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Summary

—————————————————————————————

This Thesis is devoted to the construction of global climate networks (CNs) built

from time series—surface air temperature anomalies (SAT)—using nonlinear analysis.

Several information theory measures have been used including mutual information

(MI) and conditional mutual information (CMI).

The ultimate goal of the study is to improve the present understanding of climatic

variability by means of networks, focusing on the different spatial- and time-scales of

climate phenomena.

An introduction to the main components of this interdisciplinary work are offered

in the first three chapters. Climate variability and patterns are introduced Chapter 1,

network theory in Chapter 2, and nonlinear time series analysis—especially informa-

tion theoretic methodology—in Chapter 3.

In Chapter 4, the statistical similarity of SAT anomalies in different regions of the

world is assessed using MI. These climate networks are constructed from time series

of monthly-averaged SAT anomalies, and from their symbolic ordinal representation,

which allows an analysis of these interdependencies on different time scales. This

analysis allows identifying topological changes in the networks when using ordinal

patterns (OPs) of different time intervals. Intra-seasonal (of a few months), inter-

seasonal (covering a year) and inter-annual (several years) timescales are considered.

An increase in the ordinal pattern spacing (namely, in the timescale of the ordinal

analysis), results in climate networks with increased connectivity in the equatorial

xv
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Pacific area. Reciprocally, the number of significant links decrease when the ordi-

nal analysis is done with a shorter timescale (i.e. by comparing consecutive months).

These effects are interpreted as the El Niño–Southern Oscillation (ENSO) forcing on

long scales together with the presence of more stochasticity in the time series at the

shorter timescale.

The nature of the interdependencies is then explored in Chapter 5 by using SAT

data from an ensemble of atmospheric general circulation model (AGCM) runs, all

of them forced by the same historical sea surface temperature (SST). It is possible to

separate atmospheric variability into a forced component, and another one intrin-

sic to the atmosphere. In this way, it is possible to obtain climate networks for both

types of variability and characterize them. Furthermore, an analysis using OP allows

to construct CNs for several time scales, and evaluate the connectivity of each differ-

ent network. This selecting both time scale and variability type allows to obtain a fur-

ther insight into the study of SAT anomalies. The connectivity of the constructed CNs

allows to assess the influence of two main climate phenomena: ENSO and the North

Atlantic Oscillation (NAO). To do so, these phenomena are linearly removed from the

time series and the analysis of these new series can be compared to the analysis of the

original ones. The connectivity of the forced variability network is heavily affected by

ENSO: removing the NINO3.4 index—that characterizes ENSO—yields a general loss

of connectivity. The fact that even connections between regions far away from the

equatorial Pacific ocean are lost, suggests that these regions are not directly linked but

rather connected via ENSO, particularly at interannual time scales. On the other hand,

on the internal variability network—independent of SST forcing—the links connect-

ing the Labrador Sea with the rest of the world are found to be significantly affected

by NAO, with a maximum at intra-annual time scales. While the strongest non-local

links found are those forced by the ocean, the presence of long range teleconnections

associated with internal atmospheric variability is also shown.



xvii

In Chapter 6, a natural extension of the network construction methodology is im-

plemented in order to infer the direction of the links. A directionality index (DI) is

used. DI can be defined as the difference of the CMI between two time series x(t ) and

y(t ), calculated in two ways: i) considering the information about x(t ) contained in τ

time units in the past of y(t ), and ii) considering the information about y(t ) contained

in τ time units in the past of x(t ). DI is used to quantify the direction of information

flow among the series, indicating the direction of the links of the network. Two SAT

datasets—one monthly-averaged and another daily-averaged—are used. The links of

the obtained networks are interpreted in terms of known atmospheric tropical and

extra-tropical variability phenomena. Specific and relevant geographical regions are

selected, the net direction of propagation of the atmospheric patterns is analyzed,

and the direction of the inferred links is tested using surrogate data. These patterns

are also found to be acting on various time scales, such as synoptic atmospheric waves

in the extra-tropics or longer time scale events in the tropics. The dependence of the

values of DI with τ is investigated. For synoptic time scales (τ< 10 days), DI is shown

to exhibit a dependence with τ, with a minimum of connectivity in the tropics, and

a maximum—in the form of a train of waves—in the extra-tropics. For larger values

of τ, links are found to be relatively robust to the choice of this parameter, showing

a high connectivity in the tropics and a low connectivity in the extra-tropics. The

analysis demonstrates the capability of the DI to infer the net direction of climate

interactions, and to improve the present understanding of climate phenomena and

climate predictability. The resulting directed network is found to be in full agreement

with state-of-the-art knowledge in climate phenomena, validating this methodology

for inferring—directly from the data—the net directionality of climate interactions.

The final Chapter 7 presents the main conclusions, and a discussion of future

work.





Resumen

—————————————————————————————-

El objetivo de esta tesis es la creación de redes climáticas (CN por las siglas en

inglés) a partir de un conjunto global de series temporales de temperatura del aire su-

perficial (SAT), utilizando técnicas de análisis no lineal de series temporales. Varias

metodologías son aplicadas al estudio de la variabilidad climática, incluyendo la In-

formación mutua (MI) y la información mutual condicional (CMI).

El objetivo principal de esta tesis es estudiar la variabilidad climática a través del

análisis de redes haciendo énfasis en los diferentes patrones espaciales y temporales

del sistema climático.

Una introducción a los componentes principales de este trabajo interdisciplina-

rio se presenta en los primeros tres capt́ulos. La variabilidad climática y los patrones

atmosféricos se introducen en el Capítulo 1, la teoría de redes en el Capítulo 2, y el

análisis no lineal de series temporales, especialmente metodos en teorá de la infor-

mación, en el Capítulo 3.

En el Capítulo 4, la similitud estadística de las anomalías de SAT en diferentes

regiones del mundo es evaluada utilizando MI. Estas redes climáticas globales son

construidas a partir de series temporales de SAT promediadas a escalas de tiempo

mensuales, y a partir de su representación simbólica, permitiendo un análisis de estas

interdependencias en varias escalas temporales. Se identifican cambios topológicos

entre las redes, como resultado de variaciones en el intervalo de construcción de los

OP. Escalas intra-estacionales (unos meses), inter-estacionales (cubriendo un año) e

xix



xx RESUMEN

inter-anuales (varios años), son consideradas. Se encuentra que un incremento en el

espaciado de los patrones ordinales (por lo tanto, en la escala de tiempo del análi-

sis ordinal), resulta en redes climáticas con un incremento en la conectividad en el

Pacífico ecuatorial. Al contrario, el número de conexiones significativas decrece al

realizar el análisis ordinal en una escala de tiempo más corta (es decir, comparando

meses consecutivos). Este efecto es interpretado como una consecuencia del efecto

de El Niño-Oscilación Sud (ENSO) actuando en escalas de tiempo más largas y de una

mayor estocasticidad en las series temporales en escalas de tiempo más cortas.

La naturaleza de las interdependencias es explorada en el Capítulo 5, utilizando

datos de SAT, resultantes de un conjunto de salidas de un modelo atmosférico de cir-

culación global (AGCM), todas forzadas por la misma temperatura de la superficie del

mar (SST). Es posible separar la variabilidad atmosférica en una componente forzada

y otra intrínseca a la atmósfera. De esta forma, se obtienen redes climáticas para

ambos tipos de variabilidad, lo que posibilita caracterizarlas. Un análisis utilizando

OP permite crear CNs para diferentes escalas temporales, y encontrar la escala de OP

para la cual las diferentes redes presentan mayor conectividad. Este doble proceso

de selección permitie estudiar la variabilidad de las anomalías de SAT desde un nuevo

punto de vista. La conectividad de las redes climáticas así construídas permite evaluar

la influencia de dos fenómenos climáticos: ENSO y la Oscilación del Atlántico Norte

(NAO). Para esto, se pueden comparar las redes originales, con redes provenientes de

series temporales a las que se les quitaron linealmente estos fenómenos. Un resultado

clave de este análisis es que la conectividad de la red de variabilidad forzada es muy

afectada por ENSO: eliminando el índice NINO3.4 (que caracteriza ENSO), se provoca

una pérdida general de la conectividad en la red. El hecho de que incluso conexiones

entre áreas muy alejadas del océano Pacífico ecuatorial se hayan perdido al quitar

el índice, sugiere que estas regiones no están directamente conectadas sino que am-

bas son influenciadas por la zona dominada por ENSO, especialmente en escalas de
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tiempo inter-anuales. Por otro lado, en la red de variabilidad interna, independiente

del forzado de las SST, las conexiones del Mar del Labrador con el resto del mundo re-

sultan significantemente afectadas por NAO, con un máximo en escalas intra-anuales.

Aunque las conexiones no locales más fuertes resultan las forzadas por el océano, se

muestra la presencia de teleconexiones asociadas con la variabilidad interna.

En el Capítulo 6, una extensión natural de la metodología de construcción de re-

des es implementada, permitiendo inferir la dirección de las conexiones. Un índice de

direccionalidad (DI), puede ser definido como la diferencia entre la CMI entre dos se-

ries temporales x(t ) e y(t ) calculada de dos formas: i) considerando la información de

x(t ) contenida en τ unidades de tiempo en el pasado de y(t ) y ii) considerando la in-

formación de y(t ) contenida en τ unidades de tiempo en el pasado de x(t ). Este índice

DI, se utiliza para cuantificar la dirección del flujo de información entre las series, lo

que equivale a la dirección de la conexión entre los respectivos nodos de la red. Dos

conjuntos de series temporales, uno promediado mensualmente y el otro promediado

diariamente, son usados. Las conexiones de las redes resultantes son interpretadas en

términos de fenómenos de variabilidad tropical y extra-tropical conocidos. Regiones

específicas y relevantes son seleccionadas, la dirección neta de propagación de los

patrones atmosféricos es analizada y contrastada con un test de inferencia estadís-

tica. Se encuentra que diferentes patrones de variabilidad, actúan en varias escalas

de tiempo, tales como ondas sinópticas atmosféricas en los extra-trópicos o escalas

de tiempo mayores en los trópicos. La dependencia de valores de DI con τ es investi-

gada. Para la escala sinóptica (τ < 10 días), DI presenta una dependencia con τ, con

un mínimo en los trópicos y máximos (en forma de trenes de ondas) en los extra-

trópicos. Para valores mayores de τ, los links resultan ser relativamente robustos a la

elección del parámetro, mostrando una conectividad alta en los trópicos y baja en los

extra trópicos. El análisis demuestra la capacidad de DI de inferir la dirección neta de

las interacciones climáticas, y de mejorar la compresión actual de fenómenos climáti-
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cos y de la predictabilidad climática. La red resultante está en total acuerdo con los

conocimientos actuales de fenómenos climáticos, validando esta metodología para

inferir, directamente de los datos, la dirección neta de las interacciones climáticas.

Finalmente, el Capítulo 7, presenta las conclusiones, y una discusión de trabajo

futuro.
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Preface

Earth’s climate is a highly complex dynamical system comprising an immensely wide

range of time and spatial ranges [1, 2]. Climate variability is defined as changes of

some variables (e.g. temperature, pressure, or rainfall), over months, seasons and

years (for shorter time scales the term weather variability is used) with respect to their

long term mean. Natural atmospheric variability can be partly explained in terms

of patterns—or “oscillations” as first climatologists named them—which constitute

recurrent variations of climatic variables with periods in the order of several years,

decades or longer, over the long term mean. Some of these variability patterns have

been named; for example “El Niño - Southern Oscillation” (ENSO), the “North Atlantic

Oscillation” (NAO), the “Pacific Decadal Oscillation” (PDO), the “Atlantic Multidecadal

Oscillation” (AMO), or the “Arctic—and Antarctic—Oscillations” (AO and AAO respec-

tively) among others [3].

In the last few decades a great amount of effort has been focused on understand-

ing how climate phenomena in one geographical region affects the climate in other

regions. The mechanisms underlying patterns of climate variability are complex and

still not fully understood, but it is widely accepted that climate in a region is not the

result of local factors, as the atmosphere connects far away regions through waves

and advection of mass, heat and momentum. These long-range couplings are called

teleconnections and have been shown to be an ubiquitous feature of atmospheric dy-

namics.

For the purpose of modeling and forecasting, many systems lead naturally to the
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concept of networks of interacting elements, appearing in many fields of science and

technology. Some examples of these are: social interactions [4], food webs [5], gene

expression networks [6], brain functional networks [7], or the internet [8], to name

only a few. In many of these systems, nodes and links can be assigned depending on

the (in principle, very complex) features of the system under study. The goal being to

map features of the system into the topology of the network, in order to apply network

analysis tools (the well developed theory of graphs) to the systems under study.

Using this approach is then possible to extract relevant information about a sys-

tem without yielding an oversimplification, or being forced to handle the full-scale

detailed model which can obscure the interpretations or being computationally too

expensive. This situation has motivated the use of networks for climate studies and

set the birth of the research field of climate networks (CNs) [9–12].

Complex networks have indeed revealed themselves as a powerful framework for

identifying climate interdependencies. However, in order to further exploit the knowl-

edge of the links uncovered via the network analysis (for, e.g. improvements in predic-

tion), a good understanding of the physical mechanisms represented by these links is

required.

The work presented in this thesis is aimed at studying methods of climate net-

work construction, by using nonlinear time series analysis, and information theory

measures. Methods based on symbolic analysis, and the mutual information concept

have been used. They are particularly capable of detecting and distinguishing time

scales and thus are useful to classify variability patterns out of the data. A particular

emphasis is made in comparing network construction methods, statistical inference

and directionality measures, in order to detect not only the relevant links in the net-

work but their direction as well, and to improve the use of CNs as a tool for modeling

the Earth climate system.
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Chapter

1
Temporal and spatial scales in

climate phenomena

1.1 Climate data records

Atmospheric patterns occur naturally in the atmosphere in a wide range of time scales.

These span from hours—or even seconds—in the case of tornadoes, to millennia and

even longer time scales for events like glacial eras or warm periods. Furthermore,

what we informally refer to as “normal” climate in an area, changes with time, and

probably was not considered normal only some generations ago. There is abundant

historical evidence of this fact by means of tales, and paintings from different civi-

lizations, showing how “typical” climate naturally changes. As an example, the tale

“A Christmas Carol” of Charles Dickens [13], depicts a many centimeter snow layer in

London in late December as something usual. This book dates from 1843, at the end of

a period of several hundred years characterized by severe winters now called the “Lit-

tle Ice Age”; present day London however is usually snowless in december and it only

presents a couple of centimeters of snow yearly which seldom last as air temperatures

below freezing are unusual [14]. Additionally, human-induced (antropogenic) climate
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change is superposed to natural variability, making future climate predictions even

more uncertain as they are now also subjected to a new forcing with rather unknown

consequences [15].

Climate variations can also be known from historical data, which usually is not

detailed enough to be used for analysis or forecasting but it gives a rough idea of the

conditions met in the past, i.e., how climate looked like before measurements were

widespread. The path taken, for example, by sailing ships or large wind-powered ves-

sels recovered from their logbooks during the sail era, shows that patterns of air cir-

culation were different than those in present days. This can be explained due to pat-

terns which occurred during the critical period that marked the transition out from

the Little Ice Age in the late seventeenth century [16]. Another study, with histori-

cal consequences is reported in [17] where a chronology of El Niño events going back

to 1525 is produced. It was compiled from historical reports of conditions from the

coastal region and adjacent waters of northwestern South America made during the

Spanish colony. As an anecdote, their work suggests, that Francisco Pizarro’s conquest

of the Incas in 1531–1532 coincided with an El Niño event (a phenomenon to be ex-

plained in section 1.4.1). Heavy rains and swollen rivers, which typically occur only

during El Niño years in Peru, delayed Francisco Pizarro’s advance through the coun-

tryside. On the other hand, the same rains made the desert areas bearable to transit,

and produced abundant vegetation, providing plentiful fodder for his horses, which

were one of the chief tactical advantages (along with swords) that his small contingent

of soldiers had over the much more numerous natives.

Another path to understand ancient climates are paleoclimatic records [18, 19].

These are indirect measures of a climatic variable of the past through the use of prox-

ies. A proxy is a geological variable which can yield information about an ancient cli-

matic variable. They include ice caps (drilled so an ice core can be extracted and ana-

lyzed) [20], old trees and tree-rings (Dendroclimatology) [21], studies in the growing of
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coral (Sclerochronology), but also marine and land sediments [22,23], and pollen [24],

among many others (see [25] for a review). These methods not only have been used

to state geological climate events from the very ancient Huronian glaciation [26]—

occurred from 2400 Mya to 2100 Mya before present, but also have yield light on

more recent phenomena. Two examples are the reconstruction of European climate

during the Holocene—about 11.000 B.P.—using pollen data [27], and studies on the

aforestated Little Ice Age using tree-ring data [28]. Paleo-data are immensely useful to

understand the nature and extent of present day climate variability patterns, as with

present day ENSO [29]. The transcription from proxy data to climatic variables is not

without error [25], as e.g. trees have a huge influence on their growth from many un-

known factors (humidity, rainfall, the precise species of tree, etc) which can affect the

interpretation of the results, yielding sometimes to huge error bars in the data. Al-

though paleo-data is usually of better quality than the historical records as they are

not human-biased, the quality of paleoclimatic records is still very low compared with

direct observations. They remain, however, the only known method to characterize

the climate of the distant past.

Current climate can be measured directly by using instruments of high precision

and resolution, this resulting in the most reliable data source for analysis. Instrumen-

tal data can be station-based or gridded with a certain resolution, and this results

in spatio-temporal information which allows to find patterns and relationships be-

tween far away areas. Phenomena like advection of heat, mass, and momentum, or

the propagation of atmospheric waves generate teleconnections which are important

properties of climate dynamics. Only in recent decades—after the invention of me-

teorological satellites [30]—atmospheric data has a full global spatial coverage. Time

series dating before the twentieth century can only be trusted at certain locations—

as in Europe and regions of north America—even if the most ancient records date to

the end of the sixteenth century [31]. In other locations, as regions in Africa or the
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southern Pacific ocean, there exist almost data-less spots for times as near as the mid-

twentieth century. Given the low frequency—decades, even longer—of the signals to

be analyzed, this insufficiency of data is a very important problem for the study of cli-

mate dynamics, and yields difficult to differentiate naturally occurring multidecadal

variability from external factors, as e.g. vulcanism or human-caused climate change.

Fortunately, data assimilation techniques are in place, creating what is called reanal-

ysis data, integrating information from various sources in order to compensate (even

partially) for this problem [32]. A reanalysis project involves reprocessing observa-

tional data spanning an extended historical period using a consistent modern anal-

ysis system, to produce a dataset that can be used for meteorological and climato-

logical studies. Examples of reanalysis datasets include the NCEP/NCAR Reanalysis

(USA) [33], the ECMWF re-analysis (Europe) [34], and the JRA-25 [35] reanalysis from

the Japan Meteorological Agency.

1.1.1 Surface air temperature

During this thesis the climatic variable chosen was SAT (surface air temperature) which

is defined as a measure of the average kinetic energy of air molecules in the atmo-

sphere, either over land or over water and expressed in units of degrees Celsius. The

variable is ofter called near surface air temperature as the data express the temper-

ature of the air over the surface. In the field, these surface temperatures would be

measured by thermometers placed approximately 1 meter above ground. This should

not be confused with surface sea temperature (SST) which reflects the temperature of

water near the surface or the surface skin temperature data, which are calculated from

measurements of microwave radiation at the land surface taken by satellite.

Temperature is a fundamental variable in climate, affected by all of the absorp-

tive and reflective properties of the atmosphere, oceans, and land surface. The sur-

face temperature is related to the amount of solar radiation a region receives, which

is in turn dependent on both astronomical factors (which determine the seasons and
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longer climate cycles) and weather (clouds, atmospheric air movements, evaporation

and precipitation, etc.) The surface temperature is also related to the average global

temperature, which is determined by the Earth’s radiative balance, as set by the ab-

sorptive and reflective properties of the atmosphere modulated by greenhouse gases

as H2O and CO2 among others. A changing average global temperature may influ-

ence local weather processes in ways that make regional temperature trends more

pronounced than average global temperature trends [36, 37].

1.2 Climate time-scales

Figure 1.1, shows a schematic representation of the “variance”—as called in the figure—

or variability of climate in different time scales. No single time-series in terms of

length (millions of years) and resolution (a couple of minutes) exists, or has ever been

produced as this diagram suggests, making impossible to recreate this figure via, e.g., a

Fourier Transform. This diagram has to be regarded as a summary of the time scales in

climate dynamics originating from various sources. The leftmost part of the diagram,

ranging hundreds of kya (kilo-years or thousands of years) originates from paleocli-

matic data. It represents important events including glaciation cycles—alternating

warm and freezing temperatures in the extra-tropical areas—as one of the most im-

portant features of the Quaternary. These glacial eras have occurred in a cyclic fash-

ion, as reflected in the diagram as sharp peaks in the area between 103–106 years.

