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An estimate of the net direction of climate interactions in different geographical regions is made by

constructing a directed climate network from a regular latitude-longitude grid of nodes, using a

directionality index (DI) based on conditional mutual information (CMI). Two datasets of surface

air temperature anomalies—one monthly averaged and another daily averaged—are analyzed and

compared. The network links are interpreted in terms of known atmospheric tropical and extra-

tropical variability patterns. Specific and relevant geographical regions are selected, the net direc-

tion of propagation of the atmospheric patterns is analyzed, and the direction of the inferred links is

validated by recovering some well-known climate variability structures. These patterns are found

to be acting at various time-scales, such as atmospheric waves in the extratropics or longer range

events in the tropics. This analysis demonstrates the capability of the DI measure to infer the net

direction of climate interactions and may contribute to improve the present understanding of cli-

mate phenomena and climate predictability. The work presented here also stands out as an applica-

tion of advanced tools to the analysis of empirical, real-world data. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4914101]

Information-theoretic tools are used to construct directed
climate networks (CNs) from time-series analysis of

observed climatological data. Specifically, surface air

temperature (SAT) anomalies are considered. Two data-

sets—one monthly averaged and another daily aver-

aged—are used. Directed links among the network nodes

are defined via an analysis of the net direction of informa-

tion transfer. A predictability measure—based on condi-

tional mutual information—quantifying the amount of

information in a time-series x(t), contained in s time units

in the past of another time series y(t), is used. The result-

ing directed network is then studied and a full agreement

with state-of-the-art knowledge in climate phenomena

has been found, validating this methodology for inferring

the net directionality of climate interactions, directly

from the data. No weather assumptions or models are

made, except for the appropriate setting of the parameter

s, which is sensible to the shorter or longer auto-

correlation of the time series.

I. INTRODUCTION

Network theory is a well-known framework for describ-

ing complex systems composed of many interacting compo-

nents.1–4 Many systems can be straightforwardly represented

in terms of a well-defined set of nodes coupled among them

via links that have a clear physical interpretation. This is the

case, for example, of airport networks,5 of social interactions6

or the Internet,7 just to name some. In other systems, it is not

clear how to define the relevant nodes, and/or there is no

obvious interaction that can be used to define links. An exam-

ple of this situation is the Earth climate system, in which the

lattice of grid points from measurements or models is defined

to be the network set of nodes, and it depends on the resolu-

tion of the dataset analyzed. Many climatological fields—

such as surface air temperature (SAT) or the geopotential

height (GH) at a certain pressure level—can be used to define

links via an analysis of significant correlations.8–10

CNs, which represent the statistical similarity structure

of spatio-temporal resolved climatological variables, depend

on the definition of nodes and links.11 Their regular spatial

sampling results in a small-world topology,12 and thus, a

careful interpretation of the inferred network is required.

Nevertheless, CNs have been successfully employed to ana-

lyze climate features including the global connectivity,13–15

the identification of community structures16,17 and the study

of the possible collapse of the meridional overturning circu-

lation (MOC)18 on the north Atlantic, among others.

A relevant drawback of this correlation analysis, which

uses symmetric similarity measures (such as cross-correlation

or mutual information), is that it yields non-directed networks

where the presence of a link reveals inter-dependency but the

direction associated (if any) of the underlying interaction is

not established. For improving the understanding of climate

phenomena and its predictability, it is of foremost importance

not only to be able to infer the presence of a link between two

nodes but also to infer the direction of this interaction.

A path to overcome this limitation is by constructing

weighted climate networks, where the weight of each link is

composed of two numbers: the correlation strength between

the two nodes and the time delay which maximizes this cor-

relation strength. The sign of the time delay givesa)juan.ignacio.deza@upc.edu
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information about the direction of the link. Using this

approach, the high sensitivity of the network links to El-

Ni~no events was demonstrated, even in geographical regions

far from the Pacific Ocean.19,20

An alternative approach for assessing the directionality

of climate interactions involves the use of Granger causality.

