.g., Ref. 11

and references therein).

When employing the BP methodology, the precise val-

ues of the SAT anomalies are neglected (as the method is

based on comparing relative values in the time series); how-

ever, as we will show, with the BP method, one can identify

patterns of oscillatory behavior that tend to repeat from time

to time, with various time scales. A drawback of the BP

method is that, in order to capture long memory processes,

long time series are needed to compute the PDFs of the ordi-

nal patterns with good statistics. The SAT data available

(described in the next section) limited us to construct ordinal

patterns of maximum length 5, which allows to consider

time scales up to 5 yr or 5 months. To overcome this limita-

tion we employed “binary representations,” by which the

time series of SAT anomalies were transformed into sequen-

ces of 0 and 1 s. These binary representations allowed to

consider processes with longer time scales, up to 6 yr or

6 months. We will show in what follows that ordinal patterns

and binary representations are tools that, when employed

within a complex network perspective, are very powerful for

the analysis of climatological data. By revealing long- and

short-term memory processes, they provide additional infor-

mation to that obtained from conventional time series analy-

sis, and thus, they help to a better understanding of our

complex climate.

This article is organized as follows: Sec. II presents

the description of the data analyzed and a summary of the

methodology employed. Section III presents the results

obtained with ordinal patterns and binary representations,

and a comparison with the methodologies previously

employed by other authors (i.e., the linear cross-correlation4

and the nonlinear histogram-based mutual information6).

Section IV contains a discussion of the results and the

conclusions.

FIG. 1. (Color online) Zero-threshold (left), low-threshold (center), and high-threshold (right) networks constructed by computing the mutual information from

ordinal patterns of length D ¼ 4 defined by comparing SAT anomalies in consecutive years. The 2D plots are color-coded such that the white (red) regions indi-

cate the geographical areas with zero (largest) area weighted connectivity. In each panel, the values of the threshold, t, and of the edge-density, q, are indicated.

FIG. 2. (Color online) Zero-threshold (left) and high-threshold (right) net-

works constructed by computing the mutual information from ordinal pat-

terns of length D ¼ 5 defined by comparing SAT anomalies in consecutive

years. The 2D plots are color-coded such that the white (red) regions indi-

cate the geographical areas with zero (largest) area weighted connectivity.

The weaker links lose a bit of memory (compare the zero-threshold networks

with D ¼ 4 and D ¼ 5) while the strong links do not, as the high-threshold

networks are the nearly same for D ¼ 4 and D ¼ 5.
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II. DATA AND METHODS

We present the analysis of the monthly averaged surface

air temperature [SAT field, reanalysis data from the National

Center for Environmental Prediction/National Center for

Atmospheric Research (NCEP/NCAR) (Ref. 12)]. As in

Refs. 2, 4, 6, and 7, anomaly values are considered (i.e., the

actual temperature value minus the monthly average).

The data covers a regular grid over the earth’s surface

with latitudinal and longitudinal resolution of 2.5�. These

N¼ 10226 grid points are considered the nodes (or vertices)

of a network (or graph), and the existence of a link (or edge)

between any two nodes depends on the “weight” of the link

that measures the degree of statistical similarity between the

climate dynamics in those two nodes. The data covers the pe-

riod January 1949 to December 2006, and therefore in each

grid point i (i¼ 1… N), we have M¼ 696 data points, fxi(t),
t¼ 1 … Mg. W¼fwij,i,j¼ 1 … Ng is the matrix that contains

the weights that characterize the links between any two

nodes. Because we do not attempt to uncover directionality

in the couplings among the nodes, we will consider a

symmetric measure of statistical similarity that results in

symmetric weights.

In Refs. 2 and 4 these weights were quantified with the

absolute value of the linear cross-correlation coefficient; in

Refs. 6 and 7, with the mutual information, a nonlinear mea-

sure that is a function of the probability density functions

(PDFs) that characterize the time series in the two nodes,

pi(m) and pj(n), as well as of the joint probability, pij(m, n)

Wij ¼ Mij ¼
X

m;n

pijðm; nÞ log
pijðm; nÞ

piðmÞpjðnÞ
: (1)

The mutual information, which can also be written as

Mij ¼ Si þ Sj � Sij; (2)

where Si ¼ �
P

pi log pi; Sj ¼ �
P

pj log pj; and Sij

¼ �
P

pij log pij indicates the amount of information of fxi(t)g
we obtain by knowing fxj(t)g, and vice versa. Mij measures the

degree of statistical interdependence of the time series; if they

are independent, pij(m, n)¼ pi(m)pj(n) and Mij¼ 0.