These peaks have been showed to be of “astronomical origin” as the frequencies of the

glaciations are locked to the so called Milankovitch cycles—see [38, 39] for the origi-

nal papers (in german) and [40] for a review—of the Earth. These observations are

regarded to be one of the cornerstones of climate science [41]. Moreover, even when

these effects alone were too weak to trigger an event as a glaciation, a pioneer paper in

stochastic resonance [42] has suggested this mechanism to explain the locking of the

glacial periods to the Milankovitch cycles.
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[5] With all due caution in its interpretation, Figure 1a
reflects three types of variability: (1) sharp lines that
correspond to periodically forced variations at 1 day and
1 year; (2) broader peaks that arise from internal modes of
variability; and (3) a continuous portion of the spectrum that
reflects stochastically forced variations, as well as deter-
ministic chaos [Ghil and Robertson, 2000; Ghil, 2002].
[6] Between the two sharp lines at 1 day and 1 year lies

the synoptic variability of midlatitude weather systems,
concentrated at 3–7 days, as well as intraseasonal variabil-
ity, i.e., variability that occurs on the timescale of 1–3
months. The latter is also called low-frequency atmospheric
variability, a name that refers to the fact that this variability
has lower frequency, or longer periods, than the life cycle of
weather systems. Intraseasonal variability comprises phe-
nomena such as the Madden-Julian oscillation of winds and
cloudiness in the tropics or the alternation between episodes
of zonal and blocked flow in midlatitudes [Ghil and
Childress, 1987; Ghil et al., 1991; Haines, 1994; Molteni,
2002].
[7] Immediately to the left of the seasonal cycle in

Figure 1a lies interannual, i.e., year to year, variability. An
important component of this variability is the El Niño
phenomenon in the tropical Pacific: Once about every
4 years, the sea surface temperatures (SSTs) in the eastern
tropical Pacific increase by a few degrees over a period of
about 1 year. This SST variation is associated with changes
in the trade winds over the tropical Pacific and in sea level
pressures [Bjerknes, 1969; Philander, 1990]; an east-west
seesaw in the latter is called the Southern Oscillation. The

combined El Niño/Southern Oscillation (ENSO) phenome-
non arises through large-scale interaction between the
equatorial Pacific and the atmosphere above. Equatorial
wave dynamics in the ocean plays a key role in setting
ENSO’s timescale [Cane and Zebiak, 1985; Neelin et al.,
1994, 1998; Dijkstra and Burgers, 2002].

TABLE 2. Glossary of Acronyms

Symbol Definition Section

0-D zero-dimensional 1.3
1-D one-dimensional 1.3
2-D two-dimensional 1.3
3-D three-dimensional 1.3
AABW Antarctic Bottom Water 3.1
ACC Antarctic Circumpolar Current 3.4
COADS Comprehensive Ocean-Atmosphere Data Set 2.6
EBM energy balance model 3.4
EOF empirical orthogonal function 3.1
ENSO El Niño/Southern Oscillation 1.1
GCM general circulation model 1.3
GFDL Geophysical Fluid Dynamics Laboratory 3.4
LSG large-scale geostrophic model 3.4
MOM modular ocean model 3.4
M-SSA multichannel singular-spectrum analysis 2.6
NADW North Atlantic Deep Water 1.2
NPP northern sinking pole-to-pole flow 3.2
ODE ordinary differential equation 1.4
PDE partial differential equation 1.4
PGM planetary geostrophic model 3.4
POCM Parallel Ocean Climate Model 2.6
POP Parallel Ocean Program 3.4
QG quasi-geostrophic 2.3
SA salinity-driven flow 3.2
SPP southern sinking pole-to-pole flow 3.2
SSA singular-spectrum analysis 2.3
SST sea surface temperature 1.1
TH thermally driven flow 3.2
THC thermohaline circulation 3.1
WOCE World Ocean Circulation Experiment 3.1

Figure 1. (a) An ‘‘artist’s rendering’’ of the composite
power spectrum of climate variability showing the amount
of variance in each frequency range. From Ghil [2002].
Copyright John Wiley and Sons, Ltd. Reproduced with
permission. (b) Spectrum of the Central England Tempera-
ture time series from 1650 to the present. Each peak in the
spectrum is tentatively attributed to a physical mechanism;
see Plaut et al. [1995] for details. Reprinted with permission
from Plaut et al. [1995], # 1995 American Association for
the Advancement of Science, http://www.sciencemag.org.
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Figure 1.1: An ‘artist’s rendering’ of the composite power spectrum of climate variabil-

ity showing the amount of variance in each frequency range. (From [2]).

From the higher frequency zone of Fig. 1.1 two peaks instantly catch the eye as

they are tall and very narrow. These are the seasonal (one year) and the daily (one day)

cycles, of obvious astronomical origin. They are accompanied by their harmonics rep-

resented as narrow but shorter peaks. The remaining variability sources are broader

and respond to the atmosphere-ocean dynamics: from 2−2.5y as the Quasi-biennial

oscillation (QBO) which is related to the stratosphere dynamics, through multi-year

(ENSO, NAO, among others), decadal and multidecadal—Pacific Decadal Oscillation

(PDO), and Atlantic Multidecadal Oscillation (AMO), etc.—and the less known cen-
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tennial oscillations. For time scales shorter than a year, the intra-seasonal variability

takes place (30-60 days). Finally, at 3-7 days, the synoptic weather dominates. It has

the biggest impact for everyday life, especially in the extra-tropics, dictating, e.g, the

passage between a sunny and a rainy day. It is crucial for weather forecasts but it is

usually averaged out for climate studies.

1.3 Elements of the climate system

The main reasons for climate to exhibit such a rich behavior are the many degrees

of freedom of the system, the nonlinear nature of the many processes involved, and

the strong interconnectivity of the multiple factors that affecting climate. This yields

a whole spectrum of positive and negative feedbacks and its delicate balance decides

the equilibrium state of a particular subsystem and of the system in general. Figure

1.2 shows a simplified scheme of these interconnections. The links show the connec-

tions between different sub-systems (atmospheric, soil or marine systems), the role of

chemistry, and biochemistry, the role of external factors as the sun, volcanoes, and hu-

man activities and the flux of mass and energy between the different actors, following

the hydrological, the carbon, the sulphur, or the nitrogen cycles.

This figure doesn’t show the time scales associated to these phenomena. However,

in many cases the response time to variations is fundamental in order to understand

and predict the outcome to any forcing. Time scales for atmospheric phenomena

range from seconds (e.g. formation of cloud droplets) to about a week (e.g. dissipa-

tion of midlatitude weather systems). For the ocean, these scales range from months

(e.g. upper layer ocean mixing), to thousands of years (e.g. deep ocean circulation).

Time scale ranges in the biosphere are very wide and include respiration and photo-

synthesis (seconds) in one extreme and changes in biochemistry due to evolutionary

processes (millions of years) in the other extreme.

An example which illustrates feedbacks and how time scales are important, is

the antropogenic variations on the carbon cycle. An excess of carbon resulting from
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Figure 1.2: Organization of the Climate system. The different components as the at-

mosphere, the ocean, the land and the ecosystems, together with external forcings

and the human activities and how they are interconnected. This is sometimes called

the ‘horrendogram’ of the climate system. (From [1]).

human activities as burning fossil fuels is counterbalanced on several time scales.

In scales of seconds to minutes, plants usually take carbon out of the atmosphere

through photosynthesis and release it back into the atmosphere via respiration. CO2

is also dissolved into water as wind and waves mix the oceans and the atmosphere. On

longer time scales carbon is stored as cellulose in trees and other plants. Dead plant

material can be incorporated into soils, where it might reside for years, decades or

centuries before being broken down by soil microbes and released back to the atmo-
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sphere (short carbon cycle). On even longer time scales, carbon containing organic

matter that became buried in deep sediments (and protected from decay) is slowly

transformed into deposits of coal, oil and natural gas (long carbon cycle). The excess

of carbon in the atmosphere—responsible for climate change—is a problem, because

the carbon we are releasing is new, in the sense that it has been stored for millions of

years in sediments and it would take the same time scale to be finally counterbalanced

by the long carbon cycle [43]. Note that this would not happen if using renewable fuel

based factories only—burning wood, or vegetable coal—as no new carbon would have

been added, allowing the short carbon cycle to act in the same time scales of the forc-

ing.

1.4 Patterns of climate variability

In this thesis, two natural patterns were studied and analyzed in detail. These are

ENSO and NAO. For reference purposes a climatological description of these phenom-

ena will be given below, together with an historical introduction and an assessment of

their impact in society. For a more general discussion on patterns of atmospheric vari-

ability, several books, as for example chapter 5 of [44] can be consulted.

An useful concept is a climate index. It can be used in order to synthesize the time

information of a phenomenon in a single time series. A climate index describes the

state and changes of a particular region of the ocean or the atmosphere. Indices are

standardized and may be downloaded from many internet climate data repositories

[45]. They also can be determined directly from time series from monitoring stations

or reanalysis data, or identified by means of linear multivariate analysis as Empirical

Orthogonal Functions (EOF) analysis (the EOF technique will be explained in section

3.1.2).

13



CHAPTER 1. TEMPORAL AND SPATIAL SCALES IN CLIMATE PHENOMENA

1.4.1 El Niño-Southern Oscillation (ENSO)

The El Niño-Southern Oscillation phenomenon is a natural part of the global climate

system and results from large-scale interactions between the oceans and the atmos-

phere that occur mainly across the tropical-subtropical Pacific to Indian ocean basins

[46–51]. ENSO explains a considerable amount of worldwide climatic variability. As

a consequence, most direct climatic shifts, environmental and human impacts are

found over, and in countries bordering, the Indo-Pacific sector of the planet [52]. Cli-

mate sensitive industries directly impacted by weather such as agriculture, construc-

tion, energy distribution, tourism, and outdoor recreation, account for a big share of

the GDP of many countries. El Niño can affect commodity prices and the macroe-

conomy of different countries. It can constrain the supply of rain-driven agricultural

commodities; reduce agricultural output, construction, and services activities; cre-

ate food-price and generalized inflation; and may trigger social unrest in commodity-

dependent poor countries that primarily rely on imported food [53].

El Niño—Spanish for a male child, in this case implicitly referring to the Christ

Child as the phenomenon historically peaks around Christmas—initially referred to a

weak, warm current appearing annually in late December along the coast of Ecuador

and Peru and lasting from some weeks to a month only. Nowadays, El Niño refers to a

basin warming in the equatorial Pacific ocean. Every three to seven years, an El Niño

event occurs, lasting for many months, having significant economic and atmospheric

consequences worldwide [54].

In the eastern tropical Pacific, trade winds generally drive the surface waters west-

ward. They accumulate warm surface water near Indonesia, raising the sea level roughly

half a meter higher than in the eastern Pacific. As it moves away, the water is deflected

by the Coriolis force, northward in the northern hemisphere and southward in the

southern hemisphere, causing water to move away from the equator in both direc-

tions. This equatorial divergence induces upwelling in the eastern Pacific that brings

14



1.4. PATTERNS OF CLIMATE VARIABILITY

colder water up from deeper levels to replace the surface water that has been dragged

away. The upwelled water is rich in nutrients and supports an abundance of fish and

marine life.

During El Niño years, however, the easterly trade winds are weakened interrupting

the upwelling. This allows warmer water from the western Pacific to surge eastward,

so the sea level flattens and the eastern Pacific warms. This warming changes the

pressure patterns in the atmosphere over the area, producing the so called Southern

Oscillation (SO), which is defined as the pressure differences between Tahiti and Dar-

win (Australia) and it is very much correlated to El Niño SSTs, that they are considered

two aspects of the same phenomenon: El Niño Southern Oscillation (ENSO) [48].

The warming of the surface water in the eastern Pacific causes heavy rainfall in the

area and also limits the amount of nutrient-rich deep water. These nutrients are vital

for sustaining the large fish populations normally found in the region as any reduction

in the supply of nutrients means a reduction in the fish population. Figure 1.3 (top)

shows the mean sea surface temperature (SSTs) variations from the mean (anoma-

lies), during Nov-Mar averaged for several “El Niño” years. Notice the anomalous hot

temperature in the equatorial pacific.

The opposite phase to El Niño is usually called La Niña—female child, because

“anti-Niño” would have been too strong an image considering the religious origin of

the name—refers to an anomaly of unusually cold sea surface temperatures found

in the eastern tropical Pacific. Figure 1.3 (middle) shows the mean sea surface tem-

perature (SSTs) anomalies, during Nov-Mar averaged for several “Niñas”. Notice the

anomalous cold equatorial Pacific ocean. The frequency of this Niño-Niña oscilla-

tions has been suggested to change due to the increase in global CO2 concentration

because of human activities [56, 57].

The NINO 3.4 index [54] (Fig. 1.3 bottom) is defined as the average of SST anoma-

lies in the equatorial Pacific bounded by latitudes 5S −5N and by longitudes 120W −

15



1950 1960 1970 1980 1990 2000 2010

−2
−1.5

−1
−0.5

0
0.5

1
1.5

2

Time [years]

S
S

T
 a

no
m

al
ie

s 
[C

]

Figure 1.3: (top) SST anomalies mean for “El Niño” years: 1958, 1966, 1968, 1973, 1983,

1987, 1992, 1998, 2003, and 2010. (middle) SST anomalies mean for “la Niña” years:

1955, 1956, 1965, 1971, 1974, 1976, 1989, 1999, 2000, and 2008. Anomalies in both

cases are calculated with respect to 1981-2001 climate and are adapted from [55].(Bot-

tom) Plot of the NINO3,4 index filtered with a 3-month running average. Temperature

anomalies over 0.5 C indicate “El Niño” conditions and are plotted in red, while when

under −0.5 C indicate “La Niña” conditions and are plotted in blue. Data from the

National Center for Atmospheric Research (NCAR). USA [45].
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170W using SST data. It resumes the information about the temporal behavior of the

phenomena. It can be also downloaded from many online repositories (e.g. [45]).

1.4.2 North Atlantic Oscillation (NAO)

The North Atlantic Oscillation (NAO) is one of the most prominent and recurrent pat-

terns of atmospheric circulation variability in the northern hemisphere [58]. It affects

climate variability from the eastern seaboard of the United States to Siberia and from

the Arctic to the subtropical Atlantic, especially during boreal winter, so variations in

the NAO are important to society and for the environment in most of the developed

world. The NAO refers to a redistribution of atmospheric mass between the Arctic and

the subtropical Atlantic, and swings from one phase to another produce large changes

in the mean winds, the heat and moisture transport between the Atlantic and the

neighboring continents, and the intensity, path and number of storms. Agricultural

harvests, water management, energy supply and demand, and yields from fisheries,

among many other things, are directly affected by the NAO [59, 60].

The NAO is one of the oldest known weather modulating patterns, as some of its

earliest descriptions were from seafaring Scandinavians several centuries ago. The

history of scientific research on the NAO is rich, an historical review can be found in

chapter 2 of [58]. In this text the words of the Danish missionary Hans Egede Saabye

(1745), showing the recognition of a wintertime pattern, are recollected:

“In Greenland, all winters are severe, yet they are not alike. The Danes have noticed

that when the winter in Denmark was severe, as we perceive it, the winter in Greenland

in its manner was mild, and conversely.”

Strong positive phases (NAO+) tend to be associated with above-average temper-

atures in the eastern United States and across northern Europe and below average

temperatures in Greenland and oftentimes across southern Europe and the Middle

17
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Figure 1.4: (a) NAO+ phase and (b) NAO- phase. White contours depict the seasonal

mean sea-level pressure field; regions in red and blue were respectively warmer and

colder than normal; regions in green and brown respectively experienced higher and

lower rainfall than normal. The presence of stronger winds from the west (westerlies)

over northern Europe during a NAO+ phase (a) is marked with a grey arrow (from [61]

).

East. They are also associated with above-average precipitation over northern Europe

and Scandinavia in winter, and below-average precipitation over southern and central

Europe. Opposite patterns of temperature and precipitation anomalies are typically

observed during strong negative phases (NAO-). During particularly prolonged peri-

ods dominated by one particular phase of the NAO, anomalous height and tempera-

ture patterns are also often seen extending well into central Russia and north-central

Siberia (Fig. 1.4).

There is no unique way to define the spatial structure of the NAO, or its temporal

18
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evolution. It was historically defined as the difference of sea level pressure in Decem-

ber to February between Ponta Delgada (Azores) and Stykkisholmur (Iceland). How-

ever, several other approaches exist, some of them using EOF (see [58] and also section

3.1.2 of this thesis). In this last case the index is defined as the time series—also called

principal component (PC)—of the evolution of the spatial pattern which explains the

biggest amount of variance in the region (the leading EOF pattern). In this thesis this

has been the method preferred to identify the NAO index in chapter 5. Indices can be

also downloaded from internet repositories as [45]. Figure 1.5 (top), shows the NAO

index. In red the positive phase NAO+ and in blue the negative NAO-. Filtering the

time series with a one year running average (Fig 1.5) allows distinguishing consider-

able variability on interannual and multi decadal time scales [58, 62].

For example, as seen in the bottom plot of Fig. 1.5, the negative phase of the NAO

dominated the circulation from the mid-1950’s through the end of the 1970’s, only

to become essentially positive during the 1980’s and 1990’s. However, the NAO is a

mode of variability predominantly internal to the atmosphere. The fact that not all

of its variability can be attributed to intra-seasonal stochastic atmospheric processes

points to a role for external forcing [63] and, perhaps, to a small but useful amount

of predictability [59]. In [58] it was shown that the north Atlantic ocean respondes

to the NAO, because the changes in surface wind patterns associated with NAO have

an influence on heat transfer and freshwater exchange on the Atlantic surface. The

relationship between the NAO and variations in surface temperature, storms and pre-

cipitation, and thus the economy, and how the ocean and ecosystem respond to NAO

variability, are still under study [64–67].

1.5 Overview of the thesis

As stated before, the aim of this work is to study methods of climate network con-

struction. Hence, the research covers fields of climate dynamics, climate networks,

and time series analysis; this last part focusing in information theoretic quantities.
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Figure 1.5: (top) Time series of the North Atlantic Oscillation index. Observed (black

line) winter NAO index, December to February 1950− 2014. The NAO+ phases are

shown in red while NAO- is shown in blue. The lower graph shows the same time series

filtered by a one-year running mean in order to appreciate the decadal variability of

the pattern. (Data from [45]).

Accordingly, after a primer of climate variability and patterns given in this chapter,

an introduction to climate networks is given in Chapter 2 where the methodology

of construction of the networks is explained together with some definitions of com-

plex network measures. Chapter 3 deals with time series analysis, information theory

similarity measures such as mutual information and transfer entropy are introduced.

This chapter also introduces the method of symbolic analysis used, known as ordinal
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patterns, and the criteria used for assessing the statistical significance of the results.

Chapters 4, 5, and 6 present the main results obtained in the thesis. In chapter 4

several construction methods are compared. Statistical tests focused on discovering

weak but significant links in the network are used and the links are interpreted as the

signature of teleconnections patterns. Using Ordinal patterns a time scale analysis

of different phenomena is also presented, and the obtained networks are compared.

Chapter 5 deals with the classification of climate network links by variability type,

separating the—usually entangled—forced and internal atmospheric variability. The

role of the strongest variability patterns on the network connectivity on a global scale

was assessed. Chapter 6 deals with the analysis of the direction of the obtained links.

Using a directionality measure based on the conditional mutual information, the di-

rection of existing links is inferred. This provides an alternative approach to CNs con-

struction, allowing to assess the transfer of information, by means of teleconnection

patterns and wave propagation. Finally Chapter 7 summarizes the conclusions and

discusses possible lines of research for future work.
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Chapter

2
Climate Networks

In this chapter an introduction to complex networks and their applications will be

given. A description of special types of networks (small world and scale free) and their

properties will be given in section 2.1. In section 2.2, methods for construction of

networks from climatic data will be discussed. Finally, previous works which have

motivated the work presented in this thesis, are reviewed in section 2.3.