In Ref. 21, it was argued that the inclusion of several vari-

ability patterns like NAO (North Atlantic Oscillation), PDO

(Pacific Decadal Oscillation), ENSO (El Ni~no–Southern

Oscillation), and NPI (North Pacific Index)—which occur

naturally and explain an important part of the global atmos-

pheric variability—into a nonlinear network-like prediction

method largely improves the predictability of global temper-

ature over seasonal time scales. This is so even when the

time scales of the patterns used of in the order of decades.

The study suggested a causal directional influence among

these major oceanic and atmospheric modes and global tem-

perature variability, not only over their own time-scales but

also over much shorter ones. Granger causality has also been

used to test interdependence among ENSO and the Indian

monsoon.22 A non-symmetric bidirectional and even alter-

nating character of coupling was found that extends previous

knowledge about the presence of negative correlation and

intervals of phase synchronicity between the processes.

A third approach for directionality detection is based on

information-theoretic measures.23 For example, in Ref. 24,

information transfer from larger to smaller time scales was

detected in daily averaged SAT time series as the causal

influence of the phase of slow oscillatory phenomena with

periods of about 6–11 years in the amplitudes of the variabil-

ity, characterized by smaller timescales, from a few months

to 4–5 years.

The reliability of directed climate networks detected by

bivariate nonlinear methods based on information theory,

compared to those generated by linear Granger causality anal-

ysis, was studied in Ref. 25. Several algorithms for estimating

transfer entropy with a wide range of parameter choices were

considered. As transfer entropy is a special case of the condi-

tional mutual information, it reduces to Granger causality for

linear Gaussian processes, and it usually requires longer

time-series for accurate estimation. It was shown that all the

causality methods considered provided reproducible esti-

mates of climate directed interactions, with the linear method

outperforming the nonlinear ones in terms of reliability.

In the present paper, directed climate networks are con-

structed by using a predictability measure which, to the best

of our knowledge, has not yet been applied to climatological

data. This bivariate analysis quantifies the amount of infor-

mation contained in a time-series, x(t), about the past of

another time series, y(t), s time units before. More specifi-

cally, the directionality index (DI) is used, which quantifies

the net direction of information flow between two time se-

ries, and has been successfully employed for the analysis of

numerical data generated from coupled oscillators, and em-

pirical data from cardiorespiratory recordings and electroen-

cephalographic recordings, to name just a few.26–28

The objective of this work is to demonstrate that the DI

methodology for inferring the net direction of information

transfer indeed unveils climatologically relevant phenomena.

Clear patterns of variability are uncovered, both in the

tropics and in the extra-tropical regions, and their direction

of propagation is shown to be in good agreement with the

current understanding of main climate phenomena. The

method is shown to work with both monthly and daily aver-

aged data, and furthermore, well-defined atmospheric pat-

terns are uncovered on daily averaged data, which are not

seen with monthly averaged data.

The paper is organized as follows. Section II presents

the data analyzed and the method used for constructing

directed climate networks. The statistical significance test is

also discussed. Section III presents the results and provides a

comparison between directed and non-directed climate net-

works. Relevant patterns of global atmospheric variability

are interpreted from the maps obtained through the DI analy-

sis. Finally, Sec. IV presents the conclusions.

II. DATA AND METHODS

A. Data

We consider two datasets, both corresponding to SAT

anomalies from the reanalysis of the National Center for

Environmental Prediction/National Center for Atmospheric

Research, (NCEP/NCAR).29 The data cover a regular grid

over the Earth’s surface with latitudinal and longitudinal re-

solution of 2.5�, resulting in N¼ 10 226 grid points or net-

work nodes.

The first dataset corresponds to monthly averaged SAT

data. Since the data cover the period from January 1949 to

December 2013, in each node, there is a time series of 780

data points. The SAT anomalies are calculated as the actual

temperature values minus the monthly average, and they are

normalized by the standard deviation. Each time-series is lin-

early detrended.

The second dataset consists of daily averaged SAT from

the same source, with the same spatial resolution, and cover-

ing the same period of time (the length of each time series is

23 725 data points). In this case, for calculating the anoma-

lies, the daily average has been subtracted from the actual

temperature value, and the leap days have been discarded.

The time series are also detrended and normalized by the

standard deviation.