To uncover correlated “patterns” of oscillatory behavior

in the SAT anomalies, we employ the methodologies

referred to as ordinal patterns and symbolic analysis, which

are based on comparing consecutive values in the time

series, to compute the PDFs in Eq. (1). We begin by present-

ing the ordinal pattern methodology.10

First, in each grid point i, the time series fxi(t)g is

divided into M�D overlapping vectors of dimension D.

Then, each element of a vector is replaced by a number from

0 to D� 1, in accordance with its relative magnitude in the

ordered sequence (0 corresponding to the smallest and D� 1

to the largest value in each vector). For example, with D¼ 3,

the vector (v0, v1, v2)¼ (6.8, 11.5, 11) gives the ordinal pat-

tern 201 because v2 < v0 < v1. In this way, each vector has

associated an “ordinal pattern” (OP) composed by D sym-

bols, and the symbol sequence comes from a comparison of

neighboring values. Last, one computes the PDF of the D!

possible ordinal patterns. For example, with D¼ 3 the 3!¼ 6

different patterns are (012, 021, 102, 120, 201, and 210), and

thus, the PDF is calculated with six bins. To have a good

statistics one must have M�D�D! (i.e., # of OPs in the

time series� # of possible OPs).

Because in each time series we have M¼ 696 data

points, to compute the PDFs with good statistics, we limit to

consider only D¼ 4 and D¼ 5. Ordinal patterns of D� 3 do

not provide good resolution for computing the mutual infor-

mation, Eq. (1), because the PDFs are calculated with very

few bins (for D¼ 6, there are only six ordinal patterns and,

thus, only six bins).

With climatological data, meaningful ordinal patterns

can be formed either by comparing consecutive years or

FIG. 3. (Color online) As Fig. 1 but D ¼ 4 ordinal patterns defined by comparing SAT anomalies in consecutive months. The 2D plots of the area weighted

connectivity are color-coded such that the white (red) regions indicate the geographical areas with zero (largest) area weighted connectivity.

FIG. 4. (Color online) Zero-threshold (left) and high-threshold (right) net-

works constructed by computing the mutual information from ordinal pat-

terns of length D ¼ 5 defined by comparing SAT anomalies in consecutive

months. The 2D plots of the area weighted connectivity are color-coded

such that the white (red) regions indicate the geographical areas with zero
(largest) area weighted connectivity.
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consecutive months. Specifically, if we use D¼ 3, when

comparing consecutive years, the OPs in node i are defined

by (xi(t), xi(tþ 12), xi(tþ 24)), t¼ 1, …, M� 24; when

comparing consecutive months, they are defined by (xi(t),
xi(t þ 1), xi(t þ 2)), t¼ 1, …, M� 2.

To decide whether there is a link between two nodes, we

perform global thresholding,13 i.e., we define a threshold s
(which is the same for all pairs of nodes) and assume that

there is a link between i and j if the weight of the link is

above the threshold, i.e., wij� s.

Clearly, a careful selection of the threshold is crucial for

uncovering the backbone of the network.6

We use the following procedure: first, we check that we

only take into account significant network connections. To

do this, we compute the weight matrix W from randomly

shuffled time series in each node. The random elements of

this 10 226� 10 226 matrix have a very narrow PDF which,

in principle, allows the use of the maximum matrix element,

wmax, as a significant limit. Then, we compute W with the

original time series and consider that there is a significant

FIG. 5. (Color online) As Fig. 1 but employing binary representation. Zero-threshold (left), low-threshold (center), and high-threshold (right) networks con-

structed by computing the mutual information from patterns of length D ¼ 4 defined by comparing SAT anomalies in consecutive years. The 2D plots are

color-coded such that the white (red) regions indicate the geographical areas with zero (largest) area weighted connectivity. In each panel, the values of the

threshold, t, and of the edge-density, q, are indicated.