2.1 Complex Networks

The first paper in network theory is considered to be of Leonhard Euler which solved

in 1741 a famous problem about bridges—see [68] for the original paper in latin, and

an historical review [69]. The problem stated that there were seven bridges in the

East Prussian city of Königsberg (now Kaliningrad - Russia) that spanned the various

sections of the river—as the illustration in Euler’s original paper shows in Fig. 2.1. The

problem posed was: “Could a person devise a path through Königsberg so that one

could cross each of the seven bridges only once and return home?∗”

Long thought to be impossible to do, the first mathematical demonstration of this

impossibility was presented by Euler as an example of a class of problems belonging

∗This is: return to the same part of the river, marked with A,B,C or D in Fig. 2.1
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Figure 2.1: Classical Königsberg bridges problem: “Could a person devise a path

through Königsberg so that one could cross each of the seven bridges only once and

return home?” In 1741Euler demonstrated that it is impossible, writing in the pro-

cess the first article in networks. Figure extracted from the original paper of Leonhard

Euler [68] which can be downloaded from [70].

to a Leibniz-called “geometry of position”, defining each of the regions A,B,C, and D

of Fig. 2.1 as ‘nodes’ and each of the bridges as ‘links’. The topic was named graph

theory and was considered in the beginning an obscure and rather unuseful branch

of mathematics. Even Euler stated about the type of mathematics he had to develop

in order to give his Königsberg bridges solution: “This branch is concerned only with

the determination of position and its properties; it does not involve distances, nor

calculations made with them”. However, and especially after the development of fast

computers, and the bloom of numerical solutions in the second half of the twentieth

century, graph theory has become a well developed topic.

From a mathematical point of view, a network (graph) is a set of vertices (or nodes)

connected via edges (or links). Figure 2.2 shows a schematic representation. It is this

sheer simplicity which makes it suitable for tackling a wide range of problems in sys-

24



2.1. COMPLEX NETWORKS

Figure 2.2: Schematic representation of a network, where nodes are indicated as dots

and links are shown as lines. The strength of the links is displayed using the line width

and the direction of the links with arrows. When a network is used to model a certain

physical problem, properties as the number of links of a node or the shortest path

between two nodes are magnitudes that can be reinterpreted in terms of the system

under study.

tems composed of many interacting elements. This adaptability to many modeling

schemes, have set the basis for the birth of the field of Complex networks.

Complex networks are graphs which possess non-trivial topological features, as

patterns of connections between their elements that are neither purely regular nor

fully random. These patterns do not occur in simple networks such as lattices or ran-

dom graphs but often occur in graphs that model real systems. Network properties

have been intensively studied [71–79] and are reviewed in several books [80, 81]. They

include the degree distribution, the clustering coefficient, assortativity among ver-

tices, community and hierarchical structure, among others. Some of these properties

will be described in section 2.1.1.
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Applications of complex networks are ubiquitous. Social science has been one of

the first research fields that used the complex networks approach [4], and it naturally

extended previous works in analytical sociology [82]. Nowadays it is a very active field

of study including vote dynamics [83], cultural diversity [84], and behavioral sciences

[85, 86], among others.

Some biological problems that are suitable modeled by complex networks include

food webs—see earlier [5,87,88], and more recent work [89]—where the relationships

among organisms in an ecosystem are mapped by a network. A node is defined to be

a species and a link, the fact that a species can eat or be eaten by another species. The

transference of mass and energy from vegetal life into carnivorous animals and back

to unicellular life can be traced and important nodes on which the ecosystem is based

are naturally highlighted by the topology of the network.

Gene regulatory networks [6, 90–94] have also become an active research topic in

recent years, as the network represents metabolic pathways, gene-gene interactions

and self-regulation. In this case the nodes are mRNAs (messenger Ribonucleic acid

strains) and proteins that arise from gene expression, while the links are the interac-

tions between them. In figure 2.3 the network of interactions between the proteins in

Saccharomyces cerevisiae, known as baker’s yeast, is shown. Notice the complex struc-

ture of the topology of the network and the presence of ‘hubs’ or super connected

nodes.

Another branch of biology which has benefited from the networks concept is epi-

demiology [95–97] where networks are used to model the probability of infection and

the pathways of diseases. Nodes are individuals connected by links when an epidemic

(or a rumor) spreads through the population. A classical example is the network of

human sexual interactions presented in [98] which helped to map the transmission

of HIV/AIDS. The network was constructed from one particular person (possibly in-

fected), for whom sexual relations to other persons were mapped by means of ques-

tionnaires. Afterwards, the collection of data was extended to contacts between other
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distribution of the number of links per node. Lately, 
it was also shown that, in addition to the power-law-
degree distribution, many real scale-free networks 
consist of self-repeating patterns on all length scales. 
This result is achieved by the application of a renor-
malization procedure that coarse grains the system 
into boxes containing nodes within a given “size” 
(Song et al. 2005). In other words, scale-free networks 
also exhibit fractal geometry. These properties are 
very important because they imply some kind of self-
organization within the network. Scale-free networks 
are not only efficient in transferring information, 
but, due to the high degree of local clustering, they 
are also very stable (Barabasi and Bonabeau 2003). 
Because there are only a few supernodes, chances 
are that the accidental removal of some nodes will 
not include the supernodes. In this case the network 
would not become disconnected. This is not the case 
with random and, to a lesser degree, small-world 
networks, where the accidental removal of the same 
percentage of nodes makes them more prone to failure 
(Barabasi and Bonabeau 2003; Albert et al. 2000). A 
scale-free network is vulnerable only when a super-
node is “attacked.” Note that scale-free networks have 

properties of small-world networks, but small-world 
networks à la Watts and Strogatz (1998) are not scale 
free. An example of such a network is given in Fig. 3, 

FIG. 2. Route map for Continental Airlines (courtesy of Continental Airlines).

FIG. 3. The network of interactions between the pro-
teins in Saccharomyces cerevisiae, otherwise known as 
baker’s yeast (courtesy of A.-L. Barabasi).

587MAY 2006AMERICAN METEOROLOGICAL SOCIETY |

Figure 2.3: The network of interactions between the proteins in Saccharomyces cere-

visiae, known as baker’s yeast. Studying the number of links for each node gives an

insight of the importance of each protein the life of the organism [9, 90].

persons in the same network. Accordingly, network measures were then used to yield

light on the epidemic parameters for better modeling the outbreaks.

Neural networks—computational models inspired by biological networks as the

central nervous systems of animals, in particular the brain—are a field by itself, ex-

ceeding the limits of biology. They have been studied from a purely theoretic point of

view [99], as a source of algorithms for solving problems as voice or written text recog-

nition, time series prediction, or robotics, among many others [100,101]. They are also
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used as a tool for a detailed anatomical study of the brain [7, 102, 103]. Nodes are de-

fined as neurons, which are connected physically by axons. The massive parallelism of

our brain and the facility humans and other animals can perform many tasks, which

are extremely difficult for computers, empowers research in this topic. Indeed many

present day algorithms are based in neural networks, e.g., the work presented in [104]

where the house numbers taken from Google street view are read and interpreted by

a neural network-based algorithm for a better localization of houses in the maps.

Many other applications of complex networks exist, including studies about the

internet [8], World Wide Web size and properties [75, 105], traffic (airports [106], or

highways [107]) etc. In addition, networks have allowed to do ‘meta-science’, this is

science-on-science including scientific citation statistics [108–110]. More complex

objects such as networks of networks [111–113] and spatially embedded networks

(see [112, 114–116] and chapter 8 of [81]) are areas of intense research. In particular,

phenomena as synchronization in complex network topologies has been intensively

studied [117, 118].

Climate networks [9, 10, 12, 119, 120] stand as an application of network theory to

climate studies. The main idea, as will be explained in section 2.2 is to assume that

different geographical regions can also form a network. Nodes are defined from a

continuous or gridded field while the links are assigned by using a similarity measure.

2.1.1 Properties of complex networks

Real-world networks are complex, and possess many properties different to those of

‘simple’ networks as lattices or randomly connected graphs (as e.g. Erdös-Rényi net-

works [121]). Some of them have a fat-tailed distribution of links per node (degree

distribution), strong correlations of degrees of connected vertices (highly connected

nodes are directly connected among them) and an abundance of loops (paths return-

ing to the original node).

28



2.1. COMPLEX NETWORKS

A complete description of a graph of N vertices is provided by its N ×N adjacency

matrix A. Each element Ai j can be either 0 or 1, where 1 means a link between nodes

i and j , and 0 no link. The case of a directed network, yields an asymmetrical Ai j 6=
A j i adjacency matrix. If the link strength is to be represented, network links can be

weighted, by setting Ai j ∈ℜ.

The degree of a node v , kv , is the number of first neighbors the node has, and can

be calculated from A using

kv =
N∑

i=1
Avi (2.1)

Vertices with exceptionally high degree are usually referred to as hubs or super-nodes.

Two well-known classes of complex networks are scale-free networks [75], and

small-world networks [73]. Scale-free networks were introduced by Barabási and Al-

bert and present a very broad degree distribution. Specifically, if the degree distribu-

tion can be fitted by a power-law:

P (k) ∝ k−γ, (2.2)

this case it is said to possess a scale-free distribution (as it contains no specific de-

gree scale) and the network is referred to as scale-free. In the case of regular lattices,

or random networks, degree distributions are usually narrowly concentrated forming

peaks.

The second class of complex networks, was proposed by Watts and Strogatz [4, 71,

73] . They have named them small-world networks (see Fig. 2.4) inspired in the adage

“It’s a small world” used when finding e.g. common friends with a stranger in unex-

pected situations. These networks consist of lattices, where randomly chosen vertices

are connected by long-range shortcuts. The proposed mechanism to construct these

networks starts from a regular lattice (Fig. 2.4(a)) and rewires iteratively some of the

connections with some probability p (Fig. 2.4(b)) to obtain a small-world network.
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Networks of coupled dynamical systems have been used to model biological oscillators, Josephson junction arrays, excitable media, neural networks,
spatial games, genetic control networks and many other self-organizing systems. Ordinarily, the connection topology is assumed to be either completely
regular or completely random. But many biological, technological and social networks lie somewhere between these two extremes.

Here we explore simple models of networks that can be tuned through this middle ground: regular networks 'rewired' to introduce increasing amounts of
disorder. We find that these systems can be highly clustered, like regular lattices, yet have small characteristic path lengths, like random graphs. We call
them 'small-world' networks, by analogy with the small-world phenomenon (popularly known as six degrees of separation). The neural network of the
worm Caenorhabditis elegans, the power grid of the western United States, and the collaboration graph of film actors are shown to be small-world
networks.

Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In
particular, infectious diseases spread more easily in small-world networks than in regular lattices.

ABSTRACT

To interpolate between regular and random networks, we consider the following random rewiring procedure.

This construction allows us to 'tune' the graph between regularity (p = 0) and disorder (p = 1), and thereby to probe the intermediate region 0 < p < 1,
about which little is known.

ALGORITHM

We start with a 
ring of n vertices

n = 12

where each vertex
is connected to its 
k nearest neighbors

k = 4

like so. We choose a vertex, and 
the edge to its nearest 
clockwise neighbour.

With probability p, we reconnect 
this edge to a vertex chosen 
uniformly at random over the

entire ring, with 
duplicate edges 
forbidden. Other- 
wise, we leave 
the edge in place.

We repeat this process by 
moving clockwise around 
the ring, considering each

vertex in turn 
until one lap 
is completed.

Next, we consider the 
edges that connect vertices 
to their second-nearest 
neighbours clockwise.

As before, we randomly 
rewire each of these 
edges with probability p.

We continue this process, 
circulating around the ring and 
proceeding outward to more 
distant neighbours after each 
lap, until each original edge 
has been considered once.

As there are nk/2 edges in 
the entire graph, the rewiring 
process stops after k/2 laps.

For p = 0, 
the ring is 
unchanged.

As p increases, the 
graph becomes 
increasingly disordered.

p=0.15

At p = 1, all 
edges are re- 
wired randomly.

We quantify the structural properties of these graphs by their characteristic path length L(p) and clustering coefficient C(p).
L(p) measures the typical separation between two vertices (a global property). C(p) measures the cliquishness of a typical neighbourhood (a local property).

For friendship networks, these statistics have intuitive meanings: L is the average number of friendships in the shortest chain connecting two people.
Cv reflects the extent to which friends of v are also friends of each other; and thus C measures the cliquishness of a typical friendship circle.

METRICS

L is defined as the number 
of edges in the shortest 
path between two vertices

shortest path
is 1 edge

shortest path
is 3 edges

averaged over all 
pairs of vertices.

C is defined as follows. 
Suppose that a vertex v 
has kv neighbours.

kv = 4 neighbours

Then at most kv (kv – 1) / 2 edges 
can exist between them. (This 
occurs when every neighbor of

v is connected 
to every other 
neighbour of v.)

at most 6 edges between 4 neighbours

Let Cv denote the fraction of 
these allowable edges that 
actually exist. Define C as the

average of Cv 
over all vertices.

4 out of 6 edges exist. Cv = 4/6 = 0.67

SMALL
WORLDS

The regular lattice at p = 0 is 
a highly clustered, large world 
where L grows linearly with n.

The random network at p = 1 is a 
poorly clustered, small world where 
L grows only logarithmically with n.

These limiting cases might lead one to suspect that large C is always associated with 
large L, and small C with small L. On the contrary, we find that there is a broad 
interval of p over which L(p) is almost as small as Lrandom yet Cp >> Crandom.

The data shown in the figure are averages over 20 random realizations of the rewiring process,
and have been normalized by the values L(0), C(0) for a regular lattice. All the graphs have n =
1000 vertices and an average degree of k = 10 edges per vertex. We note that a logarithmic
horizontal scale has been used to resolve the rapid drop in L(p), corresponding to the onset of
the small-world phenomenon. During this drop, C(p) remains almost constant at its value for the
regular lattice, indicating that the transition to a small world is almost undetectable at the local level.

These small-world networks result from the immediate drop 
in L(p) caused by the introduction of a few long-range edges. 
Such 'short cuts' connect vertices that would otherwise be 
much farther apart than Lrandom. For small p, each short

cut has a highly nonlinear 
effect on L, contracting the 
distance not just between the 
pair of vertices that it 
connects, but between their 
immediate neighbourhoods, 
neighbourhoods of neigh- 
bourhoods and so on.
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By contrast, an edge removed from a clustered neighbour- 
hood to make a short cut has, at most, a linear effect on C; 
hence C(p) remains practically unchanged for small p even 
though L(p) drops rapidly. The important implication here is

that at the local level (as 
reflected by C(p)), the trans- 
ition to a small world is 
almost undetectable.

The 4 neighbors of 
each vertex have 
3 out of 6 edges 
among themselves. 
C = 3/6 = 0.5

With shortcut, 
this is still true 
for almost 
every vertex.
C = 0.48
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particular, infectious diseases spread more easily in small-world networks than in regular lattices.

ABSTRACT

To interpolate between regular and random networks, we consider the following random rewiring procedure.

This construction allows us to 'tune' the graph between regularity (p = 0) and disorder (p = 1), and thereby to probe the intermediate region 0 < p < 1,
about which little is known.

ALGORITHM

We start with a 
ring of n vertices

n = 12

where each vertex
is connected to its 
k nearest neighbors

k = 4

like so. We choose a vertex, and 
the edge to its nearest 
clockwise neighbour.

With probability p, we reconnect 
this edge to a vertex chosen 
uniformly at random over the

entire ring, with 
duplicate edges 
forbidden. Other- 
wise, we leave 
the edge in place.

We repeat this process by 
moving clockwise around 
the ring, considering each

vertex in turn 
until one lap 
is completed.

Next, we consider the 
edges that connect vertices 
to their second-nearest 
neighbours clockwise.

As before, we randomly 
rewire each of these 
edges with probability p.

We continue this process, 
circulating around the ring and 
proceeding outward to more 
distant neighbours after each 
lap, until each original edge 
has been considered once.

As there are nk/2 edges in 
the entire graph, the rewiring 
process stops after k/2 laps.

For p = 0, 
the ring is 
unchanged.

As p increases, the 
graph becomes 
increasingly disordered.

p=0.15

At p = 1, all 
edges are re- 
wired randomly.

We quantify the structural properties of these graphs by their characteristic path length L(p) and clustering coefficient C(p).
L(p) measures the typical separation between two vertices (a global property). C(p) measures the cliquishness of a typical neighbourhood (a local property).

For friendship networks, these statistics have intuitive meanings: L is the average number of friendships in the shortest chain connecting two people.
Cv reflects the extent to which friends of v are also friends of each other; and thus C measures the cliquishness of a typical friendship circle.

METRICS

L is defined as the number 
of edges in the shortest 
path between two vertices

shortest path
is 1 edge

shortest path
is 3 edges

averaged over all 
pairs of vertices.

C is defined as follows. 
Suppose that a vertex v 
has kv neighbours.

kv = 4 neighbours

Then at most kv (kv – 1) / 2 edges 
can exist between them. (This 
occurs when every neighbor of

v is connected 
to every other 
neighbour of v.)

at most 6 edges between 4 neighbours

Let Cv denote the fraction of 
these allowable edges that 
actually exist. Define C as the

average of Cv 
over all vertices.

4 out of 6 edges exist. Cv = 4/6 = 0.67

SMALL
WORLDS

The regular lattice at p = 0 is 
a highly clustered, large world 
where L grows linearly with n.

The random network at p = 1 is a 
poorly clustered, small world where 
L grows only logarithmically with n.

These limiting cases might lead one to suspect that large C is always associated with 
large L, and small C with small L. On the contrary, we find that there is a broad 
interval of p over which L(p) is almost as small as Lrandom yet Cp >> Crandom.

The data shown in the figure are averages over 20 random realizations of the rewiring process,
and have been normalized by the values L(0), C(0) for a regular lattice. All the graphs have n =
1000 vertices and an average degree of k = 10 edges per vertex. We note that a logarithmic
horizontal scale has been used to resolve the rapid drop in L(p), corresponding to the onset of
the small-world phenomenon. During this drop, C(p) remains almost constant at its value for the
regular lattice, indicating that the transition to a small world is almost undetectable at the local level.

These small-world networks result from the immediate drop 
in L(p) caused by the introduction of a few long-range edges. 
Such 'short cuts' connect vertices that would otherwise be 
much farther apart than Lrandom. For small p, each short

cut has a highly nonlinear 
effect on L, contracting the 
distance not just between the 
pair of vertices that it 
connects, but between their 
immediate neighbourhoods, 
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bourhoods and so on.
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By contrast, an edge removed from a clustered neighbour- 
hood to make a short cut has, at most, a linear effect on C; 
hence C(p) remains practically unchanged for small p even 
though L(p) drops rapidly. The important implication here is

that at the local level (as 
reflected by C(p)), the trans- 
ition to a small world is 
almost undetectable.
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each vertex have 
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among themselves. 
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where L grows linearly with n.

The random network at p = 1 is a 
poorly clustered, small world where 
L grows only logarithmically with n.

These limiting cases might lead one to suspect that large C is always associated with 
large L, and small C with small L. On the contrary, we find that there is a broad 
interval of p over which L(p) is almost as small as Lrandom yet Cp >> Crandom.

The data shown in the figure are averages over 20 random realizations of the rewiring process,
and have been normalized by the values L(0), C(0) for a regular lattice. All the graphs have n =
1000 vertices and an average degree of k = 10 edges per vertex. We note that a logarithmic
horizontal scale has been used to resolve the rapid drop in L(p), corresponding to the onset of
the small-world phenomenon. During this drop, C(p) remains almost constant at its value for the
regular lattice, indicating that the transition to a small world is almost undetectable at the local level.

These small-world networks result from the immediate drop 
in L(p) caused by the introduction of a few long-range edges. 
Such 'short cuts' connect vertices that would otherwise be 
much farther apart than Lrandom. For small p, each short

cut has a highly nonlinear 
effect on L, contracting the 
distance not just between the 
pair of vertices that it 
connects, but between their 
immediate neighbourhoods, 
neighbourhoods of neigh- 
bourhoods and so on.

5 hops to 
neighbourhood

shortcut to 
neighbourhood

By contrast, an edge removed from a clustered neighbour- 
hood to make a short cut has, at most, a linear effect on C; 
hence C(p) remains practically unchanged for small p even 
though L(p) drops rapidly. The important implication here is

that at the local level (as 
reflected by C(p)), the trans- 
ition to a small world is 
almost undetectable.