B. Directionality measure

We consider the SAT anomalies time series in two

nodes, X(t) and Y(t), which are characterized by probability

distribution functions (PDFs) pX, pY, and by their joint PDF,

pXY. To assess the directionality of the link between these

two nodes, the DI as defined in Refs. 26 and 30 is used

DIXY sð Þ ¼ IXY sð Þ � IYX sð Þ
IXY sð Þ þ IYX sð Þ

; (1)

where IXYðsÞ; IYXðsÞ (conditional mutual information) are

defined as

IXYðsÞ ¼ IðX; YjXsÞ
¼ HðXjXsÞ þ HðYjXsÞ � HðX; YjXsÞ; (2)
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IYXðsÞ ¼ IðY; XjYsÞ
¼ HðYjYsÞ þ HðXjYsÞ � HðY;XjYsÞ; (3)

with Xs ¼ Xðt� sÞ; Ys ¼ Yðt� sÞ and HðXjYÞ being the

conditional entropy.26,30

In terms of three time series X(t), Y(t) and Z(t), IðX; YjZÞ
indicates the amount of information shared between X(t) and

Y(t), given the effect of Z(t) over Y(t). In this way, to assess

the information transfer from X(t) to Y(t), Z(t) is replaced by

the past of time-series X(t). Thus, IðX; YjXsÞ quantifies the

amount of information shared between X(t) and Y(t), given

the influence of Xðt� sÞ over Y(t). Analogously, to assess

the information transfer from Y to X, Z(t) is replaced by the

past of Y(t). This special case of conditional mutual informa-

tion is also referred as transfer entropy.

The directionality index, DIXY , then quantifies the net in-

formation flow. From the definition of DIXY , Eq. (1), it is

clear that DIXY ¼ �DIYX. Also, �1 � DIXY � 1: DIXY ¼ 1 if

and only if IXY 6¼ 0, IY X¼ 0 (i.e., the information flow is

X! Y and there is no back coupling Y ! X) and DIXY ¼ �1

if and only if IXY¼ 0, IYX 6¼ 0 (i.e., the information flow is Y
! X and there is no back coupling X! Y).

Naturally, s> 0 is a parameter that has to be tuned appro-

priately to the time-scales relevant to the particular dataset. If

s is too small, DIXYðsÞ will capture short time scale direction-

ality, and may fail if the time series behave too similarly on

those time scales as they do if they are subjected to the same

external forcing. On the other hand, if s is too large, larger

than the decorrelation time of the time-series, the effect of the

past X over Y (and of Y over X) will be negligible and DIXYðsÞ
will be a small and, in principle, random value. In Sec. III A,

the criterion employed for accessing the statistical signifi-

cance of the DI values will be discussed, and in Sec. III B, a

thorough study of the effect of varying the parameter s will be

performed. It is worth noticing that in the two datasets consid-

ered, s¼ 1 has a different meaning: in the monthly averaged

SAT time-series, the minimum value of s is one month, while

in the daily averaged data, the minimum value of s is one day.

To compute the PDFs associated to each time series,

and the joint PDFs, a 10-bin histogram of values is used. An

alternative approach is to use a symbolic transformation

known as ordinal analysis.26,31–33 A preliminary study sug-

gests that using ordinal analysis offers as an additional

advantage—the possibility of finding the directionality of the

links at different time-scales; this study is still in progress.

It is important to note a drawback of using the direction-

ality index for network construction: it does not distinguish

indirect from direct information transfer. Given three time-

series, X, Y, and Z, positive and significant DI values IXY> 0

and IXZ> 0 might also give a significant value of IYZ—either

positive or negative—even if there is no “direct” information

in Y about the future or the past of Z, as the information will

have been “indirectly” contained in X.

III. RESULTS

First, the results of the statistical significance analysis of

link directionality, when using monthly averaged SAT data-

sets, are presented. Monthly datasets are used in order to

compare with the undirected networks reported in Ref. 33.

Afterwards, the results of the analysis of the daily averaged

datasets are presented. They are consistent with the monthly

dataset results, furthermore uncovering additional patterns of

atmospheric variability, not observed in monthly data as the

averaging procedure filters high frequency and variability.

A. Statistical significance analysis

To address the significance of DI values, 100 surrogates

were generated using the bootstrap (BS) algorithm.34 The null

hypothesis considered for Mutual Information (MI) is that the

processes are independent from each other. The null hypothesis

for DI is that there is no preferential direction of the interaction.