FIG. 6. (Color online) As Fig. 5 but with D ¼ 5.
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link between the nodes i and j if wij>wmax, otherwise, we

set wij¼ 0. While there are several methods to eliminate non-

significant links and the evaluation of statistical significance

is still an open problem (see, e.g., the discussion in Ref. 6),

this procedure is computationally cost-efficient and we will

show in what follows that allows to uncover meaningful

climate networks. The drawback is that it is a rather strong

test that eliminates weak but significant links, and as a result,

the networks tend to be very spare. The final step is to choose

a threshold t to select the strongest links. As in Ref. 6, we

chose t such that the resulting networks have a predeter-

mined number of links. In the following, we present results

for networks that have 1% of the total possible links (which

will be referred to as “low-threshold” networks) and net-

works containing 0.1% of the total possible links (referred to

as “high-threshold” networks). For easy comparison and to

visualize the effect of thresholding, we also present the net-

works containing all the significant links, which will be

referred to as the “zero-threshold” networks.

The networks are represented graphically as two-dimen-

sional maps by plotting the area-weighted connectivity,2,4,6,7

which is the fraction of the total area of the earth to which

each node i is connected

AWCi ¼

PN

j
Aij cosðkiÞ

PN

j
cosðkjÞ

; (3)

where ki is the latitude of node i and Aij¼ 1 if nodes i and j
are connected (i.e., if wij� s) and 0 otherwise. The cosine

terms correct for the fact that in a surface spherical network

defined on a regular planar grid, the nodes correspond to

regions of different area.

III. RESULTS

A. Ordinal patterns analysis

The networks obtained when the ordinal patterns are

defined by comparing SAT anomalies in consecutive years

and in consecutive months are displayed in Figs. 1–4. In

each panel, the values of the threshold, t, and of the edge-

density,

q ¼

PN

i;j

Aij

NðN � 1Þ ; (4)

are indicated.

For consecutive years, the networks with D¼ 4 (Fig. 1)

and D¼ 5 (Fig. 2) are very similar, showing highest connec-

tivity for the tropical region.

For zero-threshold (left panels in Figs. 1 and 2), the trop-

ical Pacific shows the largest connectivity, particularly in the

central and eastern side of the basin; the tropical Atlantic

and Indian oceans follow. In the extra tropics, there are

patches of high connectivity off the western coast of Canada

in the Northern Hemisphere (N.H.) and in the south Pacific

in the Southern Hemisphere (S.H.). This connectivity struc-

ture is more pronounced for D¼ 5, although some of the

weak links lose memory. These characteristics hint to El

Niño as a fundamental player in setting up these connec-

tions.14 The El Niño phenomenon occurs on interannual time

FIG. 7. (Color online) As Fig. 5 but with D ¼ 6. Comparing with Figs. 5

and 6 one can see that there is a good agreement with the results obtained

previously with ordinal patterns: the weaker links tend to lose memory,

while the strongest links do not.

FIG. 8. (Color online) As Fig. 5 but the networks constructed with binary representation comparing anomalies in D ¼ 4 consecutive months. The 2D plots of

the area weighted connectivity are color-coded such that the white (red) regions indicate the geographical areas with zero (largest) area weighted connectivity.

FIG. 9. (Color online) As Fig. 8 but with D ¼ 5.
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scales and consists in an anomalous warming of the eastern

equatorial Pacific. This warming in turn warms up the local

atmosphere and influences other tropical regions through the

excitation of equatorial Kelvin and Rossby waves. Changes

in the precipitation associated with El Niño also induce sta-

tionary Rossby waves in the northern and southern extra

tropics that generate long range connections called atmos-

pheric teleconnection patterns. Examples of these structures

are the Pacific-North American pattern that affects the north-

ern Pacific and North America and the Pacific-South Ameri-

can pattern that propagates in the southern Pacific toward

South America. These anomalous structures connect the

tropical Pacific with remote locations and affect the local cli-

mate by changing, for example, the advection of heat or

moisture into a region.

For non-zero-thresholds (center and right panels in Figs.