The 4 neighbors of 
each vertex have 
3 out of 6 edges 
among themselves. 
C = 3/6 = 0.5

With shortcut, 
this is still true 
for almost 
every vertex.
C = 0.48

Collective dynamics of ‘small-world’ networks
Duncan J. Watts & Steven H. Strogatz
Department of Theoretical and Applied Mechanics, Kimball Hall, Cornell University, Ithaca, New York 14853, USA

(a) (b) (c)

(d) (e) (f)

Figure 2.4: An explanation of the ‘small-world’ effect.(a) a regular one-dimensional

periodic network with links to first- and second- neighbors. (b) same networks where

some links where rewired (small-world network). (c) as the rewiring continues, the

network becomes a random network. (d) in a network like (a) there are no shortcuts

between two randomly chosen nodes. (e) this is also true in principle for the aver-

age links in small-world networks. (f) However some ‘special’ nodes possessing long-

range connections act as shortcuts reducing drastically the diameter of the network.

Adapted from [4].

However, if p is too large, the small-world effect is lost and the obtained is a random

graph (Fig. 2.4(c)).

Indeed, a small-world network can be regarded as a superposition of a lattice and

a classical random graph. If one wants to estimate the distance between two chosen

nodes in a regular one dimensional lattice connected to first and second neighbors as
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lated subgraph, also called a cluster in network research
and percolation theory. As Erdős and Rényi (1960)
show, there is an abrupt change in the cluster structure
of a random graph as �k� approaches 1.

If 0��k��1, almost surely all clusters are either trees
or clusters containing exactly one cycle. Although cycles
are present, almost all nodes belong to trees. The mean
number of clusters is of order N�n , where n is the
number of edges, i.e., in this range when a new edge is
added the number of clusters decreases by 1. The largest
cluster is a tree, and its size is proportional to ln N.

When �k� passes the threshold �k�c�1, the structure
of the graph changes abruptly. While for �k��1 the
greatest cluster is a tree, for �k�c�1 it has approxi-
mately N2/3 nodes and has a rather complex structure.
Moreover for �k��1 the greatest (giant) cluster has �1
�f(�k�)�N nodes, where f(x) is a function that de-
creases exponentially from f(1)�1 to 0 for x→� . Thus
a finite fraction S�1�f(�k�) of the nodes belongs to
the largest cluster. Except for this giant cluster, all other
clusters are relatively small, most of them being trees,
the total number of nodes belonging to trees being
Nf(�k�). As �k� increases, the small clusters coalesce
and join the giant cluster, the smaller clusters having the
higher chance of survival.

Thus at pc�1/N the random graph changes its topol-
ogy abruptly from a loose collection of small clusters to
a system dominated by a single giant cluster. The begin-
ning of the supercritical phase was studied by Bollobás
(1984), Kolchin (1986), and Luczak (1990). Their results
show that in this region the largest cluster clearly sepa-
rates from the rest of the clusters, its size S increasing
proportionally with the separation from the critical
probability,

S��p�pc�. (9)

As we shall see in Sec. IV.F, this dependence is analo-
gous to the scaling of the percolation probability in
infinite-dimensional percolation.

D. Degree distribution

Erdős and Rényi (1959) were the first to study the
distribution of the maximum and minimum degree in a
random graph, the full degree distribution being derived
later by Bollobás (1981).

In a random graph with connection probability p the
degree ki of a node i follows a binomial distribution
with parameters N�1 and p :

P�ki�k ��CN�1
k pk�1�p �N�1�k. (10)

This probability represents the number of ways in which
k edges can be drawn from a certain node: the probabil-
ity of k edges is pk, the probability of the absence of
additional edges is (1�p)N�1�k, and there are CN�1

k

equivalent ways of selecting the k end points for these
edges. Furthermore, if i and j are different nodes, P(ki
�k) and P(kj�k) are close to being independent ran-
dom variables. To find the degree distribution of the
graph, we need to study the number of nodes with de-

gree k ,Xk . Our main goal is to determine the probabil-
ity that Xk takes on a given value, P(Xk�r).

According to Eq. (10), the expectation value of the
number of nodes with degree k is

E�Xk��NP�ki�k ���k , (11)

where

�k�NCN�1
k pk�1�p �N�1�k. (12)

As in the derivation of the existence conditions of
subgraphs (see Sec. III.B), the distribution of the Xk
values, P(Xk�r), approaches a Poisson distribution,

P�Xk�r ��e��k
�k

r

r!
. (13)

Thus the number of nodes with degree k follows a Pois-
son distribution with mean value �k . Note that the ex-
pectation value of the distribution (13) is the function �k
given by Eq. (12) and not a constant. The Poisson dis-
tribution decays rapidly for large values of r , the stan-
dard deviation of the distribution being �k���k. With a
bit of simplification we could say that Eq. (13) implies
that Xk does not diverge much from the approximative
result Xk�NP(ki�k), valid only if the nodes are inde-
pendent (see Fig. 7). Thus with a good approximation
the degree distribution of a random graph is a binomial
distribution,

P�k ��CN�1
k pk�1�p �N�1�k, (14)

which for large N can be replaced by a Poisson distribu-
tion,

P�k ��e�pN
�pN �k

k!
�e��k�

�k�k

k!
. (15)

Since the pioneering paper of Erdős and Rényi, much
work has concentrated on the existence and uniqueness

FIG. 7. The degree distribution that results from the numerical
simulation of a random graph. We generated a single random
graph with N�10 000 nodes and connection probability p
�0.0015, and calculated the number of nodes with degree
k ,Xk . The plot compares Xk /N with the expectation value of
the Poisson distribution (13), E(Xk)/N�P(ki�k), and we
can see that the deviation is small.
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The dependence of C(p) on p can be derived using a
slightly different but equivalent definition of C , intro-
duced by Barrat and Weigt (2000). According to this
definition, C�(p) is the fraction between the mean num-
ber of edges between the neighbors of a node and the
mean number of possible edges between those neigh-
bors. In a more graphic formulation (Newman, Strogatz,
and Watts, 2001),

C��
3�number of triangles

number of connected triples
. (73)

Here triangles are trios of nodes in which each node is
connected to both of the others, and connected triples
are trios in which at least one is connected to both oth-
ers, the factor 3 accounting for the fact that each triangle
contributes to three connected triples. This definition
corresponds to the concept of the ‘‘fraction of transitive
triples’’ used in sociology (see Wasserman and Faust,
1994).

To calculate C�(p) for the WS model, let us start
with a regular lattice with a clustering coefficient C(0).
For p�0, two neighbors of a node i that were connected
at p�0 are still neighbors of i and connected by an
edge with probability (1�p)3, since there are three
edges that need to remain intact. Consequently C�(p)
�C(0)(1�p)3. Barrat and Weigt (2000) have verified
that the deviation of C(p) from this expression is small
and goes to zero as N→� . The corresponding expres-
sion for the Newman-Watts model is (Newman, 2001e)

C��p ��
3K�K�1 �

2K�2K�1 ��8pK2�4p2K2 . (74)

3. Degree distribution

In the WS model for p�0 each node has the same
degree K . Thus the degree distribution is a delta func-
tion centered at K . A nonzero p introduces disorder in
the network, broadening the degree distribution while
maintaining the average degree equal to K . Since only a
single end of every edge is rewired (pNK/2 edges in
total), each node has at least K/2 edges after the rewir-
ing process. Consequently for K�2 there are no isolated
nodes and the network is usually connected, unlike a
random graph which consists of isolated clusters for a
wide range of connection probabilities.

For p�0, the degree ki of a vertex i can be written as
(Barrat and Weigt, 2000) ki�K/2�ci , where ci can be
divided into two parts: ci

1�K/2 edges have been left in
place (with probability 1�p), while ci

2�ci�ci
1 edges

have been rewired towards i , each with probability 1/N .
The probability distributions of ci

1 and ci
2 are

P1�ci
1��CK/2

ci
1

�1�p �ci
1
pK/2�ci

1
(75)

and

P2�ci
2��CpNK/2

ci
2 � 1

N � ci
2� 1�

1
N � pNK/2�ci

2

�
�pK/2�ci

2

ci
2!

e�pK/2 (76)

for large N . Combining these two factors, the degree
distribution follows

P�k �� �
n�0

f(k ,K)

CK/2
n �1�p �npK/2�n

�pK/2�k�K/2�n

�k�K/2�n �!
e�pK/2

(77)

for k�K/2, where f(k ,K)�min(k�K/2,K/2).
The shape of the degree distribution is similar to that

of a random graph. It has a pronounced peak at �k�
�K and decays exponentially for large k (Fig. 19). Thus
the topology of the network is relatively homogeneous,
all nodes having approximately the same number of
edges.

4. Spectral properties

As discussed in Sec. III.G, the spectral density �(�) of
a graph reveals important information about its topol-
ogy. Specifically, we have seen that for large random
graphs �(�) converges to a semicircle. It comes as no
surprise that the spectrum of the Watts-Strogatz model
depends on the rewiring probability p (Farkas et al.,
2001). For p�0 the network is regular and periodical;
consequently �(�) contains numerous singularities [Fig.
20(a)]. For intermediate values of p these singularities
become blurred, but �(�) retains a strong skewness
[Figs. 20(b) and (c)]. Finally, as p→1, �(�) approaches
the semicircle law characterizing random graphs [Fig.
20(d)]. While the details of the spectral density change
considerably with p , the third moment of �(�) is con-
sistently high, indicating a high number of triangles in
the network. Thus the results summarized in Fig. 20 al-
low us to conclude that a high number of triangles is a
basic property of the WS model (see also Gleis et al.,
2000). The high regularity of small-world models for a

FIG. 19. Degree distribution of the Watts-Strogatz model for
K�3 and various p . We can see that only k�K/2 values are
present, and the mean degree is �k��K . The symbols are ob-
tained from numerical simulations of the Watts-Strogatz model
with N�1000, and the lines correspond to Eq. (77). As a com-
parison, the degree distribution of a random graph with the
same parameters is plotted with filled symbols. After Barrat
and Weigt (2000).
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1). The topology of the Internet is studied at two differ-
ent levels. At the router level, the nodes are the routers,
and edges are the physical connections between them.
At the interdomain (or autonomous system) level, each

FIG. 1. Network structure of the World Wide Web and the
Internet. Upper panel: the nodes of the World Wide Web are
web documents, connected with directed hyperlinks (URL’s).
Lower panel: on the Internet the nodes are the routers and
computers, and the edges are the wires and cables that physi-
cally connect them. Figure courtesy of István Albert.

TABLE II. The scaling exponents characterizing the degree distribution of several scale-free networks, for which P(k) follows a
power law (2). We indicate the size of the network, its average degree �k�, and the cutoff � for the power-law scaling. For directed
networks we list separately the indegree (� in) and outdegree (�out) exponents, while for the undirected networks, marked with an
asterisk (*), these values are identical. The columns lreal , lrand , and lpow compare the average path lengths of real networks with
power-law degree distribution and the predictions of random-graph theory (17) and of Newman, Strogatz, and Watts (2001) [also
see Eq. (63) above], as discussed in Sec. V. The numbers in the last column are keyed to the symbols in Figs. 8 and 9.

Network Size �k� � �out � in l real l rand l pow Reference Nr.

WWW 325 729 4.51 900 2.45 2.1 11.2 8.32 4.77 Albert, Jeong, and Barabási 1999 1
WWW 4�107 7 2.38 2.1 Kumar et al., 1999 2
WWW 2�108 7.5 4000 2.72 2.1 16 8.85 7.61 Broder et al., 2000 3

WWW, site 260 000 1.94 Huberman and Adamic, 2000 4
Internet, domain* 3015–4389 3.42–3.76 30–40 2.1–2.2 2.1–2.2 4 6.3 5.2 Faloutsos, 1999 5
Internet, router* 3888 2.57 30 2.48 2.48 12.15 8.75 7.67 Faloutsos, 1999 6
Internet, router* 150 000 2.66 60 2.4 2.4 11 12.8 7.47 Govindan, 2000 7

Movie actors* 212 250 28.78 900 2.3 2.3 4.54 3.65 4.01 Barabási and Albert, 1999 8
Co-authors, SPIRES* 56 627 173 1100 1.2 1.2 4 2.12 1.95 Newman, 2001b 9
Co-authors, neuro.* 209 293 11.54 400 2.1 2.1 6 5.01 3.86 Barabási et al., 2001 10
Co-authors, math.* 70 975 3.9 120 2.5 2.5 9.5 8.2 6.53 Barabási et al., 2001 11

Sexual contacts* 2810 3.4 3.4 Liljeros et al., 2001 12
Metabolic, E. coli 778 7.4 110 2.2 2.2 3.2 3.32 2.89 Jeong et al., 2000 13
Protein, S. cerev.* 1870 2.39 2.4 2.4 Jeong, Mason, et al., 2001 14

Ythan estuary* 134 8.7 35 1.05 1.05 2.43 2.26 1.71 Montoya and Solé, 2000 14
Silwood Park* 154 4.75 27 1.13 1.13 3.4 3.23 2 Montoya and Solé, 2000 16

Citation 783 339 8.57 3 Redner, 1998 17
Phone call 53�106 3.16 2.1 2.1 Aiello et al., 2000 18

Words, co-occurrence* 460 902 70.13 2.7 2.7 Ferrer i Cancho and Solé, 2001 19
Words, synonyms* 22 311 13.48 2.8 2.8 Yook et al., 2001b 20

FIG. 2. Degree distribution of the World Wide Web from two
different measurements: �, the 325 729-node sample of Albert
et al. (1999); �, the measurements of over 200 million pages by
Broder et al. (2000); (a) degree distribution of the outgoing
edges; (b) degree distribution of the incoming edges. The data
have been binned logarithmically to reduce noise. Courtesy of
Altavista and Andrew Tomkins. The authors wish to thank
Luis Amaral for correcting a mistake in a previous version of
this figure (see Mossa et al., 2001).
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(a) (b) (c)

Figure 2.5: Examples of different degree centralities (P (k)) (a) a Random network

(Erdös-Rényi). Here the number of nodes with probability k over all the possible

nodes N is shown as Xk /N . (b) Small world networks for several values of the rewiring

probability p. (c) A scale free network, in this example the number of the in links of

the internet as measured in 2001. Adapted from [75].

in Fig. 2.4(d), this will grow linearly as ¯̀ ∝ N . This will continue to be so in a small

world network if the path does not go through any ‘shortcut’ or long range connection

as in Fig. 2.4(e). Finally some special nodes which possess such long range connec-

tion act as the focus of connectivity in the network, even if the node possesses a degree

similar to the rest of the nodes (Fig. 2.4(f)). It was shown [4] that the mean distance

between nodes is proportional to the logarithm of the number of nodes N in the net-

work, that is: ¯̀ ∝ log N . In [122] it was showed analytically that scale-free networks

are ultra-small worlds. In this case, due to the presence of hubs, the shortest paths

become significantly smaller and scale as ¯̀∝ log(log N ).

In figure 2.5 the degree centrality for three types of networks is shown. The de-

gree of an Erdös-Rényi Random network 2.5 (a) usually is around a certain value with

a dispersion which depends on the number of nodes. A small world network 2.5 (b)

shares some of the properties of the underlying lattice—which has a delta-like degree

31



CHAPTER 2. CLIMATE NETWORKS

distribution around a fixed value of neighbors—giving to this degree distribution a

maximum value. Finally scale free networks (c) possess no typical degree. The distri-

bution is almost linear and show how a small number of nodes possess an enormous

quantity of links while the other nodes possess less and less in a seamless manner.

2.2 Construction and representation of climate networks

Climate networks allow to investigate the connectivity between different areas over

the surface of the Earth. This connectivity is based on the similar behavior of time

series; hence it is to be associated to modes of variability or patterns that occur often

enough to be recognizable. Such kind of spatial structures occur in the atmosphere

on all time scales, examples of which are the North Atlantic Oscillation and the tele-

connection patterns associated with El Niño-Southern Oscillation. Network connec-

tivity is usually based on (linear and nonlinear) correlations as the climate network

approach intends to embed the properties of climate in the topology of the network.

The climate network properties will depend on the methodology employed to in-

fer the presence of connections between two nodes, i.e., the similarity measure used

to include a particular link in the network and the procedure to filter out those corre-

lations that may have occurred merely by chance. The similarity measures used and

the statistical significance tests performed to validate the connections are explained

in Chapter 3.

The nodes of the network are defined by the data set, which is distributed in a

regular grid (Fig. 2.6 left). This way, links between any pair of nodes are defined de-

pending on their climate interdependency. As the earth is approximately a sphere, a

latitude-longitude based nodes scheme will necessary yield an inhomogeneous dis-

tribution of nodes in physical space, especially near the poles (Fig. 2.6 right). This

effect will be addressed in section 2.2.3.
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Figure 2.6: Map showing the typical grid of climate data, by latitude and longitude. In

the left panel, it can be seen how the density of points increases as near the poles. In

order to overcome spurious degree distributions, the area weighted connectivity—Eq.

(2.3)—is used. Figure extracted from [123].

2.2.1 Data set

The variable chosen to construct climate networks during this thesis is the near sur-

face air temperature or SAT (see section 1.1.1 for an explanation of the variable).

SAT data is obtained from a data assimilation system (DAS). A DAS is a general

circulation model (GCM) employed to fill in the gaps—in space and in time—in real

observed data. The gaps exist because of missing data or bad data quality. The model

must blend seamlessly with the real data and hence being the most accurate represen-

tation of past climatic variables. Because of this, the data assimilation system uses the

observed data to make the output from the model consistent with that data, which en-

sures that the model accurately produces environmental variables. Thus, most output

variables from a weather DAS are based on data acquired by remote sensing or ground

station measurements. Also because of this processing, these products usually are dis-

tributed as gridded data, the kind of data used during this work. The DAS used for this
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work is called “NCEP/NCAR Reanalysis I: 1948-present” from the National Oceanic

and Atmospheric Administration (NOAA) of the United States. It uses a global, high

resolution, coupled atmosphere-ocean-land surface-sea ice system model to provide

the best estimate of the state of these coupled domains over the period [124]. The cli-

mate model was initialized with a wide variety of weather observations: ships, planes,

station data, satellite observations and many more. The dataset is kept current using

near real-time observations and updated daily.

SAT can also come from the output of atmospheric models alone. In this case an

atmospheric general circulation model (AGCM) is forced with historical sea surface

temperatures and the simulated SAT depends only on the skill of the model to repro-

duce the behavior of the real atmosphere. Even though all models have biases, the

use of an AGCM allows the design of numerical experiments to isolate a particular

phenomenon. Chapter 5 of this Thesis uses the output of an ensemble of AGCM runs

to separate the variability associated with internal dynamics and the one forced from

the boundary.

Another important definition is that of temperature anomaly, which is calculated

as the departure from the climatology. A positive anomaly indicates that the observed

temperature was warmer than the long term mean, while a negative anomaly indi-

cates that the observed temperature was colder.

Given that the seasonal cycle is strong in many regions of the world, the use of the

anomaly field allows to study more easily that part of the atmospheric variability not

directly related to astronomical forcing.

2.2.2 Network construction

In order to construct a Climate network, lets suppose there is a correlation measure

and a method to assess the significance of the links. A correlation matrix Ci j as the

one shown in figure 2.7 (left) can be calculated. This panel—for simplicity—shows
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Figure 2.7: Correlation matrix of a climate network (detail). (left) A part—over a single

latitude—of the correlation matrix of a climate network constructed during this thesis

(see Chapter 4). Notice that the correlation of each link with itself has been set to zero.

(right) The adjacency matrix after applying a threshold. Links are shown in black while

no links are represented in white.

the structure for a single latitude (the equator) and thus only longitudinal correlations

are shown. Notice that the diagonal elements are zero as the correlation of a time

series with itself was not taken into account. After an appropriate significance test,

an adjacency matrix Ai j is created—shown in 2.7 (right)—where the connectivity of

the network is summarized. Notice the abundance of short range links with respect to

longer range links (which reflect teleconnections).

Because climate networks are embedded in physical space—as nodes have precise

geographic coordinates—they are partially lattices and display the already mentioned

‘Small-World’ Effect [119, 125] as they are usually very connected to geographically

close nodes and sporadically connected to far away areas. This is an efficient topology

for information spreading [97] compared with lattices or complete random networks,

thus allowing information spread in several time scales as some of the information

will propagate through the lattice-like structure, and other through the shortcuts. This

35



CHAPTER 2. CLIMATE NETWORKS

effect can be used to model the different time scales that are observed in climate .

These networks, however, are not ‘scale-free’ in the Barabási-Albert sense—as shown

in [119]—as they usually do not display potential law in the degree distribution [126]

but show traces of the underlying spatial embedding (latitude-longitude grid) result-

ing in link degrees around a maximum as shown in figure 2.8.

Figure 2.8: Degree distribution of the climate network shown in fig 2.7, it can be seen

that it is not a power law distribution.

