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ABSTRACT

Many natural systems can be represented by complex networks of dynamical units with modular structure in the form
of communities of densely interconnected nodes. Unraveling this community structure from observed data requires the
development of appropriate tools, particularly when the nodes are embedded in a regular space grid and the datasets are short
and noisy. Here we propose two methods to identify communities, and validate them with the analysis of climate datasets
recorded at a regular grid of geographical locations covering the Earth surface. By identifying mutual lags among time-series
recorded at different grid points, and by applying symbolic time-series analysis, we are able to extract meaningful regional
communities, which can be interpreted in terms of large-scale climate phenomena. The methods proposed here are valuable
tools for the study of other systems represented by networks of dynamical units, allowing the identification of communities,
through time-series analysis of the observed output signals.

Introduction
Many real-world complex systems can be represented in terms of networks of interacting nodes embedded in space. Examples
include power grids, fiber-optic networks, road networks, flight connections, etc1–3. Such networks are usually organized in
modules or communities of densely interconnected nodes4–11. The spatial embedding of the network can hidden the underlying
community structure, rendering the identification of communities a challenging a task12–14. The effects of space in the topology
of the network are particularly important when the network is built with correlation analysis of output signals which are
recorded at a regular grid of observation points. Examples of this situation include brain functional networks15–17 and climate
networks18–21.

Here we focus on climate networks, which provide relevant insight into global climate phenomena22–29. Climate communi-
ties reveal coherent subsystems30, can be used for model inter-comparisons31, and can advance climate predictability32. For
example, communities obtained from the analysis of sea surface temperature (SST) reveal information about long-term SST
variability33.

In climate networks, detecting communities representing geographical regions with similar climate is challenging because
the links are defined via correlation analysis (for example, by using the Pearson coefficient). Thus, in the resulting network,
the nodes are linked mainly to neighboring nodes (because of the high correlation that results from physical proximity), and
long distance links are scarce. This spatial effect can hide, for example, the fact that distant extratropical land masses (in the
two hemispheres) are likely to have similar climate. This similarity is not captured because, when the network is built with
correlation analysis, the northern and southern hemispheres are indirectly or only weakly connected.

Here propose and validate two methodologies to overcome this problem. From time-series recorded at a regular grid of
points covering the Earth’s surface, the methods extract different and relevant properties of our climate. With the first method,
which is based in computing mutual lags between time-series, we are able to infer communities defined by regions in which
the oscillations of a climate variable (the surface air temperature, or the geopotential height) are in-phase; with the second
method, which is based in symbolic time-series analysis, we group together regions that share similar properties of the symbolic
dynamics. We validate these methods by uncovering meaningful communities, which can be related to known properties of the
climate system.

Data
We analyze monthly-averaged surface air temperature (SAT) and geopotential height (GH) reanalysis data from NCEP/NCAR
(state-of-the-art model simulation with data assimilation using past observed data where and when is available,34). The data



covers the period from January 1948 to May 2012 (T = 773) data points and has a spatial grid resolution of 2.5 degrees
(N = 10226 nodes). The data can be freely downloaded from the NCEP/NCAR reanalysis project webpage:

http://www.esrl.noaa.gov/psd/data/reanalysis/reanalysis.shtml

Time lags method
The first method proposed for community identification unveils geographical regions in which the oscillations of a climate
variable are in-phase, revealing similar response to annual solar forcing. To identify such regions, for each time-series we
first compute the annual cycle, and then compare the mutual lags among all pairs of time-series. Thus, for each xy

i (t), where
x indicates either SAT or GH, i indicates the geographical location, y indicates the year and t indicates the month within
that year, we first compute the seasonal cycle as xi(t) = (1/Y )∑y xy

i (t) where Y is the number of years (64 or 65 depending
on the month). Then, for each pair of time-series, i and j, we compute the lagged cross-correlation of the seasonal cycles,
Ci j(τ) = (1/12)∑t xi(t)x j(t + τ), and determine their mutual lag, `i j, as the value of τ that maximizes Ci j(τ). The seasonal
cycle is by definition periodic, therefore, we search for a maximum in τ ∈ [0,11]35, 36. With `i j, we calculate ` ji as: ` ji = 12−`i j
if `i j 6= 0, else ` ji = 0.

If the mutual lags among any three regions (i, j, k) are well defined, they should satisfy:

`i j = (`ik + `k j) mod 12. (1)

To fix the ideas, let us consider that i is a region in continental Europe, j is in the tropical eastern Pacific Ocean and k is in
southern South America. If the lag between i and j is 8 months, and the lag between i and k is 6 months, then, the lag between
j and k should be 2 months.