1 and 2), only the strongest links remain and the networks

clearly show again an El Niño-like structure in the tropical

Pacific. Secondary maxima in the Indian and Atlantic oceans

are present in the low-threshold networks but are signifi-

cantly weakened in the high-threshold ones. The continental

regions have overall very low connectivity, which translates

in the low predictability of surface temperature anomalies on

interannual time scales. Within these continental regions, the

largest connectivity is seen over Asia and North America,

the latter maximum being perhaps due to the Pacific North

American pattern induced by El Niño.15

The networks obtained when the ordinal patterns are

defined by comparing temperature anomalies in consecutive

months (Figs. 3 and 4) present, for zero- and low-threshold,

similar features as for consecutive years, although the net-

works are more homogeneous. There is a maximum in the

equatorial Pacific, a secondary maximum in the Indian ocean

and extra tropical maxima over Asia, North America, and

southern subtropics. On the other hand, the high-threshold

network shows that the strongest links are located in the

extra tropics. We speculate that this could be a result of the

modulation of the temperature variance by the seasonal

cycle, which is strongest over the northern hemisphere conti-

nental masses and has a minimum in the tropical band. This

network structure is also seen when using ordinal patterns

formed by five consecutive months, Fig. 4.

B. Binary representations

To capture longer memory processes one should use

larger D values; however, for D¼ 6, there are 6!¼ 720 possi-

ble ordinal patterns, and because we have time series with

less than 700 data points, there is not enough data to calcu-

late ordinal patterns PDFs with good statistics.

As discussed in the Introduction, a solution to overcome

this problem is employing “binary representations,” by

which the time series fxi(t)g is transformed into a sequence

fvi(t)g of 0 and 1 s, using the following rule: vi(t)¼ 0 if xi(t)
� 0 and vi(t)¼ 1 otherwise (because the xi values are temper-

ature anomalies, we are taking into account whether the SAT

field is above or below its monthly averaged value). We can

then define “binary patterns” of dimension D (e.g., for D¼ 3,

the possible patters are 000, 001, 010, 100, 011, 110, 101,

and 111) and compute their PDF. The number of different

patterns is 2D, and thus, we can calculate PDFs of patterns of

D¼ 6 (26¼ 64) with good enough statistics. Patterns with

D� 3 do not provide good resolution for computing the

mutual information, Eq. (1), because the PDFs are calculated

with very few bins. Therefore, in the following, we consider

D¼ 4, 5, and 6.

Figures 5–10 present the results when the binary pat-

terns are defined by consecutive years and months.

For consecutive years, Figs. 5–7, the networks obtained

when using binary representations are very similar to those

found with ordinal patterns. The tropical regions are quite uni-

formly well connected (although a Pacific maximum is clear)

while the extra tropics show localized regions of high connec-

tivity likely due to atmospheric teleconnections forced from

the tropics, particularly for low density networks.

FIG. 10. (Color online) As Fig. 8 but with D ¼ 6.

FIG. 11. (Color online) High-threshold networks constructed with binary representations, with patterns of D ¼ 6 covering time-intervals of 1 yr (left), 2 yr

(center), and 3 yr (right). The 2D plots of the area weighted connectivity are color-coded such that the white (red) regions indicate the geographical areas with

zero (largest) area weighted connectivity. See text for details.
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The networks obtained for consecutive months, Figs.

8–10, show that as the threshold or as D increases there are

overall similar changes in structure as those seen for ordinal

patterns, Figs. 3 and 4: for short memory processes (or for

low threshold), the maximum connectivity is in the tropics,

while for longer time scales (or for higher threshold), the

extra tropics show largest number of links. As discussed

before, this could be the result of the modulation of the tem-

perature variance by the seasonal cycle, which would be the

main process that connects grid points in very low density

networks (grid points that are connected by very strong

links). Our results could also hint at the role of land surface

conditions such as snow or soil humidity in increasing the

persistence of surface temperature anomalies over the north-

ern hemisphere continents. Overall, these results agree well

with the fact that temperature teleconnections from the tropi-

cal Pacific tend to last no much longer than a season in the

different parts of the world.

As a way to test the interpretation of the above presented

results, in terms of the symbolic methodology of time series

analysis capturing two different time scales of the Earth’s

climate, seasonal and interannual, we constructed binary pat-

terns of fixed dimension, D¼ 6, that cover three different

time intervals

(i) covering 1-yr, the patterns are composed as

½xiðtÞ; xiðtþ 2Þ; xiðtþ 4Þ;…; xiðtþ 10Þ�;

(ii) covering 2-yr, the patterns are composed as

½xiðtÞ; xiðtþ 4Þ; xiðtþ 8Þ;…; xiðtþ 20Þ�;

(iii) covering 3-yr, the patterns are composed as

½xiðtÞ; xiðtþ 6Þ; xiðtþ 12Þ;…; xiðtþ 30Þ�:

The results are presented in Fig. 11, where one can see how

the network changes. For a time interval of 1 yr, the extra

tropics have the largest number of links and there are very

few in the tropical region. On the other hand, for a time inter-

val of 3 yr, the extra tropics keep about the same number of

connections while in tropical Pacific “El Niño” stands out

(note the different color scales in the panels in Fig. 11). In

summary, confirming the results previously found with ordi-

nal patterns and binary representations composed by consec-

utive years and by consecutive months, on intraseasonal time

scales the extra tropical connections dominate, while on

interannual scales, the “El Niño” is the key player in setting

up teleconnections worldwide.