2.2.3 Area Weighted Connectivity

As stated above, a latitude-longitude node based scheme yields an inhomogeneous

distribution of distances between nodes. Thus, correlations near the poles could be

higher in part because nodes are physically closer, altering the results. In order to over-

come this, when representing the connectivity of the network on a map, the degree

and connections among nodes should be weighted by the areas the nodes represent

instead of the nodes themselves.
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A commonly used measure to represent the network is the area-weighted connec-

tivity (AWC) [120, 125, 127–129] and it is given by:

AW Ci =
∑N

j Ai j cos(λ j )∑N
j cos(λ j )

, (2.3)

where λi is the latitude of node i and Ai j is the adjacency matrix.

The AWC plots the number of links every node has, taking into account that the

nodes represent geographic regions with different areas. AWC plots provide informa-

tion about the portion of the Earth to which a node is connected, but do not indicate

to which regions this node is connected. In figure 2.9 (top) a map of AWC is shown

for the same network of figures 2.7 and 2.8. Figure 2.9 (bottom) represents the con-

nections of a single node (referred as × and located in the central Pacific ocean) and

the color scale shows the strength of these connections having only discarded those

under the significance threshold.

2.3 Climate phenomena and climate networks

In the last years, the network approach to climate studies has received a large interest

from the community. In this section an overview of the pioneer works and recent

articles relevant to the work presented in this thesis will be made.

The field was first developed with a series of papers from several groups which

proposed the network theory as means of analysis of climate variables [9–12, 114,

119, 120, 131–135]. Since then, various methods for constructing climate networks

have been proposed (computing correlation measures [9, 119] from temperature or

pressure fields, analyzing global climate [12, 120] or particular geographic locations

[132, 136–140].

A. Tsonis et al [119] in 2004 considered climate as a network of many dynamical

systems and studied the coupling architecture of this network as the interaction of two

interweaved subnetworks. One subnetwork was in the tropics and the other at higher
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Figure 2.9: (top) Map of AWC from surface air temperature, showing the degree dis-

tribution per area on a world map. Notice most of the connectivity is in the tropics.

The high connectivity near the poles has been related with the presence of sea-ice and

will be further explained in chapter 4. (bottom) Connections to a point in the Pacific

ocean (marked with an ×). A threshold has been applied. Figures adapted from [130].
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latitudes with the equatorial one establishing links between the two hemispheres.

Both subsystems displayed ‘small-world’ properties, but there were differences be-

tween each other. The tropical one was an almost fully connected network, whereas

the mid-latitude behaved more like a scale-free network characterized by dominant

super nodes.

Two papers appearing in the same issue of “Physical Review Letters” (one by Ya-

masaki et al and the other by A. Tsonis et al) [10, 11] pointed in the same direction,

constructing a climate network from temperature data for “El Niño”, “La Niña” and

neutral years, and showed that during the Niño years many links were broken in com-

parison to the other two cases. They further suggested that the number of surviving

links could be used as a measure for gauging “El Niño” events, and the stability of the

system in the various ENSO phases.

In [141] the study of [10] was extended to examine climate networks constructed

from other daily data. Daily temperature or geopotencial height data usually present

high variability and are hard to predict, but the authors found long lasting links be-

tween the nodes yielding to a robust network pattern. Part of this robustness was

attributed to the geographical regular embedding of the network; however, physically

robust coupling between different locations was also found, with the coupling on the

equator being significantly less pronounced than in the extratropics.

A systematic comparison of networks measures and construction on local, meso-

scopic and global topological scales was done by J.F. Donges et al in [120]. Climate net-

works were constructed from the same global climatological data set using the linear

Pearson correlation coefficient and the mutual information as measures of dynamical

similarity between regions. A high degree of similarity was observed on the local and

mesoscopic topological scales for surface air temperature fields. This was called the

backbone of the climate network.

Multivariate approaches have also been used by comparing several climatic vari-

ables or the same variable at different levels. For example in [127] a multilayer net-
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work of geopotential height (GH) at different heights was studied. A measure called

“cross-betweenness” was defined in order to help to identify regions which are partic-

ularly important for mediating vertical wind field interactions as interaction between

the GH networks. K. Steinhaeuser et al in [142, 143] studied several variables as sea

surface temperature (SST), sea level pressure (SLP), and GH, among others. Commu-

nity maps of one variable and between the variables were obtained. The euclidean

distance in this projected space was used as a similarity measure in order to build

a network, finding time stability of some communities. Guez et. al in [144] studied

the structure of climate networks in relation to NAO. A network covering the North

Atlantic for wintertime data only was constructed from both temperature and geopo-

tential height. They found that within the different phases of the NAO the correlation

values of the links in the climate network was significantly different. They proposed

this as a measure to track the NAO pattern.

CNs are currently researched for a wide variety of uses, from characterization of

specific regions to prediction of extreme events. The topology of extreme precipitation

networks during the pre-monsoon, Indian Summer Monsoon, and post-monsoon sea-

sons have been studied by V. Stolbova et. al. [139]. The network of the Indian Summer

Monsoon has three essential spatial domains defined by topography: North Pakistan

(NP), Eastern Ghats (EG), and the Tibetan Plateau (TP). Precipitation links form in

the pre-monsoon season, and disappear during the post-monsoon season. The large

number of connections and the long average link length of the NP, TP and EG regions

during the ISM season imply that these regions strongly affect extreme rainfall event

synchronization all over the Indian subcontinent. Also, the average and maximal link

lengths of these regions are significantly increased in comparison to the pre-monsoon

and post-monsoon periods.

The reliability and robustness of the networks have also been analyzed in terms of

a critical comparison of the networks found with the various methods used [145–148].
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A main conclusion of these studies is that it is crucial to analyze the robustness of the

method used to quantify climate similarities because trends and serial correlations in

the time series, as well as time lags, can significantly affect the topology of the network

obtained.

Other papers applied the network approach to climate indices. A. Tsonis et. al.

in [131] used PDO, NAO, ENSO etc, as a path for investigating climate shifts. The

distance between series and their synchronization was measured. Afterwards, using

symbolics dynamics they made predictions for the synchronization and desynchro-

nization of the network on certain year through a linear transformation. In [136] in-

terdependence between ENSO and the Indian monsoon was analyzed with the use of

Granger causality estimation from data for the period 1871-2006. A similar approach

has been used by Tirabassi et. al. [149] to study the possibility of disentangling the

air-sea interaction in the region of the South Atlantic Convergence Zone (SACZ) also

using Granger Causality as a measure of the directional coupling between the ocean

and atmosphere.

A. Tantet et al [150] studied the interannual to multidecadal timescales variabil-

ity patterns in sea surface temperature through the community structure of interac-

tion networks constructed from SST. The community structure was interpreted using

known dominant patterns of variability, such as the El Niño/Southern Oscillation and

the Atlantic Multidecadal Oscillation (AMO). The study of the relationship between

the communities and indices of global surface temperature showed that, while ENSO

was most dominant on interannual timescales, the Indian West Pacific and North At-

lantic may also play a key role on decadal timescales.

Another use of Climate networks has been as predictors of regime change. Van

der Mheen et al [151] proposed early warning indicators of the collapse of the Atlantic

Meridional Overturning Circulation (MOC), a part of the large-scale ocean circula-

tion that depends on global density gradients created by surface heat and freshwater
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fluxes . These new indicators are based on a climate network of spatial correlations in

the time series of the Atlantic ocean temperature field. A meridional-depth model of

the MOC is used for which the critical conditions for collapse can be explicitly com-

puted. This network is used to monitor changes in spatial correlations in the model

temperature time series as the critical transition is approached. The indicators were

based on changes in topological properties of the network, in particular changes in

the distribution functions of the degree and the clustering coefficient. The expecta-

tion value of the normalized degree distribution of the network increased steeply and

smoothly when the tipping point approached.

M. Barreiro et. al [128] analyzed climate networks using techniques of nonlin-

ear time series symbolic analysis. Specifically ordinal patterns and binary represen-

tations was used on monthly averaged surface air temperature anomalies. The sym-

bolic analysis results were able to separate the time variability of SAT anomalies in

patterns of oscillatory behavior related to intraseasonal variations—especially in the

extra-tropics—and to El Niño on seasonal to interannual time scales. By mapping

these processes into global networks, using ordinal patterns and binary representa-

tions, the structure of the network was found to change drastically at different time

scales. This study has set the basis for the work presented in this Thesis.
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Chapter

3
Climate Time Series Analysis

This chapter presents the similarity measures and the significance criterion employed

for constructing the climate networks. Section 3.1 shows linear analysis techniques,

including Pearson cross correlation and linear regression (section 3.1.1), and Empiri-

cal Orthogonal Functions (EOF) also known as principal components analysis (sec-

tion 3.1.2). Section 3.2 is devoted to non-linear information theoretic-based tech-

niques. Firstly entropy is defined (section 3.2.1) as a measure of the information content—

or the lack of it—in a time series. Afterwards mutual information is defined (section

3.2.2 ) as measure of similarity between two time series, which takes in account the

information shared by the two time series, and finally a directionality index based on

the conditional mutual information is introduced (section 3.2.3 ) which can quantify

the rate of information transfer among the time series. Section 3.3 deals with sym-

bolic ordinal analysis using ordinal patterns. This method is used during this thesis

to investigate the connectivity of the climate networks, on several time scales. Finally

section 3.4 is devoted to a study of statistical significance tests, especially through the

use of surrogate data.
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3.1 Linear techniques

3.1.1 Cross Correlation

The most familiar measure of interdependency between two time series is the Pearson

correlation coefficient [152]. It is defined as:

ρX ,Y = corr(X ,Y ) = cov(X ,Y )

σXσY
= E[(X −µX )(Y −µY )]

σXσY
(3.1)

where X and Y are two random variables with expected valuesµX andµY and standard

deviations σX and σY and E is the expected value. For the discrete case (typical for

time series analysis) it is defined as:

E[(X −µX )(Y −µY )] = 1

(n −1)

n∑
i=1

(xi −µx )(yi −µy ) (3.2)

where the xi and yi are X and Y written as time series.

Karl Pearson’s ρ was the first formal correlation measure, and it is still the most

widely used measure of relationship.

From the definition shown in Eq. (3.1) the Pearson correlation cannot exceed 1 in

absolute value and it is defined only if both of the standard deviations are finite and

nonzero. The correlation coefficient is also symmetric:

corr(X ,Y ) = corr(Y , X ) (3.3)

It is possible to lag one of the time series a time j in order to calculate the lagged

response defined as:

ρX ,Y j =
1

(n −1)σxσy j

n∑
i=1

(xi −µx )(yi+ j −µy j ) (3.4)

If the variables are independent, Pearson’s correlation coefficient is 0, but the con-

verse is not true because the correlation coefficient detects only linear dependencies
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Figure 3.1: Several sets of (X, Y) points, with the Pearson correlation coefficient for

each set. Note that the correlation reflects the noisiness and direction of a linear re-

lationship (top row), but not the slope of that relationship when the variables are lin-

early correlated (middle)—the figure in the center has an undefined value ofρ because

the variance of Y is zero—it also does not reflect many aspects of nonlinear relation-

ships providing the linear regression of those relationships give zero slope (bottom).

Figure adapted from [153].

between two variables. In Fig. 3.1 several cases of of the correlation of two variables

are shown. In the special case (top row) when X and Y are jointly normal, Pearson cor-

relation is an exact measure of interdependency and zero-correlation is equivalent to

independence. Notice in the middle row of Fig. 3.1 that when the variables are linearly

related with minimal noise, ρ reflects the sign of the slope only, and for a completely

horizontal line the correlation is not defined as the the variance of Y is zero. Many

shapes which possess an obvious (but nonlinear) relationship between the variables

yield to a zero correlation providing the slope of a linear regression on them is zero, as
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shown in the bottom row.

Removing linear correlations between time series
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Figure 3.2: Graphical representation of the linear removal procedure. One time series

(in this case SAT anomalies) are compared at zero lag with another time series (in this

case the NINO3.4 index) and a linear regression is performed (in red). If the slope of

this regression is subtracted from the data, as shown in the bottom line of Fig. 3.1 the

linear correlation will be zero. Figure taken from [154].

A handy technique to analyze—to the first order—the effects of one time series

over another is to perform a linear regression at zero lag. In Fig. 3.2, a SAT time series

Y over the Pacific ocean is correlated to the SST-based NINO3,4 index. A straight line

Ỹ can be calculated via a simple linear regression (shown in red). Eliminating its slope

by subtracting the value of the regressed line from each of the points:

R = Y − Ỹ (3.5)
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effectively eliminates the linear correlation of one series over the other. Nonlinear ef-

fects may—and, they usually do—subsist, however, in many practical cases, removing

the linear effects is first step for a more detailed non-linear analysis.

This simple approach has been proved extremely useful in climate dynamics to

distinguish linear from nonlinear influences [51, 63]. It can be however improved

using nonlinear methods for calculating the relationship (see e.g. [155]), or lagged

regressions—Eq. (3.4)—could be considered.

3.1.2 Empirical Orthogonal Functions

The technique of Empirical Orthogonal Functions (EOF), also known as Principal com-

ponent (PCA) analysis, is a linear multivariate analysis tool [152, 156]. It creates a new

set of orthogonal variables that contains the same information as the original set,

where the axes of variation are rotated while keeping orthogonality, and ordered so

that they summarize decreasing proportions of the variance. It is used in climate stud-

ies to identify spatial patterns which—by themselves—can explain a sizable amount

of the total variance of the dataset, as the ones mentioned in chapter 1. During this

research the EOF was constantly used as a complementary linear technique for test-

ing the data, for noise filtering, and for defining most patterns and teleconnections

in the usual manner. This by itself motivates the inclusion of this technique in this

chapter. Furthermore the Results this technique is explicitly used for calculating the

NAO indices in chapter 5.4.2, which is a standard procedure in climate science.

Let a matrix of time-series Xi
t , from model or observational gridded data recorded

in N different geographical locations, not necessarily regular. If the Xi are normalized

to zero mean the covariance matrix will result

C = XT X; (3.6)

C can be diagonalized through the transformation

AC = CD, (3.7)
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where A is the matrix of eigenvectors and D is the diagonal matrix containing the co-

variance eigenvalues. Since C is symmetric, the eigenvectors form an orthogonal basis

on which the data matrix X can be projected:

X i
t =

N∑
j=1

P j
t A j i , (3.8)

here, the ~P j are called the principal components (PCs) and the ~A j are the EOFs of the

field X. The EOFs have the same dimension of the spatial dimension of the database,

and they can be interpreted as spatial patterns and plot as maps. In the other hand,

from Eq. (3.8) the PCs characterize the time evolution of the maps represented by the

EOFs.

It can be proved that the trace of D is equal to the variance of X, thus the coefficient

λ j =
D j j

Tr(D)
, (3.9)

represents the variance fraction explained by each empirical mode of variability ~P j ∗
~A j . The first mode is the only one not constrained by orthogonality—the second mode

has to be orthogonal to the first, the third mode to the two before, and so forth. Non-

orthogonal EOFs can be derived through opportune algorithms as the already clas-

sical varimax rotation algorithm [157] among others, and are widely used in climate

studies [158]. As EOF is a linear technique, the original field Xi
t can be recovered sum-

ming back all the terms in Eq. (3.8).

3.2 Information theoretic tools

3.2.1 Entropy

In the time series analysis context, “entropy” usually refers to Shannon’s definition

[159]. This is generally defined in terms of the probability density function (PDF) p(x),

of the system to be in state x out of a possible set of states A :

H =−
∫

x∈A
p(x) logb p(x)d x, (3.10)
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or—more appropriate for the analysis of time series—in the discrete form [160]:

H =− ∑
i∈A

pi logb pi . (3.11)

Here, pi is the probability of the value number i to appear in a sequence of characters

of a given time series. The base b with respect to which the logarithm is taken, deter-

mines the units in which H is measured: If b = 2, H is measured in “bits”; for b = e in

“nats” and for b = 10, in “bans”∗.

To understand the notion of entropy in the information theory context, a classical

example is to consider a coin toss. When the coin is fair, that is, when the probability

of heads is the same as the probability of tails, the entropy of the coin toss is also a

maximum. It is impossible to predict the outcome of the coin toss ahead of time—

the best prediction will be correct with probability 1/2. Such a coin toss (when using

b = 2) has one bit of entropy since there are two possible outcomes that occur with

equal probability. From Eq. (3.11), learning the actual outcome contains one bit of

information as

H =− ∑
i∈(0,1)

pi log2 pi =−2× 1

2
log2(

1

2
) = 1 (3.12)

Contrarily, if the coin was not fair, lets say p1 = 1
4 and p2 = 3

4 , and if it was possible to

know the probability of the outcomes of the coin tossing event beforehand, it could

be possible to do a better prediction, and thus, the entropy would be lower:

H =− ∑
i∈(0,1)

pi log2 pi =−1

4
log2(

1

4
)− 3

4
log2(

3

4
) ≈ 0.81. (3.13)

Now lets assume one has a sequence of events e.g. many sports matches, many

coin tosses, or more generally, a deterministic, chaotic or stochastic flow, this is, any

sequence of numbers that can be written as a time series. Entropy will act as a measure

of the novelty of the information of the time series and, therefore, of its unpredictabil-

ity.

∗States with zero probability of occurrence are ignored, as the sum in Eq. (3.11) would be undefined.
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3.2.2 Mutual Information

The mutual information (MI) is a measure of the mutual dependence of two variables

[161, 162]. Contrarily to the correlation coefficient, it is a more general measure of the

information—in the Shannon sense—shared by the variables.

Mutual information is computed from the probability density functions (PDFs)

that characterize two time series in two nodes, pi and p j , as well as their joint proba-

bility function, pi j [162–164]:

Mi j =
∑
m,n

pi j (m,n) log
pi j (m,n)

pi (m)p j (n)
. (3.14)

Mi j is a symmetric measure

Mi j = M j i (3.15)

of the degree of statistical interdependence for the time series i (t ) and j (t ); if they are

independent:

pi j (m,n) = pi (m)p j (n) (3.16)

and thus Mi j = 0. As with the entropy the most common unit of measurement of

mutual information is the bit but it can also be measured in nats and bans.

In this thesis, the PDFs pi , p j and pi j are computed in two ways: by histograms

of the original values (this case will be referred to as MIH) and by using a symbolic

transformation, in terms of probabilities of ordinal patterns [128, 165–167] (this case

will be referred to as MIOP and will be explained in section 3.3).

3.2.3 Directionality measure

Both Pearson correlation coefficient and MI give a measure of statistical similarity but

not of causality. Generally, one would like to know the net effect of one series over the

other, and in the case of a net driving, its direction. This can be done for regular and

noise free time series, using classical methods based in the phase differences between
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the series [168]. These results have been extended for the more general case of series

embedded in small noise [169–172], but usually these techniques fail for series where

the power spectrum is not sharp and phases cannot be unambiguously defined. Using

information theoretic techniques allows us to tackle this problems [173–175], having

obtained already successful results in EEG tests and other fields [173].

Time series i (t ) and j (t ) are characterized by probability distribution functions pi ,

p j , and by their joint PDF, pi j . The directionality between them can be assessed via

the directionality index (DI) as defined in [176, 177]:

DIi j (τ) = TEi j (τ)−TE j i (τ)

TEi j (τ)+TE j i (τ)
, (3.17)

where TEi j (τ) and TE j i (τ) are referred to as transfer entropy [178, 179] and defined as:

TEi j (τ) ≡ M(i ; j |iτ)

= H(i |iτ)+H( j |iτ)−H(i , j |iτ) (3.18)

TE j i (τ) ≡ M( j ; i | jτ)

= H( j | jτ)+H(i | jτ)−H( j , i | jτ); (3.19)

here, iτ = i (t−τ), jτ = j (t−τ)—the nature of τ> 0 will be explained below—and H(i | j )

is the conditional entropy [176, 177]

H(i | j ) = ∑
m,n

pi j (m,n) log
pi (m)

pi j (m,n)
. (3.20)

Transfer entropy is a particular case of the conditional mutual information (CMI)

[168, 178] which is defined as:

M(i ; j |k) = H(i ,k)+H( j ,k)−H(i , j ,k)−H(k) = H(i |k)−H(i | j ,k) (3.21)

and can be rewritten as:

M(i ; j |k) = ∑
m,n,l

pi j k (m,n, l ) log
pk (l )pi j k (m,n, l )

pi k (m, l )p j k (n, l )
; (3.22)
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it indicates the amount of information shared between i (t ) and j (t ), given the effect

of the series k(t ) over j (t ).