The BS algorithm randomly resamples with replacement

from the original datasets using blocks of data of approxi-

mately the size of the autocorrelation time of the time series,

and then computes the estimators (MI and DI) from the

resampled data. Doing so, both the statistics (histogram) and

the power spectrum of the original time series are approxi-

mately preserved. In this way, two different empirical distri-

butions (one-tailed for MI and two-tailed for DI) were

obtained for each link, and significance thresholds were

extracted from them.

Afterwards, for each link, the MI value was calculated

from the original datasets and a significance test was applied.

A MI value is considered significant if: MI > HMI, where

HMI is the threshold derived from the bootstrap MI distribu-

tion. In addition—for the MI significant links only—the DI

value computed from the original dataset was compared to

the DI thresholds HþDI and H�DI. The DI value was considered

significant if DI > HþDI or if DI < H�DI . This two-step signifi-

cance test was performed with the scope of assessing first the

presence of a link, and afterwards its directionality.

A graphical explanation of the full procedure is shown

in Fig. 1, where, for two nodes (one over the Pacific and one

over the Indian Ocean), the unfiltered DI maps are displayed

in panels (a) and (d), the significant MI values are displayed

in panels (b) and (e), and finally, the DI significant values for

the MI significant links are displayed in panels (c) and (f).

The DI maps show positive DI values in red, which mean

outgoing links, while the incoming links are shown in blue.

The significance thresholds, HMI, HþDI and H�DI, extracted

from the BS surrogates, were computed as HMI ¼ lMI þ 3

�rMI; HþDI ¼ lDI þ 3� rDI , and H�DI ¼ lDI � 3� rDI , with

l and r being the mean and standard deviation of the corre-

sponding MI and DI bootstrap distributions. The process is

illustrated in Fig. 2, panels (a) and (b). It can be noticed that

these distributions are bell-shaped, which justifies the use of

classical statistics. Also notice from panel 2(b) that for a suffi-

ciently large number of BS surrogates, the distribution tends to

be centered around a rather small DI value, which motivates

the null hypothesis of no preferential direction of the

interaction.

The more time and memory consuming 99th percentile

test was also used, and yielded similar results.

In order to visualize the results of the significance crite-

rion employed, in Fig. 2, panels (c) and (d) display—as an

example—the DI vs MI values of all the links of the two
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nodes, one located in the central Pacific and the other in the

Indian Ocean (the nodes are the same as in Fig. 1). The black

dots indicate the disregarded links (either because MI is not

significant, or because MI is significant but DI is not).

Significant links are plotted in red (outgoing links,

DI > HþDI) and in blue (incoming links, DI < H�DI).

In Fig. 2, panels (c) and (d) also show that high MI val-

ues do not imply high DI values. In Fig. 2(d), one can notice

that most of the blue dots are located in a narrow range of

MI values while they are distributed in terms of DI values.

An inspection of panel (f) in Fig. 1 shows that the blue links

come to the node in the Indian Ocean from a well-defined

region in the central Pacific Ocean. On the other hand, one

can notice in Fig. 2(d) that the few red dots are more distrib-

uted in the MI, DI plane, and in Fig. 1(f) the red outgoing

links connect the node in the Indian Ocean to various regions

on Earth.

B. Analysis of monthly averaged SAT anomalies

1. Influence of the parameter s

As stated in the methodology, the correct choice of the

value of s is necessary for obtaining consistent results. As s

can be only an integer, using monthly averaged data, its mini-

mum value will be of one month. In the tropical areas, the

influence of the ocean on the surface air temperature is a

dominant characteristic. Moreover, because of the large heat

capacity of water and the ocean’s dynamics, the sea surface

temperature (SST) anomalies vary in the scale of months.

Calculating DI for a point in the central pacific (NINO3 area)

for different values of s yields the results shown in Fig. 3.

The point considered is the same as in Figs. 1(a)–1(c), and

moreover, panel 1(c) is the same as panel 3(a).