Therefore, one vector containing the lags between a region, k, and any other region, i, ~̀k = {`ik}, contains in fact all the
information needed for computing the lag between any two regions i and j: if we know `ik and ` jk, `i j can be calculated from
Eq. (1).

However, because we consider monthly-averaged data, `i j, `ik and `k j are integer numbers of months, and thus, because of
round-off errors (the real lags are not necessarily integer numbers) Eq. (1) will not hold for all the triples (i, j,k).

In order to identify the regions that have well-defined lags among them, we chose a reference node i, and, for each other
node j, we test Eq. (1) for all the possible ks. If the relation is satisfied in more than 50% of the cases, we consider `i j to be
a well defined lag, otherwise no value is assigned. This is in fact a simple work-around solution to a complex optimisation
problem: how to remove the minimum number of `i j values, so that Eq.(1) is valid for all the remaining ones.

Then, the information about all mutual lags, {`i j∀i, j}, can be summarized in just one map, which displays the lags between
a region, k, and any other region i (i.e., displays the vector ~̀k), because, from this map, any lag `i j can be calculated using
Eq.(1). For SAT time-series, the resulting map is plotted in Fig. 1a for a reference region in continental Europe and in Fig. 1b
for one in southern South America. In these plots, all the areas sharing the same color present a seasonal cycle in phase, and the
white areas indicate regions in which the lag with the reference point is not well-defined.

The two panels are very similar; the white areas are a little fraction of the total area, and they are located at the boundaries
of well defined regions, thus confirming a coherent community decomposition. We can see that, in spite of the fact that the
annual solar forcing is zonally symmetric, the maps of lag times are heterogeneous. In particular, wide ocean areas have a
one-month delay with respect to the landmasses. In the eastern boundaries of the oceans this delay reaches two months and
even three months in El Niño region. While the one-month delay can be expected due to thermal inertia of the water respect to
the land, the longer delays have no straightforward explanation and require further investigation.

By applying this methodology to the geopotential height at 500 hPa, we uncover a very different community structure,
displayed Fig. 2. In this case, due to the fact that the seasonal cycle is highly non-linear and heterogeneous, the white areas
with not well-defined lags increase with respect to the SAT lag map. In particular, a wide part of the equatorial belt, as well
as the polar region, have undefined lags. Also, in the northern hemisphere, two regions with undefined lags are consistent
with the North Atlantic Oscillation pattern, which on long time-scales can act as a source of noise for the lag determination.
Nevertheless, several consistent features can be seen, including the six-month symmetry between the two hemispheres.

Symbolic method
The second method proposed for community identification allows to uncover regions that share similar symbolic patterns of
climate variability. To rule out similarities which are due to the periodicity induced by the solar annual cycle, the analysis is
now performed on anomaly time-series, yi(t), computed by subtracting the seasonal cycle to the raw data37.

In order to construct a network in which regions with similar climate are connected, we first use symbolic analysis and
transform each time-series, yi(t), in a symbolic sequence, si(t). Next, for each symbolic sequence we calculate the transition
probabilities, Mi(α,β ), among all possible pairs of symbols, α and β . Specifically, we compute the number of times β occurs
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after α , over the total number of transitions. The transition probabilities (TPs) describe the statistics of the symbolic sequence.
In order that two regions, i and j, with similar (dissimilar) TPs, are strongly (weakly) linked, we define the weight of the link
between i and j as

wi j =

(
∑

α, β

(Mi(α,β )−M j(α,β ))2

)−1

. (2)

Next, we construct a network by considering only the strongest links, i.e., we threshold {wi j} and obtain the adjacency
matrix, Ai j = H(wi j−W ), where H is the Heaviside step-function and W is a threshold chosen such that the network is not
too sparse or too connected38. Then, we apply the Infomap algorithm of community identification7, 33. To summarize, in this
second method, the symbolic information obtained from N time-series is encoded in N TP matrices, and then we identify the
regions which have similar TPs.