If k(t ) is replaced by the past of the time series i (t ) to account for the information

transfer time τ, the transfer entropy case is obtained. This yields TEi j (τ) ≡ M(i ; j |iτ),

Eq. (3.19), which quantifies the amount of information shared between i (t ) and j (t ),

given the influence of i (t −τ) over j (t ).

Analogously, to assess the information transfer from j to i , k(t ) is replaced by the

past of j (t ), Eq. (3.19). This way, the directionality index, D I i j , is able to quantify the

net information flow.

From the definition of DIi j , Eq.(3.17), it is clear that if DIi j (τ) is positive, it will

mean a net directionality from i to j as TEi j (τ) > TE j i (τ). This will be represented in

red on the maps on chapter 6. Conversely, if TEi j (τ) < TE j i (τ) then DIi j (τ) < 0 will

mean a net direction of information flux from j to i and the maps of chapter 6 will

show it in blue. Also from the definition:

DIi j =−DI j i (3.23)

and also,

−1 ≤ DIi j ≤ 1. (3.24)

Another properties are:

DIi j = 1 if and only if TEi j 6= 0, TE j i = 0 (3.25)

(i.e., the information flow is i → j and there is no back coupling j → i ), and corre-

spondingly:

DIi j =−1 if and only if TE j i 6= 0, TEi j = 0 (3.26)

(i.e., the information flow is j → i and there is no back coupling i → j ).
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Naturally, τ> 0 is a parameter that has to be tuned appropriately to the time-scales

involved in the series. If τ is too small DIi j (τ) will capture short time scale directional-

ity, and may fail if the time series behave too similarly on those time scales as they do

if they are subjected to the same external forcing. On the other hand, if τ is too large,

larger than the decorrelation time of the time series, the effect of the past i over j (and

of j over i ) will be negligible and DIi j (τ) will be a small and in principle random value.

3.3 Ordinal analysis

Ordinal symbolic analysis is an approach to the investigation of long and complex

time series. It is concerned with the order relations between successive values instead

of the values themselves. It was introduced by Bandt and Pompe [167], and is an ap-

proach to complex dynamics aiming to capture the essential aspects of complexity by

the use of conceptually simple models.

As mentioned in section 3.2.1, the quantification of the predictability of a system is

one of the aims of non-linear time series analysis. The problem becomes more com-

plicated as these time series can be embedded in noise, even in non-linear ways (

known as multiplicative noise). If there is no recognizable structure in the system,

this can be, in principle, considered to be stochastic. However, recurrent intrinsic

patterns can be hidden in the dynamics of the system and can be overlooked. In or-

der to overcome this problem, in [167] a different approach to perform this analysis

has been proposed. The order relation between the values of a time series is con-

sidered, notwithstanding the values themselves. A permutation complexity measure

is defined, called Permutation Entropy, which is based on the distribution of ordinal

patterns. Formal proofs and applications of the analysis of real world time series are

provided in [180].
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3.3.1 Ordinal Patterns

Consider that one wants to compute the probability distributions of a time series, for

example, for computing the similarity measures discussed previously. This can be

the output of a random process, an orbit of a dynamical system, observed or mod-

eled climate data, and it can be embedded in external and dynamical noise. In order

to compute many measures as the entropy—Eq. (3.11)—or the mutual information,

among others, it is necessary to obtain a good estimate of the probability distribution

pi of the time series.

A simple but widespread way is to do so in terms of histograms of values computed

with a certain number of bins, Nbi n , which is limited by the length of the time series.

The selection of the number of bins is a nontrivial problem, as different bin sizes can

reveal different features of the data. Using wider bins where the density—the amount

of points per bin—is low, reduces noise due to sampling randomness; using narrower

bins where the density is high—and therefore the signal is higher than the noise—

gives greater precision to the density estimation. The technique of variable bin-width

can be beneficial in some cases [182]. On the other hand equal-width bins are widely

used for simplicity. Another approach is to construct Ordinal Pattern (OP) time series

from the original data. Ordinal Patterns are calculated by noting the value of a data

point relative to other values in the series. Using e.g. three symbols (letters) 3! = 6

different patterns exist, for four symbols there will be 4! = 24 patterns, and so forth—

see Fig. 3.3 (a) and (b) respectively. The possibility of two equal adjacent values is not

considered, partly due to the presence of noise in the time series.

As shown in Fig. 3.3 (a), OPs of length 3 are formed by 3 symbols in the follow-

ing way: if a value (xi (2)) is higher than the previous one (xi (1)) but lower than the

next one (xi (3)), it will yield the pattern ’123’ (Fig. 3.3 (a-1)), while the opposite case

(xi (3) < xi (2) < xi (1)) will give the pattern ’321’ (Fig. 3.3 (a-6)), etc. This symbolic

transformation allows to detect correlations in the sequence of values which are not
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A generalization of the Shannon entropy is the Renyi entropy
of order q

HqðWÞ ¼
1

1$q
log $

X4W

k ¼ 1

pq
k

 !
ð5Þ

that leads to the symbolic features FWRENYI025 (q¼0.25) and
FWRENYI4 (q¼4). Again, higher values of these entropies indicate
higher complexity in the corresponding tachograms.

2.3. Ordinal pattern statistics

Ordinal patterns [13–23] describe the relations within short
segments of length W of a given time series. They are easy to
compute and robust against noise. For this reason ordinal patterns
have been used in a wide range of applications including the
detection of determinism in noisy time series [18,19], estimation
of transfer entropy in epilepsy [17], complexity analysis of time
series [20], or classification [23].

The construction principle for ordinal patterns of length W is
illustrated in Fig. 1. All possible ordinal pattern of subsequences of
lengths W¼3–5 are shown in Fig. 2. A unique index can be assigned
to each ordinal pattern by interpreting the subsequence as a
permutation that is characterized by a permutation index. This is
done by first reordering the samples xn,xnþ1,xnþ2, . . . xnþW$1 with
respect to their amplitude such that xpðnÞrxpðnþ1Þrxpðnþ2Þr . . .
rxpðnþW$1Þ and then computing the permutation index of p. For
example, a sequence ðxn,xnþ1,xnþ2,xnþ3Þ ¼ ð2:22,4:21,1:30,3:76Þ
leads to a permutation (3, 1, 4, 2) with a permutation index of
I¼11 (see Fig. 2b). If two samples have the same amplitude, they are
ordered with respect to time (i.e., xn¼xm yields (m,n) if mon).1 Note
that some information about amplitudes and gradients or variability
is lost upon this discretization. For example, a sequence 1, 1.01, 0.99
corresponds to the same permutation index I¼4 as a sequence 1,
10 000, $20 000. Depending on the application any information
about (absolute) amplitudes or derivatives has to be taken into
account by other (additional) quantities or features.

Similar to the symbolic dynamics approach (Section 2.2) each
time series can be transformed into a sequence of permutation
indices that formally may also be considered as a sequence of
symbols from a finite alphabet of size W! The concept of ordinal
pattern can be extended [21,22] by considering not only con-
secutive samples but also subsequences with samples xn,xnþL,
xnþ2L, . . . ,xnþðW$1ÞL that are separated in time by a lag of L
sampling times TS which corresponds to a delay of T ¼ L & TS in
(absolute) time units. On this case xð_nþkLÞ is the RR interval at
the beat nþkL. The probabilities of occurrence of specific patterns
with permutation index I for a given delay T and length W are

used as features for characterizing the underlying time series and
will be denoted in the following by ‘‘perm(T, W, I)’’. The prob-
ability perm(T, W, I) will be given in percentage. Since the unit of
time of beat-to-beat time series is ‘‘heart beats’’ in this case T is an
integer number (¼ number of omitted beats þ 1) that equals L.
Furthermore, we compute the Shannon entropy based on all
probabilities for a given delay T and a given word length W (in
the following denoted as ‘‘perm entropy(T, W)’’).

x2

x1

x3

x4

2W = 1 3 4

Fig. 1. Illustration of the construction principle of ordinal patterns of length W.
For W¼2 there are only two possible directions from x1 to x2, up or down. The
third part of the pattern can be above x2, below x1 or between x1 and x2 as
illustrated here. For pattern length W¼4, there are four additional possible
locations of x4, leading finally to W! different ordinal patterns.
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Fig. 2. Ordinal patterns of length (a) W¼3, (b) W¼4, (c) W¼5 and corresponding
permutation indices. For each pattern the values (or amplitudes) of the sequence
are plotted vs. time (horizontal axis).

1 If many pairs of equal samples occur in a time series, the ordering with
respect to time will introduce a bias in the probability distributions and some
random selection of (m,n) or (n,m) may be more appropriate.

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319–327 321

Figure 3.3: An example for ordinal patterns of (a) n = 3 and (b) n = 4 letters. For both

cases, the n! possible patterns for are shown. This can be easily extended for larger

values of n where the possible patterns will rapidly increase. Figure adapted from

[181].

taken into account when using histograms of values as they do not consider the order

in which the values appear in the time series. As a drawback, this technique does not

contain information about the relative magnitudes; this is usually useful as a natural

robustness under low to moderate noise embedding.

After constructing time series of the OPs, histograms can be calculated from them.

In this symbolic approach, the number of bins is naturally defined by the number of

possible patterns, which in turn is determined by the number of symbols in the ordi-
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Figure 3.4: An example of three ordinal patterns in the time series of the NINO 3.4

index (monthly averaged). Green triangles: intraseasonal pattern, blue squares: intra-

annual pattern and red circles: interannual pattern. The possible patterns for D = 3

are shown in the inset. In this example, the intraseasonal pattern corresponds to an

“e”, the intra-annual, to an “a” and the interannual, to a “b”. Figure taken from [154].

nal pattern. As explained above, if the OP word is of length n, there will be n! possible

patterns, and this will be the number of bins used for computing the probabilities as-

sociated with the symbolic sequences. This eliminates the binning problems which

frequently appear when using histograms.

Ordinal patterns do not need to be constructed with immediately adjacent data

points only. It is possible to construct them with data points that are separated in

time, and in this way consider different time scales. Lets assume monthly sampled

climatic data as e.g. anomalies in the central Pacific ocean temperature (NINO3,4
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3.4. STATISTICAL SIGNIFICANCE

index) shown in Fig. 3.4: the time-interval of the ordinal patterns can be varied by

considering not only 3 consecutive months—intra-season time scale; e.g. January,

February, March; February, March, April; etc shown in green triangles—but also in 3

consecutive years—inter-annual time scale; e.g., January 2010, January 2011, January

2012; February 2010, February 2011, February 2012; etc, shown in red circles—or any

other convenient time scale as inter-season time scales as shown in blue squares. In

this way OPs allow to characterize timescale-dependent phenomena, which is very

difficult to detect when using histograms of the data. For example, a separation of 12

months allows grouping together individual months of the year.

This symbolic transformation keeps the information about correlations present

in a time series at the selected time scale, but does not keep information about the

absolute values of the data points. Therefore, the mutual information computed from

ordinal patterns (MIOP) can be expected to provide complementary information with

respect to the standard method of computing the mutual information (MIH).

This feature of OP for climate time series analysis, was first introduced in [128],

where several sizes of ordinal patterns were also studied.

3.4 Statistical Significance

The present-day concept of statistical significance originated from Ronald Fisher when

he developed statistical hypothesis testing in the early 20th century [183]. His meth-

ods are used to determine whether the outcome of a study would lead to a rejection of

the null hypothesis based on a pre-specified low probability threshold called p-values,

which can help to decide if a result contains sufficient information to cast doubt on

the null hypothesis [184–186].

Statistics quantifies the outlier status of an observation x by the probability of

sampling another observation from the null distribution that is as far or farther away

[184]. The null distribution is the one obtained assuming that the null hypothesis is
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true. It is an integral part of statistical hypothesis testing where it helps to decide if a

null hypothesis can be rejected.

Figure 3.5: Classical bell-shaped (Gaussian) curve where the cumulative Percentages

are shown, for several values of standard deviations σ. The percentiles and normal

curve equivalents are also shown. Adapted from [187]

In any experiment or observation that involves drawing a sample from a popula-

tion there is always the possibility that an observed effect would have occurred due to

sampling error or chance alone. However if the probability of obtaining an at least as

extreme result—large difference between two or more sample means—given the null

hypothesis is true, is less than a pre-determined threshold (e.g. 5% chance), then it

is possible to conclude that the observed effect is due to chance [152]. The use of p-

values imply a Gaussian null distribution; however other methods exist, notably the

use of quantiles or percentiles [188, 189] (see Fig. 3.5).

In Figure 3.6 the mechanism of statistical testing is shown. Suppose a value of

x = 12 is observed while there is a reason to believe the reference value is µ = 10 as
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seen in figure 3.6 (a). A (Gaussian) distribution of reference—Fig. 3.6 (b)—called the

null distribution is used. It embodies the null hypothesis (H0) that the observation

is a sample from the pool of all possible instances of measuring the reference, that

is that the event is a pure result of chance. The purpose of a statistical test is to lo-

cate the observation on this distribution to identify the extent to which it is an outlier.

This probability is the p-value, which is the output of common statistical tests. It is

calculated from the area under the distribution curve in the shaded regions—Fig. 3.6

(c).

The p-values are often coupled to a significance or α level or cumulative percent-

ages, which is also set ahead of time, usually atα= 0.05. Thus, if a p-value was found to

be less than 0.05, then the result will be considered statistically significant and the null

hypothesis will be rejected. Other significance levels, such as α= 0.1 or α= 0.01, may

also be used, depending on the accuracy needed. Another method is to use µ±nσ,

with µ and σ being the mean value and the standard deviation of the null distribu-

tion, and n a number used to quantify the separation from the mean.

3.4.1 Surrogate Data and Bootstrap

To find an adequate null hypothesis in complex system is a nontrivial problem [190,

191]. Historically, as shown in figure 3.5, the method stated above was used, assigning

a Gaussian of a certain mean and standard deviation and subsequently adjusting its

parameters with further observations.

Another approach is to generate surrogate data. This is data not coming from ob-

servations but responding to the null hypothesis.

Many algorithms to generate surrogate data have been proposed. They are usually

classified in two groups [160, 192]:

• Typical realizations: data series are generated as outputs of a well-fitted model

to the original data (as climate models) [193].
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Figure 3.6: The mechanism of statistical testing used. (a-c) the significance of the dif-

ference between observed (x) and reference (µ) values (a) is calculated by assuming

that observations are sampled from a distribution H0 with mean µ (b). the statistical

significance of the observation x is the probability of sampling a value from the dis-

tribution that is at least as far from the reference, given by the shaded areas under the

distribution curve (c). This is the p-value. Figure adapted from [184].

• Constrained realizations: data series are created directly from original data, gen-

erally by some suitable transformation of it which destroys some of the proper-

ties while conserving others.

The constrained realization surrogate data methods do not depend on a particular

model, nor on any parameters—and thus are called non-parametric methods. These

surrogate data methods are usually based on preserving the linear structure of the

original series. Some of the methods used are:

Random Shuffle (RS) [128, 190, 191]:New data are created simply by random per-

mutations of the original time series. The permutations guarantee the same ampli-

tude distribution than the original series, but destroy any linear correlation. This

method is associated to the null hypothesis of the data being uncorrelated in time.

Surrogate Fourier Transform (SFT) also known as RP, for Random Phases [145,

190, 194, 195]: In order to preserve the linear correlation (and the power spectra) of
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the series, surrogate data are created by the inverse Fourier Transform of the modules

of Fourier Transform of the original data with new (uniformly random) phases. If the

surrogates must be real, the Fourier phases must be antisymmetric with respect to the

central value of data. This method, however, does not conserve the amplitude distri-

bution. The Amplitude Adjusted Fourier Transform (AAFT) has approximately the

advantages of the two previous ones: it attempts to preserve both the linear structure

and the amplitude distribution transforming the PDF in a gaussian before applying

the SFT to take advantage of the property of Gaussians under Fourier transforms, and

then applying the opposite transformation. As a drawback it is a slow method and

due to these nonlinear transformations the linear structure may be changed. Another

drawback is that a long time series is in general needed, which is not usually the case

in climatology.
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Figure 3.7: Illustration of the method p-value for (a) the MI and (b) DI. In both cases

the BS method was used. The observed value is marked with a red vertical line, while

the significance marks (µ+3σ for MI andµ±3σ for DI are shown in black vertical lines.

Both values in this illustration are significant.

The bootstrap method (BS) [196, 197]: Randomly resamples with replacement

from the original set of data using blocks of data of approximately the size of the au-

tocorrelation of the time series, and re-computes the estimator on the collection of
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resampled data. This is repeated many (e.g., 100+) times and the value of the estima-

tor for each resample is stored. This way, an empirical distribution of the estimator

is constructed from which various statistical tests as the p-value can be performed to

compare different values of the estimator.

Figure 3.7, shows the methodology explained in two cases for real data. In panel

3.7(a) 100 BS surrogates were generated and result in the distribution shown in gray.

The black vertical line correspond to the chosen p-value (µ+3σ of the distribution).

The red vertical line is the MI calculated from the real data. As in this case, the value

is higher than the black line, this value is significant. Panel 3.7(b) shows a similar

analysis but for DI where there are two significance bars, (1) corresponding to the

case 1 → 2 (X > µ+3σ) and (2) 2 → 1 (X < µ−3σ). The case represented in the figure

corresponds to the first series significantly driving the second.

The methodology used during the present work is the explained above, with some

variations. In chapters 4 and 5 random shuffle data was used (as the data was monthly

sampled) and the threshold was global, this is, a single p-value was obtained from

the statistical analysis and used for thresholding of all nodes. In chapter 6, the BS

method was preferred because of the great autocorrelation of daily data and the more

computationally expensive local thresholding method was preferred.
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Chapter

4
Interdependencies in Climate

Networks on Several Time

Scales

This chapter presents results for the construction of climate networks applying the

methods described in the previous chapters. Firstly, in section 4.1 the data analyzed

is described together with the methodology of ordinal patterns used in this chapter

to select time scales. Intra-season time-intervals (e.g., the patterns are formed by

anomalies in consecutive months) and inter-annual time-intervals (e.g., the patterns

are formed by anomalies in consecutive years) are considered. The criteria used for

thresholding are described in section 4.2, which discusses how the network density

and topology change with the time scales, and provide evidence of correlations be-

tween geographically distant regions that occur on specific time scales. In particu-

lar, it shows that an increase in the ordinal pattern spacing (i.e., an increase in the

timescale of the ordinal analysis), results in climate networks with increased connec-

tivity in the equatorial Pacific area. On the contrary, the number of significant links
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decreases when the ordinal analysis is done with a shorter timescale (by comparing

consecutive months). Finally, section 4.3 presents a discussion of these results, which

were summarized in J.I. Deza et. al [130].

4.1 Data and methodology

The monthly-averaged surface air temperature (SAT) anomalies, taken from the re-

analysis of the National Center for Environmental Prediction/National Center for At-

mospheric Research, NCEP/NCAR [33] was analyzed. The anomalies were calculated

as the actual temperature values minus the monthly average, and were normalized

by the standard deviation. The data are given on a grid over the Earth’s surface with

latitudinal and longitudinal resolution of 2.5◦, resulting in N = 10512 grid points or

network nodes. The data cover the period from January 1949 to December 2006, and

thus, in each node, there is a time series of 696 data points. This is the same dataset

used in [128] and some of the results presented here are compared to those of that

article.

Networks were constructed using MI values. These were computed calculating the

probabilities as histograms, directly from the time-series, or as probabilities of occur-

rence of ordinal patterns (OP). Several OPs—of different lengths and spacing—were

considered. The sensitivity of the results to the number of Nbin used for computing

the probabilities was also studied.

More specifically, when using histograms (in the following, referred as MIH), 6 and

24 bin histograms were constructed. They were used for comparison with histograms

of OPs of length 3 and 4 letters which yield 3! = 6 and 4! = 24 bins respectively.

The ordinal patterns were formed by:

• consecutive months (i.e., by comparing three or four consecutive values in the

time series); the MI computed in this way will be referred to as MIOP3L01 and

MIOP4L01 respectively;
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• months in consecutive years (i.e., by comparing xi (t ), xi (t +12), and xi (t +24));

the MI computed in this way will be referred to as MIOP3L12 (OPs of length 3)

and MIOP4L12 (OPs of length 4).

• equally spaced months covering a one-year period. For patterns of length 3, this

is done by comparing xi (t ), xi (t +4), and xi (t +8); for patterns of length 4, by

comparing xi (t ), xi (t+3), xi (t+6), and xi (t+9). The MI computed in these ways

will be referred to as MIOP3L04 and MIOP4L03 respectively.