For s¼ 1, Fig. 3(a) shows the central Pacific influenced

by (in blue) the eastern Pacific and influencing (in red), pre-

sumably through atmospheric teleconnections, the global

tropics, and the extratropical Pacific Ocean. However, as s
grows, the number of significant connections decreases, sug-

gesting that the time-scale of decorrelation of the SAT is less

than 6 months. This is consistent with the persistence time

scale of 3–6 months of observed sea surface temperature.

The extratropical atmosphere shows larger internal vari-

ability than the tropics, and the impact of the extratropical

SST on the atmosphere is much more limited than in the

tropics. Thus, the variability of extratropical SAT is domi-

nated by synoptic atmospheric dynamics and has time scales

FIG. 1. Procedure of constructing sig-

nificant directionality maps from raw

DI calculations. In panels (a) and (d),

the unfiltered DI maps are shown for

two nodes, one in the central Pacific

Ocean and one in the Indian Ocean,

indicated with triangles. In panels (b)

and (e), only the statistically significant

MI values are shown. These results are

combined in (c) and (f), where only the

links that have both, statistically signif-

icant MI and DI values are shown.
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of a few days. Longer persistence time scales might appear

in the extratropics if the region is influenced by tropical SST.

This motivates the use of a small value of s when consider-

ing extra-tropical variability.

In Fig. 4, the DI and MI maps for two points in the

extratropics are shown. Panels 4(a) and 4(c) show links

related to a point in southeastern South America, while pan-

els 4(b) and 4(d) show links related to a point in the

Labrador Sea, whose characteristics are linked to the

NAO.35 The top panels show DI for s¼ 1 month while the

bottom panels show MI.

Consistent with the previous description, the extratropi-

cal SAT show only some incoming links from the tropical

region for s¼ 1 month. The point over the Labrador Sea

seems to show also some outgoing links to the northeast,

although there is no clear structure. As shown in Sec. III C, a

better identification of link directionality is obtained by using

daily data.

FIG. 2. (a) and (b) Histograms of the

MI and DI values (s¼ 1 month) com-

puted from 100 BS surrogates—the

dashed vertical lines indicate the sig-

nificance thresholds, and the solid lines

(red online) indicate the MI and DI

values computed from the original

data. (c) and (d) Plot of DI (s¼ 1

month) vs. MI for all the links of the

two nodes in the Pacific and Indian

Oceans considered in Fig. 1. Incoming

links are indicated in blue and out-

going links, in red. Significant links

are plotted in red or blue dots; the

black dots indicate the disregarded

links (either because MI is not statisti-

cally significant, or because MI is sig-

nificant but DI is not). The triangles

indicate the (MI, DI) values of the par-

ticular link between the two nodes.

FIG. 3. Effect of s on tropical areas

using monthly averaged data. In this

case, a point in central pacific (the same

point used in the top row of Fig. 1 and

in Ref. 33) is considered. The values of

s are: (a) 1 month, (b) 3 months, (c) 6

months, and (d) 12 months. Notice the

decorrelation of the time series for large

s. Incoming links are in blue while out-

going links are in red.
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2. Comparison between monthly and daily datasets

In order to obtain more temporal resolution daily data

has been used. Figure 5 shows a comparison between DI for

monthly data—panels 5(a) and 5(c)—and for daily data—

panels 5(b) and 5(d). Corresponding to the same points

considered in Fig. 1. In order to adequately compare the

datasets, s was chosen equal to one month in the monthly

data and 30 days in the daily data.

The maps using monthly and daily data show similar

features, and no inconsistencies are found. Furthermore, the

map constructed using daily data captures much better the

local and remote dependencies and directionality of the

links. Areas with significant links are better defined, and

some regions that are known to be influenced by equatorial

Pacific SST, like the tropical north Atlantic,36 clearly appear

using daily data, but only very roughly using monthly data.

FIG. 4. (a) and (b) Directionality of

the significant links (s¼ 1 month) of

two nodes in the extratropics indicated

with triangles: (a) in southern South

America (de la Plata basin) and (b) in

Labrador Sea. As the decorrelation

time on the extratropics is very fast, no

clear structures are seen. In order to

show that it is not a problem of statis-

tics, panels (c) and (d) display the sig-

nificant MI values.

FIG. 5. Comparison of monthly aver-

aged and daily averaged datasets. The

nodes considered are as in Fig. 1.