As it was previously discussed, the significance of the

network links was tested in comparison with links computed

from surrogate time series in each node. Since surrogate data

does not preserve the autocorrelation properties of the origi-

nal time series, to further test the validity of the previously

presented results, we did the following test: we computed the

mutual information using the original time series in node i
and the time-inverted series in node j. The results show no

FIG. 12. (Color online) Zero-threshold network (left) and non-zero-threshold networks (center and right) constructed by estimating the weights with the abso-

lute value of the cross-correlation coefficient. The 2D plots of the area weighted connectivity are color-coded such that the white (red) regions indicate the geo-

graphical areas with zero (largest) area weighted connectivity.

FIG. 13. (Color online) Zero-threshold network (left) and non-zero-threshold networks (center and right) constructed by estimating the weights with the mu-

tual information, calculating the PDFs from histograms of SAT anomalies. The 2D plots of the area weighted connectivity are color-coded such that the white

(red) regions indicate the geographical areas with zero (largest) area weighted connectivity.
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significant spatial structure in the area weighted connectivity

plots (not shown).

C. Comparison with other measures

It is interesting to compare the results obtained using or-

dinal patterns and binary representations with those obtained

using conventional techniques of time series analysis, as the

linear cross-correlation coefficient (as in Ref. 4) and the mu-

tual information, computing the PDFs from standard histo-

grams of amplitude values (as in Refs. 6 and 7). Figure 12

displays the zero-, low-, and high-threshold networks when

the weights are calculated with the absolute value of the

cross-correlation coefficient and Fig. 13, when they are calcu-

lated with mutual information, with the PDFs calculated from

histograms of temperature anomaly values. In this case, the

PDFs were computed employing 32 bins, and in each time se-

ries, the values of the SAT anomalies were renormalized such

that each time series has zero mean and standard deviation

equal to one (as in Refs. 6 and 7, for easier comparison).

The 2D plots of the area weighted connectivity are simi-

lar to those previously reported in Ref. 6 and also, to those

seen in Figs. 1, 2, 5, and 6, where the ordinal patterns and

the binary representations are formed by comparing consecu-

tive years. “El Niño” is the main feature uncovered. There

are also regions with relatively high number of links in the

northern hemisphere continents and southern subtropics, but

the high connectivity in the extra tropics seen previously in

Figs. 3, 4, 8–10 is not observed. In other words, employing

the cross-correlation coefficient or the histogram-based mu-

tual information uncovers mainly the interannual network.

These methodologies fail to separate the two distinct time

scales (intraseasonal and interannual) that are clearly seen

when using symbolic analysis and the time series are trans-

formed in sequences of patterns by comparing consecutive

years or consecutive months.

IV. CONCLUSIONS

Concluding, we have shown that ordinal patterns and

symbolic analysis applied to anomalies of the surface air

temperature are powerful tools for the analysis of the large-

scale topology of the climate network. The success of these

methods is based on an appropriate partition of the phase

space that results in ordinal patterns and binary representa-

tions having PDFs that characterize the diversity of patterns

present in the climate dynamics.

A main advantage of the methodology proposed here is

that by varying the dimension of the pattern and the year–

month comparison, one can uncover memory processes with

different time scales. We found that both, monthly and

yearly, patterns reveal long memory processes, and that

depending on the time scale considered the climate network

can change completely.

The fact that ordinal patterns and symbolic analysis give

meaningful information indicates that the time variability of

the anomaly SAT field is strongly determined by patterns of

oscillatory behavior that tend to repeat from time to time.

Overall we found that on seasonal time scales the extra

tropical regions, mainly over Asia and North America, pres-

ent the strongest links while in interannual time scales, the

tropical Pacific clearly dominates.
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