A main goal during this study was to find an adequate thresholding methodology,

that results in climate networks that i) contain only truly relevant connections—the

links that represent random correlations are filtered, and ii) do not disregard the weak

links that are significant—i.e., the links representing statistically significant deviations

from random correlations are not filtered.

In order to achieve this, firstly constant density networks already reported [120,

128] where considered. A global threshold τ was calculated (and indicated in each

map) as well as the network density (the number of links divided by the number of

possible links). This methodology was compared to the random shuffle surrogate data

method which was introduced in section 3.4.1. This yielded another value of τ whose

maps allowed finding weaker but still significant links. In both cases, links with mu-

tual information values below the threshold were considered not significant and dis-

regarded. The physical interpretation of the accepted links was then discussed from a

climatological point of view.

4.2 Results

Figures 4.1 and 4.2 present the results of the four methods of analysis, considering 6

bins (Fig. 4.1) and 24 bins (Fig. 4.2). Ordered from top to bottom, the network was

constructed by computing the MIH (top row), the MIOP with OPs formed by consec-

utive months (second row), the MIOP with OPs covering a one-year period (third row)
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Figure 4.1: AWC (left column) and connectivity maps (right column) using the dif-

ferent methods of network construction described in the text, computing the proba-

bilities with 6 bins and using the significance threshold τ= µ+3σ to define the links.

The methods are: histograms of anomaly values MIH (top row); OPs formed with three

consecutive months (second row); OPs formed with three equally spaced months cov-

ering a one-year period (third row); and OPs formed with three months in consecutive

years (bottom row).
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Figure 4.2: As Fig. 4.1 but the probabilities are calculated with 24 bins: histograms

of anomaly values MIH (top row); OPs formed with four consecutive months (second

row); OPs formed with four equally spaced months covering a one-year period (third

row); and OPs formed with four months in consecutive years (bottom row). In order

to better compare the AWC plots, each left column map has same color-AWC corre-

spondence of the corresponding map in the left column in Fig. 4.1.
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and with the same month in consecutive years (bottom row). Note that in order to

cover a year period, the spacing on the third row in Fig. 4.1 is four months (as there

are three letters) and it is three months in Fig. 4.2 (which uses four letters). In both

figures the left column presents the AWC plots, and the right column, the connectivity

maps for a point in the equatorial Pacific.

The AWC obtained here compares well to that calculated in [128] (left panel, Fig.

1), except that the network density is about double. This is explained by a different way

to calculate the significance threshold. In [128] the threshold consisted in the largest

MI value computed from shuffled data, while in Fig. 4.2 of this study the threshold

is defined in terms of the standard deviation of the MI distribution calculated from

shuffled data.

Considering the left column of Figs. 4.1 and 4.2, (showing the AWC plots for 6

bins/3 letters and 24 bins/4 letters respectively), one can observe highly connected

spots on the first row which are present only in some of the other three maps. See,

for example, the highly connected green spot in the Labrador Sea, which is also seen

in the second and to a lesser extent in the third row; but is not present in the plot on

the fourth row. The Labrador Sea is one of the most important regions of deep water

formation in the north Atlantic. The formation of this water occurs in wintertime and

depends on the passage of extratropical storms that cool the surface increasing its

density. The passage of storms is in turn related to the state of the North Atlantic

Oscillation, a preferred pattern of atmospheric variability in the north Atlantic basin.

As result, there is a clear connection of the Labrador Sea with the rest of the north

Atlantic mainly on seasonal time scales and is mostly independent on ENSO activity

(see second row of Figure 4.1 ). This topic will be further addressed in chapter 5.

In addition, in the first row of the same Fig. 4.1, it can be noticed highly connected

areas in Africa, the equatorial Atlantic and western tropical north Atlantic which are

not present in the short-time scale networks (second row) but that are seen in the
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long-time scale networks, (third and fourth rows). Thus, these connections arise be-

cause regions are connected on inter-annual, but not on monthly or seasonal time

scales.

On interannual time scales El Niño teleconnections include a decrease of the north-

ern trade winds that reduce the heat loss in the western tropical Atlantic, as well as a

tropospheric warming over most of the tropical band, thus inducing warming over

several regions, including the equatorial Atlantic and the Indian ocean [198]. At the

same time, the air-sea interaction in the equatorial Atlantic leads to inter-annual modes

of variability which can interact constructively or not with the anomalies induced by

El Niño, resulting in less number of links compared to those in the Indian ocean [199].

On interannual time scales ENSO also influences climate over the northeastern

Pacific and the south Pacific, including the Antarctic Peninsula, probably through the

propagation of Rossby waves (Figure 4.1, last row). The latter Pacific link has been

recently suggested as the mechanism responsible for the temperature trend in the

Antarctic Peninsula during the last 30 years [200].

According to these results the tropical region becomes interconnected on seasonal

time scales, while the extratropics become connected to the equatorial Pacific only

when considering interannual time scales. These teleconnection patterns evidence

the propagation of Kelvin and Rossby waves from the equatorial Pacific on different

time scales. While the overall picture is similar in Figs. 4.1 and 4.2, it is clear that the

use of 6 bins represents more adequately the known atmospheric processes, probably

due to the shortness of the time series that prevents weak links to be declared signifi-

cant when using 24 bins to calculate the mutual information.

To analyze the influence of the significance criterion, in Figs. 4.3 and 4.4 the net-

works are presented when the threshold to define the links is such, that all the net-

works have the same number of links. A density of links of 0.027% was chosen, be-

cause all the networks presented in Fig. 4.1 and 4.2 have a density equal or larger than
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Figure 4.3: As Fig.4.1 but with the threshold τ chosen such that the networks have the

same link density (0.03%).
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CHAPTER 4. INTERDEPENDENCIES IN CLIMATE NETWORKS...

this value. This is the approach used in [128]. In this previous work, it was found

that the short-time scale network MIOP4L01 was more uniformly connected than the

year-time scale network MIOP4L12. The present analysis confirms this result and ex-

tends it to the case where the density depends on the significance test (Figs 4.1 and

4.2). This suggests that on short time scales there is no dominant phenomenon that

interconnects remote regions. Instead, temperature anomalies seem to be governed

by regional patterns of atmospheric internal variability.

4.3 Discussion and Conclusions

In this chapter different aspects of the global climate were studied, some were associ-

ated to short time scales—of a few months—and others to longer time scales—of a few

years—using the framework of climate networks and nonlinear time-series analysis.

The goal was to examine the influence on the network topology of i) the methodology

used for quantifying the degree of statistical similarity between two nodes, and ii) the

significance criteria used for thresholding, to define the links.

The mutual information measure was employed, calculated from probabilities

that were defined over i) a small number of bins (6, Figs. 4.1 and 4.3), and ii) a large

number of bins (24, Figs. 4.2 and 4.4); also, the probabilities were computed directly

from histograms of SAT anomaly values, and from the symbolic, ordinal representa-

tion of the anomaly time series. This was done in order to compare the dependence

of the network topologies on the number of letters of the ordinal representation.

The OP method allowed considering different time scales when transforming the

anomalies time series into ordinal patterns. The influence of thresholding was con-

sidered, and the threshold was defined i) in terms of surrogate data (significance test)

(Figs. 4.1, 4.2) and ii) to obtain a network with a given link density (Figs. 4.3, 4.4).

It was found that an increase in the ordinal pattern spacing (therefore an increase

in the timescale), generates a growth of the connectivity in the equatorial Pacific area
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(figures 4.1–4.4, left column, rows 2–4). It was also found that this increase in con-

nectivity is associated with an increase on the teleconnections from points situated

on this area. (right column of the same figures). This result is consistent with previ-

ous work by Barreiro et. al. [128], and with current understanding of ENSO influence.

Thus our method allows us to obtain networks where the effect of ENSO goes from

weak (monthly OP) to strong (yearly OP) independently of the number of letters used

for the ordinal patterns and of the thresholding method.

It was also observed that the number of significant links is smaller when the or-

dinal patterns are constructed with a shorter timescale—by comparing consecutive

months—what was interpreted as due a larger stochasticity in the time-series in the

short timescale.

It was found that, when the networks are set at a fixed link density (figures 4.3, 4.4)

the networks—constructed with 6 and 24 bins respectively—are remarkably similar. It

can be argued that 24 bins is a tradeoff of resolution and data length, a measure equiv-

alent to the 6 bins MI, but more flexible in its essence due to its higher resolution, it

would certainly give better results for e.g. longer time series. Moreover, these results

indicate that the significance of the links in climate networks should be carefully ex-

amined in order to avoid disregarding weak but significant links.

As supplementary information about the effects of the networks on thresholding,

three short videos were prepared in order to illustrate the slow increase in thresholding

and its consequences on the connectivity of the climate networks. The videos show

an AWC map with a link density beginning in the significance level (µ+3σ as in figures

4.1 and 4.2) and ending in µ+20σ already over the limit of the constant density maps

of figures 4.3, 4.4. The first video∗ shows MIH, the second video† shows MIOP3L01,

and the third video‡ shows MIOP3L12. These films are also find the List of videos in

∗MIH: http://youtu.be/KutwWRVoWz4
†MIOP3L01: http://youtu.be/Sh6baHeASjI
‡MIOP3L12: http://youtu.be/VKwwpNM0-Us
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the beginning of this Thesis.

While in [128] the significance threshold used was the maximum MI value ob-

tained from shuffled time-series, a more “tolerant" threshold was here considered—

the mean value plus 3 standard deviations of the MI distribution—that resulted in

networks with a higher number of links, as compared to those in the above mentioned

work. The networks obtained are consistent with those in [128] and it was found that,

by increasing the number of links, networks that display in more detail the complexity

of the atmospheric teleconnections were found. Another conclusion of this chapter is

that, since Figs. 4.3 and 4.4 are very similar, for a fixed link density, the main features

of the network are independent of the bin number used for computing the mutual in-

formation, which confirms the robustness of the climate networks constructed with

this thresholding methodology.
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Chapter

5
Components of Atmospheric

Variability and Time Scale

Identification

To further exploit the knowledge of the links uncovered via the network analysis shown

in the previous chapter, a good understanding of the physical mechanisms underly-

ing these links is required. In this chapter the focus is on constructing climate net-

works representing internal atmospheric variability, and variability forced by the sur-

face ocean conditions using the output of an ensemble of runs from an Atmospheric

General Circulation Model (AGCM). In Section 5.1 the methodology used for separat-

ing variability types is introduced. The data and the model employed are discussed

in Section 5.2 together with the model validation in the context of climate networks.

Sections 5.3 and 5.4 present the results. Finally section 5.5 presents the discussion and

conclusions.

A main strength of the work presented in this chapter is that the networks are con-

structed using MIOP, which allows the separation of intraseasonal, intra-annual and
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interannual time scales. This provides a further insight to the analysis of climatologi-

cal data.

It was found that the connectivity of the ocean forced variability network is heavily

affected by “El Niño”: removing its influence (using the methodology explained in

section 3.1.1) yields a general loss of connectivity; even connections between regions

far away from the equatorial Pacific ocean are lost, suggesting that these regions are

not directly linked, but rather, are indirectly interconnected via El Niño, particularly at

interannual time scales. On the contrary, in the case of the internal variability network

– independent of Sea Surface Temperature (SST) forcing it was found that NAO plays

a dominant role with a maximum on intra-annual time scales in the North Atlantic

region. It was further shown that the strongest non-local links found are those forced

by the ocean.

The results presented in this chapter were summarized in [154].

5.1 Internal and forced variabilty

Atmospheric variability can be considered, to first order, as a superposition of an in-

ternal part due to intrinsic dynamics, and an external part due to the variations of the

boundary conditions, primarily given by the sea surface temperature (SST) forcing.

These two components can be separated by using Atmospheric General Circulation

Models (AGCMs) forced with prescribed historical SSTs [201–205].

This separation between internal and forced atmospheric variability is a standard

procedure to study the impact of the oceans on the atmosphere and has led to im-

portant advances on our understanding of the dynamics involved. Two books, [206]

and [54] provide a summary of the processes involved—mainly based on the propa-

gation of Rossby waves and the generation of teleconnection patterns. Although there

are some nonlinear secondary effects, the theory asserts that to first order the ob-

served propagation and establishment of teleconnection patterns is linear.
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Separating forced from internal atmospheric variability is also important as it may

allow for improvements seasonal in climate prediction. In many geographical regions,

the atmosphere is strongly influenced by local or remote SST variations that force per-

sistent regional anomalies [207]. Because the evolution of the tropical oceans presents

some predictability at time scales longer than the atmosphere, prediction of atmo-

spheric variables beyond the chaotic time scale of 7-10 days is possible provided that

the atmospheric dynamics is being forced by the ocean [207].

The usual modeling strategy to separate atmospheric components of variability

consists in forcing AGCMs with idealized or observed SST anomalies. The experiment

involves the generation of an ensemble of runs initialized differently but forced with

the same SST as boundary conditions. Then, the simulated time series of anomalies

of a climatic field (e.g. SAT anomalies) is considered as a combination of internal and

forced variability, e.g. x = x f or +xi nt . Thus , for each run i it results

xi = xi
f or +xi

i nt = x f or +xi
i nt (5.1)

as x f or does not depend on the initial conditions.

Averaging over N runs yields

x̄ = x f or + (1/N )
∑

i
xi

i nt (5.2)

thus, the ensemble mean is a biased estimate of the forced component. If N is large

enough, the second term will be small as each model run will have a different value.

Thus, to the first order x̄ ≈ x f or

In other words, each time series xi can be separated into a part that changes from

run to run of the model, xi
i nt , and a part that does not depend on the initial conditions

(is forced by the boundary conditions only, and is the same for all runs), x f or ≈ x̄.

Similarly one can define the internal variability as

xi
i nt = xi −x f or (5.3)
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this yields N different internal variability data sets, which are processed separately

producing N different climate networks. The Internal variability network is then cal-

culated as and average of these networks.

This method allows to construct two types of networks, one in which the links rep-

resent similarities in internal atmospheric variability (referred as internal variability

network), and another in which the links represent similarities in forced atmospheric

variability (the f orced variability network).

Here, connectivity of these networks will be used to assess the influence of two

main phenomena: El Niño-Southern Oscillation – characterized by the NINO3.4 index

– , and the North Atlantic Oscillation – characterized by the NAO index. This was done

by calculating the networks from time series where either the NINO3.4 index or the

NAO index was linearly removed using the methodology explained in section 3.1.1.

The forced variability networks is found to be intimately related to El Niño phe-

nomenon and that linearly removing its evolution yields a breakdown of the long

range teleconnections of the climate network, particularly at interannual time scales.

A similar result is observed for the internal variability network in the Northern Hemi-

sphere when NAO is removed, with maximum effect at intra-annual time scales.

5.2 Data sets and model used

In this study the AGCM from the International Centre for Theoretical Physics (ICTP

AGCM) has been used. It consists of a full atmospheric model with simplified physics

and an horizontal resolution of T30 (3.75◦×3.75◦, which results in N = 608 grid points

or network nodes) with eight vertical levels [203]. The model is forced with historical

global sea surface temperatures (ERSSTv.2) [208]. In order to separate forced from

internal atmospheric variability nine runs using the same boundary (SSTs) conditions

but slightly different initial conditions were performed.

In our experiment design SST is taken as a boundary condition and it is not changed

by the atmospheric flow. In the real world there is a two-way interaction between the
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ocean and the atmosphere. This limitation is especially important in the extratropics

where the SST evolution strongly depends on the atmospheric forcing [209,210]. How-

ever, current understanding indicates that the atmosphere is most sensitive to SST

anomalies in the tropics and thus the forced atmospheric variability will be related

to the evolution of the tropical oceans [211]. This model setup allows, as explained

in the Introduction, to separate the forced and internal components of the atmo-

spheric variability. While an ensemble of only nine model runs might seem insuffi-

cient for a robust estimation of the forced response, as it could be contaminated by

noise due to the relatively small ensemble size, it will be shown that the results found

here are consistent with well known climate phenomena, indicating that, at least at

the “first order” description of the network via AWC, nine model runs are enough to

separate forced and internal variability. This is consistent with previous works that

show than an ensemble of about 10 runs is enough to separate internal and forced

variability in most places (e.g. [51, 212–214]). More sophisticated methods for identi-

fying the forced variability despite the small-ensemble noise contamination are dis-

cussed in [199, 202, 215–217].

Monthly averaged SAT in the period January 1948 - December 2006 was analyzed.

This results in a total of 708 data points per node. For each node, the time series were

linearly detrended and the anomalies of these series were computed by subtracting

the long term average to each monthly data point.

To validate the model (see Section 5.2.1) the reanalysis data from NCEP/NCAR [33]

in the same time period (1948-2006) was considered. Since NCEP/NCAR reanalysis

data is given on a 2.5◦×2.5◦ grid, for easier comparison it was resampled using bilinear

interpolation of the gridded data to fit the grid of the ICTP-AGCM data. The detrended

and normalized anomalies were computed as stated with the model data.

To construct the network, a link between nodes i and j is defined if Mi j is above

an appropriate threshold, which is calculated in terms of surrogate shuffled data as

explained in previous chapters.
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To represent the network the AWC is plotted, which yields the fraction of the total

area of Earth to which each node is connected as explained in section 2.2.3.

It is of particular interest to identify significant weak links, as the strongest links

are usually of shorter spatial range. In all the AWC maps presented, the color scale

has been set from zero to a fixed value (0.4), and any node with stronger connectivity

is shown with the color code of 0.4. This allows to visualize more clearly the weakest

part of the accepted significant links. It also allows for a direct comparison of all the

AWC maps.

The significant connections of some selected geographical regions (represented

by individual network nodes) are also explored. In these connectivity maps the value

of the interdependency measure (MIH or MIOP) will be displayed using a color scale

which is also fixed, from zero up to 0.3; MI values larger than this will be shown using

the same color code as 0.3.

5.2.1 Model Validation

While the ICTP-AGCM model has been used extensively in the literature (see, e.g.

[51, 203, 204, 218] and references therein), the model has not yet been validated in

the context of climate networks. Therefore, the first step of our study is to validate the

model by comparing the networks obtained from one model run with the networks

obtained from reanalysis data [130].

This is done by comparing Fig. 5.1 with Fig. 5.2. Figure 5.1(a) displays the AWC

map computed from reanalysis data using MIH as interdependency measure; Fig.

5.2(a) displays the AWC map computed from one model run, also using MIH. Clearly,

the model is able to capture the same overall pattern of global connectivity with a

maximum in the central tropical Pacific, relative maxima in the tropical Atlantic and

Indian oceans and over Alaska, Labrador Sea and the Southern ocean. Differences are

mainly in the magnitude of the AWC, with the model underestimating the connectiv-

ity in most places. Similar observation applies to the comparison between panels b,
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Figure 5.1: Maps of AWC constructed from reanalysis NCEP/NCAR data. The statis-

tical interdependencies are quantified via (a) MIH, (b) MIOP intraseasonal, (c) intra-

annual, and (d) interannual time scales (see sections 3.2.2 and 3.3 for details). The

color scale is the same for all panels and for all the following AWC maps and it is set to

saturate at 0.40 to highlight the weaker values of AWC.

c and d on Fig. 5.1 and the corresponding panels on Fig. 5.2 where the network was

built by using the MIOP as interdependency measure.

Fig. 5.2, panel (a) shows the AWC using MIH and thus, reveals global interdepen-

dencies, on all time scales; panels (b)-(d) show the AWC using MIOP in intraseasonal,

intra-annual and interannual time scale, respectively. Clearly, the connectivity in-

creases as the time scale increases, in good agreement with the results found in chap-
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Figure 5.2: Maps of AWC obtained from single model run. The statistical interdepen-

dencies are quantified via (a) MIH, (b) MIOP intraseasonal, (c) intra-annual and (d) in-

terannual (see sections 3.2.2 and 3.3 for details). Comparing panel (a) with Fig. 5.1(a)

and panel (d) with Fig. 5.1(b) it can be observed that the main features of the maps

are the same, providing a visual validation of the model.

ter 4 using reanalysis data. Many other features of the AWC maps are also qualitatively

well reproduced by the model.

While the networks obtained from AGCM and reanalysis data, when visualized via

the AWC, look qualitatively very similar, quantitative differences are seen, for exam-

ple, with respect to the spatial extent of the structures. These differences might be

relevant, especially if more sophisticated network measures were to be used. Never-
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theless, the good qualitative agreement between networks constructed from model

and reanalysis data, lets us focus on using model output to distinguish the networks

associated with intrinsic and forced atmospheric variability.