Panels (a) and (c) display the DI mea-

sure (s¼ 1 month) calculated from

monthly data—same as Figs. 1(c) and

1(f). Panels (b) and (d) display the DI

measure (s¼ 30 days) calculated from

daily data. Results are consistent, and

the resolution using daily data is

better.
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Thus, the increase in temporal resolution improves the repre-

sentation of the links related to tropical regions.

C. Analysis of daily averaged SAT anomalies

1. Influence of the parameter s

To analyze the influence of the parameter s in the DI

measure when it is computed from daily data, four links

connecting the node in the Pacific Ocean are considered in

Figs. 1 and 5 with:

(a) a node in Labrador Sea,

(b) a node in tropical north Atlantic (in the red area in

Fig. 5 between the Caribbean and Africa),

(c) a node in southern Pacific (the red spot in Fig. 5 near

Antarctica), and

(d) a node in the Indian Ocean.

Figure 6 displays, for each link, the DI value vs s.

In panel (a), the directionality index that characterizes the

influence of the equatorial Pacific to the Labrador Sea shows a

small increase for small s that persists up to about s¼ 10 days.

This is the typical time scale associated with the setup of the

atmospheric anomalies forced by anomalies in tropical convec-

tion. Afterwards, the DI decreases exponentially-like, becom-

ing non-significant at s¼ 30 days—as the DI value enters the

shaded area. In the tropical north Atlantic—Fig. 6(b), the DI to

the equatorial Pacific shows similar values as for the Labrador

Sea case, for up to s¼ 10 days. For larger values of s, how-

ever, the DI has significant values (approximately constant) up

to about s¼ 60 days. Afterwards, it decreases becoming non-

significant for s larger than 4 months. The difference in behav-

ior between the tropical north Atlantic and the Labrador Sea

might be because the remote forcing from ENSO induces a

clear regional response in the surface temperatures of the

tropical Atlantic,36 which will add persistence to the remote

signal. On the other hand, in the Labrador Sea, the ocean does

not respond and the large atmospheric variability obscures the

signal from the equatorial Pacific.

A similar behavior to the one seen in the tropical

Atlantic is also found in the Southern ocean—Fig. 6(c).

There is a fast time scale for small values of s, but in this

case, the influence of the equatorial Pacific persists for s up

to 80 days, with DI values significantly larger than in the

Atlantic. The ENSO influence over the south Pacific is one

of the most robust signals in the extratropics, consequence of

atmospheric teleconnections associated with the Pacific

South American pattern.37 The time scale of about 3 months

seen in the DI is likely associated with the time it takes to

the surface ocean to respond to anomalous atmospheric

fluxes and to the seasonal dependence of the atmospheric tel-

econnection pattern on the mean state of the extratropical

atmosphere.

The behavior of the influence of the equatorial Pacific

onto the Indian Ocean—Fig. 6(d)—also shows a fast time

scale of a few days, but in this case, the largest value of the

DI is seen for a s of about 60 days. Also, there are large val-

ues of DI for s values of more than 4 months. This suggests

that the Indian Ocean responds to the incoming ENSO signal

in a time scale of about 2 months, through thermodynamic

and dynamic coupling.38,39

Thus, the DI plots as a function of s for different ocean

regions suggest that there is one fast time scale of about 10

days associated to the setup of the atmospheric teleconnec-

tions associated with changes in tropical convection.

Moreover, in some regions the DI shows a second longer time

scale of about 2 or 3 months associated with the response of

the local ocean to the circulation anomalies forced from the

tropics. Finally, longer time scales related to oceanic inertia

FIG. 6. Influence of the parameter s
when DI is computed from daily aver-

aged data. The DI value is plotted vs. s
for the four links that connect a node

in the Pacific Ocean with (a) a node in

Labrador Sea, (b) a node in tropical

north Atlantic (in the red area in Fig. 5

between the Caribbean and Africa), (c)

a node in southern Pacific (the red spot

in Fig. 5 near Antarctica), and (d) a

node in the Indian Ocean. In order to

filter the noise, the DI value was aver-

aged over second neighbors in the grid.