There are many ways of perform the symbolic data reduction. Here we use the method of ordinal analysis39–41 because it
has been proven useful to construct climate networks22, 25, 35 (a comparison with other symbolic methods is presented in the
Supplementary Information, SI). In this approach, each time series is divided into non-overlapping segments of length Q, and
each segment is assigned a symbol, s, (known as ordinal pattern) according to the ranking of the values inside the segment. For
example, with Q = 3, if yi(t)< yi(t +1)< yi(t +2), si(t) is “012”, if yi(t)> yi(t +1)> yi(t +2), si(t) is “210”, and so forth.
Thus, the symbols take into account the relative temporal ordering of the values and not the values themselves. In this way,
each symbol encodes information about the evolution of the time-series during Q months. In order to estimate the TPs with
good statistics, the length of the time-series must be much longer than the number of possible transitions, i.e., T � Q!2. Thus,
with T = 773 months, we use Q = 3.

The community structure inferred from SAT anomalies is presented in Fig. 3. As it can be seen, the algorithm divides the
world in 8 areas, labeled with different colors. These areas share similar dynamics, in the sense of similar symbolic transition
probabilities. The continents in the two hemispheres are in the same community and a large coherent area is detected in the
ENSO basin, while the oceans are divided in tropical and extratropical. A detailed analysis of these communities is provided in
the SI.

It is important to remark that such community structure can not be inferred from networks that are constructed from
correlation analysis (by using Pearson coefficient or mutual information). As our goal is that regions with similar climate belong
to the same community, the classic tools are not useful, because they would not provide direct connections among extratropical
regions. In order to belong to the same community two nodes must be part of the same group of strongly interconnected nodes,
and in the correlation approach, where the links are prominently local, direct teleconnections across hemispheres are scarce
(see SI for more details).

It is interesting to compare how these communities are related to those found in Fig. 1 through the seasonal cycle. There
are borders among different communities that are indeed shared by the two sets, such as the extra-tropical coastlines, or the
separation of northern from southern Australia and of southern South America from the rest of the continent.

The Infomap algorithm automatically converges towards a certain number of communities that cannot be directly controlled,
as they are defined by the network structure. The number of communities depends on the network density, which is in turn
modified by the threshold W used to construct the network. Increasing the network density makes the network to look like a
giant coherent cluster, and the Infomap algorithm will detect a smaller number of communities. Decreasing the density will
break the network in many small parts, and Infomap will detect them as many separate communities (see SI for details).

Figure 4 displays the communities extracted for GH anomalies at 1000 and 300 hPa. As it can be seen, increasing the height
of the field implies a more zonal distribution of the communities: at 300 hPa the tropics form a belt that differentiates from the
extratropical areas, which belong to the same community, the two are separated by strip-like communities, probably a signature
of the subtropical jet. At 1000 hPa, instead, the effect of tropical convection is dominant, separating the low latitudes in two
areas, the Maritime Continent together with the ENSO basin (perhaps a signature of the Walker circulation), and the rest of the
tropics. The extratropics instead are grouped in the same community, regardless of the presence of landmasses.

Discussion
We have presented two methods to identify communities in dynamical complex systems using the properties of observed
time-series. We tested the methods with climate data (surface air temperature and the geopotential height at two pressure
levels), and uncovered communities that are consistent with main large-scale climate phenomena. The first method, based on
computing mutual lags among the time-series through correlation analysis, uncovered communities formed by geographical
regions with synchronous seasonal cycles. The second method, based on symbolic analysis, identified communities formed by
geographical regions where the climate variability displays similar symbolic patterns.
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Practical applications of the proposed methods include the analysis of specific geographical regions, to uncover sub-areas
with similar micro-climate. Moreover, the two methods can be used to analyse other real-world, dynamical complex systems.
Because the methods were demonstrated with space-embedded, short and noisy datasets, they can be used to analyse brain
signals, to uncover brain regions with in-phase dynamics or with similar symbolic dynamics.
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(a)

(b)
Figure 1. Communities obtained from computing mutual lags among SAT time-series. Regions depicted with the same color
have a synchronous seasonal cycle, while the lag between two regions can be computed by subtracting the numbers associated
with each color. Panel (a) was obtained by using a reference node located in continental Europe, while panel (b), a reference
node in southern South America. Matlab software (version number 7.12.0.635) was used to create these maps, and all the other
maps in this work.
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Figure 2. As Fig. 1a but computing the lag times from time-series of geopotential height at 500 hPa.
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Figure 3. Communities obtained from the symbolic analysis of SAT anomalies. Regions depicted with the same color belong
to the same community. Four macro-communities are identified: extratropical continents and oceans, tropical oceans and El
Niño basin.
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(b)

(a)

Figure 4. As Fig. 3 but for geopotential height anomalies at 1000 hPa (a) and 300 hPa (b). 9/9
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