The shaded area (red online) indicates

the DI value computed from 100 BS

surrogates, as explained in Sec. III A.
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also affect the DI value but longer datasets are needed in order

to perform a robust estimation of their effects.

2. Influence of s in the extra-tropics

The improvement in characterizing directionality using

daily data is even larger in the extratropics. As mentioned

above, the extratropical SAT is strongly dependent on synop-

tic scale perturbations (a time scale of a few days). Thus, the

use of daily data should allow to uncover these relationships

and to investigate the direction of the links as the lag

increases. In order to do so, the point in southeastern South

America shown in Fig. 4 is considered and the directionality

network for several values of s ranging from a day to one

month (Fig. 7) is constructed. For synoptic time scales of a

few days, the methodology uncovers the existence of a wave

train connected to southeastern South America propagating

with a southwest-northeast direction. Moreover, there is a

clear separation line between regions with incoming and out-

going links. This configuration is characteristic of the

FIG. 7. Effect of s in the southern

extratropics, when DI is computed

from daily data. The same node in Fig.

4(a) is considered, and the values of s
are: (a) 1 day, (b) 3 days, (c) 7 days,

and (d) 30 days. Small s capture wave

trains propagating from west to east,

while for s values longer than a week,

the decorrelation is higher and only the

influence from the Pacific Ocean

persists.

FIG. 8. As in Fig. 7 but for a node in

the northern extratropics—the

Labrador Sea, as in Fig. 4(b). The val-

ues of s are as in Fig. 7. The Labrador

Sea area is related to a source of

atmospheric variability of the North

Atlantic Ocean that affects Europe. As

in Fig. 7, smaller values of s can cap-

ture wave trains propagating from west

to east, over Europe, while values of s
longer than a week loose this effect

and only the influence from the Pacific

Ocean persists.
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progression of a front through the reference point and does

not imply that the SAT over the reference point influences

the region to the northeast but it only happens to be in the

path of the perturbation. As the lag time increases, the extra-

tropical wave train associated with synoptic time scales fades

and only the points in the tropics remain, consistent with an

influence of the equatorial Pacific on the region on longer

time scales, perhaps related to ENSO.

A similar behavior is seen taking as reference point the

SAT over the Labrador Sea (Fig. 8). For small values of s,

the progression of a front is clearly detected using this proce-

dure: given the mean westerly winds at these latitudes, the

front moves from west to east and is clearly marked as the

boundary between the incoming and outgoing links. It is also

seen for s¼ 3 suggesting that in about three days, the front

reaches the Mediterranean region affecting temperatures

there. Again, as s increases mainly the tropical links remain.

However, even for s¼ 30, there is a well defined region of

outgoing links that remain over the Labrador Sea, suggesting

that the SAT in the region may have relatively long time

scales of variability, perhaps related to the North Atlantic

Oscillation. Another possibility is the influence of the local

ocean that increases the persistence of atmospheric tempera-

ture anomalies through thermodynamic coupling, as shown

by Barsugli and Battisti.40

3. Influence of s in the tropics

Figure 9 presents the effect of s on daily data in the

tropics. Panel 9(a) shows the point considered in the Pacific

Ocean for s¼ 1 day. Contrarily to, e.g., Figure 7, where front

propagation shows a big response in the tropics due to the

existence of wave trains in the extratropics, in this case, the

connections are weak. The opposite case, for s> 30 days—

Panels 9(b) and 9(c)—are consistent with in Figure 6 as the

structures are robust for a wide range of s. Notice in Panel

9(c) the presence of a second blue area near the coast of

Chile. This is in agreement with the easterly trades advection

over the Pacific Ocean. In order to complement the informa-

tion provided in panels 9(a)–9(c), in the multimedia file, a

movie was included (Multimedia view), which presents the

links to the node in the Pacific Ocean, for s¼ 1 day to

s¼ 180 days. Panels 9(d)–9(f) show maps for a point in the

FIG. 9. Effect of s using daily data for

a node in the tropics. In panels (a)–(c),

the node is in the Pacific Ocean, and

(d)–(f), in the Indian Ocean. The val-

ues of s are: (a) and (d) 1 day, (b) and

(e) 45 days, and (c) and (f) 90 days.

The maps for s¼ 30 were shown in

Fig. 3. In contrast to the extra-tropics,

where the propagation of waves in the

scale of days is dominant, and are

clearly seen in the maps for time scales

of a few days, in the tropics, the vari-

ability is longer as the ocean adds per-

sistence to the nearly barotropic

atmosphere. For higher values of s,

only long lasting phenomena are

observed, related to the strongest vari-

ability pattern in this area, which is

ENSO. In the multimedia file, a movie

showing the links to the node of the

fist row, for s¼ 1 to s¼ 180, is pre-

sented. (Multimedia view) [URL:

http://dx.doi.org/10.1063/1.4914101.1]
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Indian Ocean, for values of s¼ 1, 45, and 90 days, respec-

tively, where similar results are obtained.

4. Directionality on the tropical Pacific Ocean

In Fig. 10, the DI for s¼ 30 days has been plotted for

points covering all the equatorial Pacific. They begin at

95.0� W—panel 10(a)—and end at 125.0� E–panel 10(d).

Clearly, the influence the Pacific Ocean exerts is almost

global, over tropics and extratropics, in agreement with pre-

vious studies (e.g., in Ref. 41). The DI allows to show that—

even if there are feedbacks and the Pacific is affected by

extratropical perturbations and other ocean basins (e.g., the

tropical Atlantic)—the influence is effective from the Pacific

to the rest of the world. Moreover, the maps show that the

largest influence is done by the equatorial Pacific close to the

dateline. This is clear in the extratropical atmosphere, as

well as in the tropical north Atlantic. On the other hand, the

connection to the Indian Ocean and south Atlantic is not so

sensitive of the point considered over the equatorial Pacific.

As the reference point moves further west from the 180th me-

ridian, the influence decreases substantially, only remaining

weak connections to the tropical north Atlantic and Indian

Oceans. The methodology can thus be applied to find the best

region to construct an index that describes the Pacific influ-

ence over the area where climate anomalies are studied.

Notice that all maps show a blue tongue of incoming

links to the east of the point considered; it is seen first in

panel 10(a) and extends westward until covering the whole

Pacific Ocean in 10(d). This feature is related to the exis-

tence of the equatorial cold tongue and the fact that easterly

trades blow over the equator thus advecting air from the east

to the west of the point.

IV. CONCLUSIONS

The climatological relevance of directed climate net-

works constructed via information-theoretic tools has been

shown. The presence of significant links was inferred using

mutual information while the direction of those links was

inferred using the directionality index. Using monthly aver-

aged SAT data, the results from our previous work33 have

been recovered and the analysis extended to infer the net

direction of propagation of the information. The inference

method was tested against the value of the parameter s that

represents the time required for the information to travel

from one node to another. It was found that by adequately

tuning s, the network connectivity varied revealing the

various time-scales of atmospheric processes; too short

values of s failed to capture several long-range links,

while for too large values of s (above the length of correla-

tions in the data), the connectivity of the network

decreased drastically.

In addition, when considering daily averaged SAT data,

the analysis revealed variability patterns consistent with

known features of the global climate dynamics. In the extra-

tropics, the long time average synoptic weather was correctly

inferred: as specific examples, two geographical regions in

different hemispheres—one node in de la Plata basin and

another in the Labrador Sea—were considered, and the link

direction revealing wave trains propagating from west to

east, in both hemispheres, was shown.

As a future work, it would be interesting to apply this

methodology to analyze how the climate network changes in

the different seasons. Another interesting issue is the role of

permutation entropy. Computing the directionality index using

ordinal patterns,32,33 which would allow constructing networks

revealing atmospheric processes with short time-scales

FIG. 10. The zonal change of direc-

tionality over the equatorial pacific is

shown. In all cases, s¼ 30 days. From

(a) near the south American coast to

(d) in the western Pacific Ocean. As

seen in the maps, most of the points

over central and eastern Pacific have

an important effect over a large part of

the world; especially over the tropical

areas and the rest of the Pacific

Ocean—notice that in (a)–(c), the tele-

connections remain basically the same,

although the intensity varies. Incoming

links are in blue, while outgoing are in

red.
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(of days-months) or with long time-scales (few years). These

studies are in progress and will be reported elsewhere.
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