5.3 AWC maps

5.3.1 Forced variability

The AWC maps presented in Fig. 5.2 for one run of the model, contain information

of both forced and internal variability. To analyze forced variability only, the network

was constructed from averaged time series (over nine model runs),

x̄ = x f or + (1/N )
∑

i
xi

i nt ≈ x f or

where (1/N )
∑

i xi
i nt will be small to first order as explained in the Introduction.

The results are presented in Fig. 5.3. Panel (a) displays the AWC map when the

MIH is used to quantify statistical interdependencies. Here, connectivity is higher in

the tropics and on the Pacific, Indian and Atlantic basins than in the rest of the world.

It is worth noting that while tropical connectivity is relatively symmetrical about the

equator for Pacific and Indian oceans, the north Atlantic is significantly more con-

nected than the southern Atlantic. Panels 5.3(b-d) show that the connectivity of the

forced variability increases with the time scale. At intraseasonal time scales connec-

tivity is very low compared with the connectivity from Fig. 5.3(a). If the time scale is

increased to intra-annual – as in panel 5.3(c) – all the tropical area becomes more con-

nected than the extratropics, indicating a better longitudinal energy and momentum

exchange. Forced by the tropical Pacific SST anomalies a long range strong telecon-

nection is found in Alaska [219]. For interannual timescales (three years) which is

within the period of the El Niño events (from 2 to 7 years) many very connected ar-

eas, especially in the tropics but also in the extratropics are found. The presence of

highly connected spots is observed in the extratropics especially in the Pacific basin
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Figure 5.3: Maps of AWC computed from averaged time series, and thus containing in-

formation only of the forced component of atmospheric variability. The quantifiers of

statistical similarity are as in Fig. 5.2: (a) MIH, (b) MIOP intraseasonal, (c) intra-annual

and (d) interannual. It can be noticed that in the shorter time scale the tropical area,

especially the Pacific ocean has a weak influence, and it grows stronger with increas-

ing time scale. The fact that the maps in panels (a) and (d) are similar suggests that

most of the links uncovered by the MIH, panel (a), actually reflect interdependencies

in the longer time scale and thus, are seen in panel (d).

but also in the Indian and Atlantic oceans. Comparing these three maps with that in

panel 5.3(a) which, as explained before, was computed via MIH and thus contains in-

formation from all the time series, it can be inferred that most of the connections seen

86



5.3. AWC MAPS

Figure 5.4: Maps of AWC of the forced component of the network when the ENSO

influence is removed from the time series (for the description of the index and for the

removal procedure, see sections 3.1.1 and 1.4.1). The statistical interdependencies

are quantified as in Fig. 5.2: (a) MIH, MIOP (b) intraseasonal, (c) intra-annual and

(d) interannual. A comparison with Fig. 5.3 allows assessing the influence of El Niño

phenomenon over the network connectivity.

in Fig. 5.3(a) occur at long time scales, because they are clear only in Fig. 5.3(d), and

are weak or not seen in Figs. 5.3(b), (c).

Figure 5.4 represents the same maps as Figure 5.3 but after removing the ENSO

influence by a linear regression. Panels 5.3(a) and 5.4(a) show large differences. It is

clear that the signal of El Niño in the tropical Pacific was successfully removed, and
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moreover, the connection hotspots in the extratropics were also removed, indicating

that they were mainly forced by El Niño. However, a few small well-connected areas

remain over the equatorial Pacific, indicating that a linear regression is not sufficient

to fully eliminate the ENSO effect on the network connectivity.

The Caribbean and north Atlantic are the largest regions that maintain a similar

AWC even after Niño has been removed. Note, however, that the instantaneous re-

gression does not completely remove the ENSO signal if there is a lag in the response.

This is so in the tropical north Atlantic [220], where El Niño affects sea surface tem-

perature through heat flux changes that, given the ocean’s heat capacity, take a few

months to induce an anomaly. Thus, this might be a reason for the still large connec-

tivity observed in the Caribbean in Fig. 5.4(a).

Other areas, like over China and central Asia, which are weakly connected to the El

Niño phenomenon show the same connectivity in Figs. 5.3 and 5.4. The fact that areas

not related to ENSO do not change when removing the index hints that the statistical

test used to fix the network density is robust and allows to compare maps with and

without a particular phenomenon.

Panel 5.4(b) is very similar to panel 5.3(b) except on the absence of a connected

(dark blue) area on the Pacific ocean, suggesting that the influence of El Niño at these

time scales is very low and restricted to the tropical Pacific. At intra-annual time

scales, panel 5.4(c) shows the disappearance of many links from the corresponding

Fig. 5.3(c). This suggests that at this time scale, even if El Niño signal is not as strong

as on interannual scales, it is already connecting far away tropical and extratropical

areas as Alaska [198]. Thus, removing El Niño signal affects very heavily the connec-

tivity of the network. For longer time scales – shown in panel 5.4(d) – the scenario is

similar as for 5.4(a) with only a remnant of connectivity in the tropical region.
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5.3.2 Internal variability

Figure 5.5 shows AWC maps of internal variability, computed by averaging the nine

AWC maps obtained from the individual model runs, where in each time series, the

forced signal (the average of the nine runs) was removed. Contrary to the forced vari-

ability case presented before, in this case the most connected areas are on the extra-

tropics. This is consistent with results of previous figures and indicates that in the

tropics the ocean forces the largest portion of atmospheric variability. As the tropical

atmosphere cannot sustain horizontal gradients generated by SST anomalies, it in-

duces vertical movements of air, convection and release of latent heat, thus giving rise

to atmospheric circulation anomalies.

In the extratropics internal atmospheric variability is larger leading to stronger

connections. The larger connectivity in the northern hemisphere suggests that the

large landmasses affect atmospheric variability, which is consistent with our current

understanding of storm track dynamics and low frequency transients [206].

The most connected spot in Fig. 5.5(a) is over the Labrador sea. The rest of the

highly connected areas (in green) are present mostly in the northern hemisphere. In

the southern hemisphere connectivity is largest over the Southern ocean. Investiga-

tion over this well connected area near Antartica –only found using MIH to quantify

interdependencies– showed that in this area histograms have a higher skewness than

in the rest of the nodes, an effect that has also been reported and discussed in [182].

This effect is found on the internal-plus-forced AWC map of Fig. 5.2(a) and using re-

analysis data as shown in panel Fig. 5.1(a). When considering other measures to quan-

tify interdependencies, such as Pearson cross correlation or MIOP, the AWC maps do

not show high connectivity in this region [130].

With respect to the AWC maps computed using MIOP, in contrast to the forced

case, the intraseasonal, intra-annual and interannual maps are very similar to each

other. This is a sign of “multiscale variability”. i.e. variability distributed over many
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Figure 5.5: Maps of averaged AWC, revealing the internal variability network (see text

for details). The statistical interdependencies are quantified as in Fig. 5.2 (a) MIH,

MIOP (b) intraseasonal, (c) intra-annual and (d) interannual. It can be noticed that

in this network the time scale showing more connectivity is the intra-annual time

scale. This is consistent with the shorter memory of the atmosphere compared with

the ocean.

time scales. Internal variability cycles are less well defined, with spectra similar to

“red" noise. It can be seen that the most connected AWC map is the intra-annual one,

stronger than both the intraseasonal and the interannual, consistent with the fact that

atmospheric anomalies are less persistent than oceanic ones [210, 221].

The fact that the most connected area in Fig. 5.5(a) is over the Labrador sea, sug-
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Figure 5.6: Maps of averaged AWC, revealing the internal variability network when

the NAO index is removed from the time series (see sections 3.1.1 and 1.4.2 for de-

tails). The statistical interdependencies are quantified as in Fig. 5.2 (a) MIH, MIOP

(b) intraseasonal, (c) intra-annual and (d) interannual. It can be noticed that in this

network the time scale showing more connectivity is the intra-annual time scale. This

is consistent with the shorter memory of the atmosphere compared with the ocean.

gests that it is related to NAO. In order to verify this, NAO was removed from the time

series using the same procedure as with NINO3,4, explained above. The results are

shown in Fig. 5.6. Here, indeed the Labrador connected area dissapears in all the pan-

nels while the connectivity unrelated to NAO (i.e over southern hemisphere or China)

remains almost unchanged.
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5.4 Node connectivity maps

AWC maps provide information of the connectivity of the geographical regions, but

no information about the nature –spatial range or distribution– of the links. It is ex-

pected that nearby points behave similarly and this leads to high values of correlation

between nearby places [12, 140]. The distance over which the climate variables are

well connected is related with the Rossby radius of deformation (RRD) [206], which is

the distance that a particle or wave travels before being significantly affected by the

Earth’s rotation. Also, in the tropics, this proximity effect can be greatly enhanced as

there the information is propagated very fast longitudinally. Here the goal is to unveil

the presence of teleconnections, that is, connections between regions separated more

than the RRD.

Plots 5.7, 5.8, 5.9, and 5.10 show the connections of a node, indicated with “×”.

Figures display MIH in the left column and MIOP in the right column. The time scale

of the MIOP maps is interannual for the forced variability network and intra-annual

for the internal variability network, following above results. Since there is a focus on

unveiling weak but long range significant links, the color scale for nearby links was

saturated. In this way it is possible to see the weak links with good resolution, loosing

information for the stronger links (stronger than 0.3 on the arbitrary scale of MI, where

the highest links have values of 1 or 2 on the same scale, as shown in the previous

chapter) which will be all represented with the same color.

5.4.1 Forced variability

Figure 5.7 shows the connections of a point in the central Pacific ocean in the forced

variability network. given the similarity of panels 5.7(a) (which contains all time scales)

and 5.7(b) (which contain information for the interannual tima scale only) it can be

inferred that most of the links are links reflect behavior in the interannual time scale.
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Figure 5.7: Connectivity map of a node in central Pacific (indicated with ×). Panels

(a) and (b) are computed from forced time series (averaging over nine model realiza-

tions); panels (c) and (d) are computed also from forced time series, but with ENSO3.4

linearly removed and thus not containing –to the first order– contributions due to El

Niño . In (a), (c) interdependencies are quantified via MIH; in (b), (d) via MIOP inter-

annual time scale.

Panels 5.7(c) and 5.7(d) display the same node connectivity maps as on 5.7(a) and

5.7(b) respectively, however, in this case the NINO3.4 index has been removed from

the time series and thus (to first order) they do not contain links due to El Niño phe-

nomenon. The differences between panels 5.7(a) and 5.7(c) and between 5.7(b) and

5.7(d) are evident. First, after eliminating the effects of El Niño the tropical and ex-
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Figure 5.8: As Fig. 5.7 but considering a node near Alaska (indicated with ×). Compar-

ing with Fig. 5.7 one can notice that the teleconnection between this region and the

Pacific in due mainly to El Niño.

tratropical teleconnection patterns associated to the spot in the Pacific disappear in-

dependently of the methodology used to quantify interdependencies (MIH or MIOP):

the connectivity becomes restricted to the tropical Pacific basin. Even inside this re-

gion the connectivity is greatly decreased as seen by a much smaller red spot of links

over 0.3, although the remaining connections indicate that, either a linear regression

is not enough to fully remove the influence of El Niño, or the ENSO dynamics is not

fully represented by the NINO3.4 index.

According to panels (a) and (b) of Fig. 5.7, Alaska is an area well connected to the
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Figure 5.9: As Fig. 5.7 but of a node near New Zealand (indicated with ×). In panels

(b) and (d) the MIOP is adjusted to interannual time scale. Compare with Figs 5.7 and

5.8.

equatorial Pacific ocean. To further investigate, Fig. 5.8 shows global connections to a

point nearby Alaska. It can be seen in panels 5.8(a) and 5.8(b) that it indeed presents

connections to the equatorial Pacific ocean with a maximum close to the dateline.

Furthermore, connections to the southern Pacific ocean, Central Africa, Indian

ocean and even the Drake passage are found. These connections are stronger in panel

(b) especially those linking Alaska with the Indian and southern Atlantic ocean and

Drake Passage. If NINO3.4 is removed, a dramatic change in the maps is found. Con-

nections become almost local and all the north - south teleconnections are lost; only
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connections probably associated with an imperfect removal of the El Niño signal re-

main. This indicates that there are no direct teleconnections between Alaska and (for

example) the Drake Passage, but both are strongly connected to El Niño. As these

networks are constructed using symmetrical measures of dependency, calculated di-

rectly from the data, they are unable to distinguish between a direct connection and

an indirect one. In the next chapter a methodology to construct directed networks is

explored.

Figure 5.9 is as Figs. 5.7 and 5.8, but for a node in the southern hemisphere ex-

tratropics. We chose southern New Zealand because it shows a relatively high forced

density [seen in Fig. 5.3 (a,d)] and it is connected to the selected point over the tropi-

cal Pacific of Fig. 5.7 (a,b). Panel 5.9(a) shows connectivity between the chosen point

and the Pacific and Indian oceans, as well as wave patterns (probably a Rossby wave-

train) along the extratropics. Figure 5.9(b) adds information to 5.9(a) showing that

these teleconnections are of interannual type. If NINO3.4 is removed (panels 5.9(c)

and 5.9(d)) not surprisingly the links to the tropical Pacific disappear, but also some of

the connectivity to the Indian ocean suggesting that part of the links with the Indian

ocean are indirect. Nevertheless, the extra-tropical wavetrain remains, and Fig. 5.9(d)

suggests that the wave train may be forced by the Indian ocean at interannual time

scales. As in the previous figure, some weak north-south teleconnections are found,

but they disappear if NINO3.4 index is removed, indicating again an indirect connec-

tion between the extratropics through the Pacific ocean.

5.4.2 Internal variability

Figure 5.10 displays the internal variability connections of a node over the most con-

nected area of Fig. 5.5. The average of the resulting nine different connectivity maps is

shown. In the left column the connectivity computed using MIH is displayed, while in

the right column, the intra-annual scale is shown, using MIOP. This time scale shows

the strongest response for internal variability. In Fig. 5.10(a) the original internal vari-
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Figure 5.10: Maps of internal variability showing the connectivity of a node in the

Labrador Sea (indicated with ×). Panel (a), (b) correspond to the original internal time

series as in Fig. 5.5; in panels (c), (d) the NAO was linearly removed and thus the links

do not contain –to the first order– contributions due to the North Atlantic Oscillation.

In (a), (c) interdependencies are quantified via MIH; in (b), (d) via MIOP intra-annual

time scale.

ability connections are shown, revealing teleconnections extending over the northern

hemisphere, especially over Scandinavia, Mediterranean Europe, east coast of North

America and tropical north Atlantic. Figure 5.10(a) also shows connections to eastern

China and the Aleutian islands. The pattern shown in Fig. 5.10(b) mainly corresponds

to the known influence of the North Atlantic Oscillation. This is further substanti-
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ated in panels (c) and (d) of the same figure, where the NAO influence is removed

and the connections of the Labrador sea, particularly in the northern Atlantic basin,

are strongly weakened. As the NAO indices are mostly internal and do not depend

of the ocean forcing, they were calculated as the Principal component (PC) related to

the leading EOF mode for each different model run, using geopotential height (GH)

data. Afterwards, each index was removed from the corresponding SAT data and the

internal climate networks were constructed as before.

5.5 Summary and conclusions

The monthly variability of the surface air temperature field has been decomposed into

a part forced by the ocean temperature, and another due to internal atmospheric vari-

ability. This has been performed using an ensemble of nine AGCM runs forced with

the same SST data, and starting from slightly different initial conditions. The model

data was firstly validated by observing a qualitative agreement between the networks

constructed from one model run and those constructed from reanalysis data. After-

wards, climate networks were constructed from model data, for the forced and for the

internal variability components, using Mutual Information to assess the interdepen-

dencies between the time series. Ordinal patterns have been used in order to separate

and determine the strength of the links at different time scales.

While the main conclusions of this analysis (the connectivity of the forced variabil-

ity network is heavily affected by El Niño, whereas that of the internal variability net-

work is significantly affected by the NAO) are not new, new information has been un-

covered as ordinal analysis allows to study these phenomena on different time scales.

This has revealed that most of the links detected in the forced variability proceed from

long time scales, while the contributions of intra-annual time scales to the internal

variability are the most important. The results of this chapter also open the possibility

of studying how various network measures, such as the average path length, assorta-
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tivity, clustering coefficient, betweeness, etc. depend on the time scale considered for

quantifying statistical interdependencies.

Another conclusion of this chapter is that forced and internal atmospheric vari-

ability are characterized by very different networks. Because the separation of inter-

nal and forced variability done here requires averaging over several model runs, the

networks obtained here could not have been obtained from observational/reanalysis

data only. It is shown that the forced variability is stronger in the tropics, while the

internal variability peaks in the mid latitudes.The network of forced variability has

the strongest connections at interannual time scales. Long range teleconnections from

the tropics to the extratropics and even from different hemispheres in the forced net-

work were observed and explained by the influence of El Niño. On the other hand, the

network of internal atmospheric variability has the strongest connections in the ex-

tratropics, and it was found that connections to the Labrador sea are heavily affected

by the North Atlantic Oscillation. To the best of our knowledge this is the first time this

effect is observed in terms of network connectivity.

This study is focused on the lowest levels of the atmosphere. A complementary

analysis was performed by Arizmendi et. al. [205], devoted to the study of the evolu-

tion of the upper atmosphere during the 20th century and aiming at distinguishing the

oceanically forced component from the atmospheric internal variability on different

time scales. The methodology proposed here for distinguishing links in spatial range

(short and long), time scale (intraseasonal, intra-annual and interannual) and type of

variability (forced vs. internal) is a novel approach for the study of climate networks

that provides new insight into the climatological meaning of the links found and their

connection to physical phenomena.
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Chapter

6
Directionality of Climate

Interactions

This chapter explores a natural extension of the previous research. Information-theoretic

tools are used to construct directed climate networks from time-series of observed cli-

matological data. Specifically, surface air temperature anomalies are considered. Two

datasets—one monthly-averaged and another daily-averaged— are used. Directed

links between network nodes are defined via an analysis of the net direction of infor-

mation transfer. A predictability measure—based on conditional mutual information

and explained in section 3.2.3—that quantifies the amount of information in a time-

series x(t ), contained in τ time units in the past of another time series, y(t ), is used.

The resulting analysis of the directed network yields full agreement with state-of-the-

art knowledge in climate phenomena, validating this methodology for inferring the

net directionality of climate interactions, directly from the data. No assumptions are

made, except for the appropriate setting of the parameter τ which is sensitive to the

shorter or longer auto-correlation of the time series.

As a first stage, we calculate link directionality, using monthly-averaged SAT data
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in order to to compare with the undirected networks reported in the previous chap-

ters. Afterwards, the results of the analysis of the daily-averaged datasets are pre-

sented. They are consistent with those obtained from monthly-mean data, further-

more uncovering additional patterns of atmospheric variability, not observed in monthly-

mean data as the averaging procedure filters out high frequency and variability.

6.1 Statistical significance analysis

To address the significance of the values of the directionality index (DI) employed, 100

surrogates were generated using the bootstrap (BS) algorithm [197]. The null hypoth-

esis for DI is that there is no preferential direction of the interaction. Also, as before,

the null hypothesis considered for MI is that the processes are independent from each

other.

The BS algorithm randomly resamples with replacement from the original datasets

using blocks of data of approximately the size of the autocorrelation time of the time

series, and then computes the estimators (MI and DI) from the resampled data. In this

way, for each link, two different empirical distributions are obtained (for MI and for

DI), from which significance thresholds are extracted.

Afterwards, for each link, the MI value was calculated from the original datasets

and a significance test was applied. A MI value is considered significant if: MI >ΘM I ,

where ΘM I is the threshold derived from the bootstrap MI distribution. In addition—

for the MI significant links only—the DI value computed from the original dataset was

compared to the DI upper threshold Θ+
D I and the lower threshold Θ−

D I . The DI value

was considered significant if DI > Θ+
D I or if DI < Θ−

D I . This two-step significance test

was performed with the scope of assessing firstly the presence of a link, and afterwards

its directionality.

The significance thresholds, ΘM I , Θ+
D I and Θ−

D I , extracted from the BS surrogates,

were computed asΘM I =µM I +3×σM I ,Θ+
D I =µD I +3×σD I , andΘ−

D I =µD I −3×σD I ,
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with µ and σ being the mean and standard deviation of the corresponding MI and

DI bootstrap distributions. See section 3.4.1 for a full explanation of the surrogate

procedure.

A graphical explanation of the full procedure is shown in Fig. 6.1 where, for two

nodes (one over the Pacific and one over the Indian ocean) the unfiltered DI maps

are displayed in panels (a,d), the significant MI values are displayed in panels (b,e)

and finally the DI significant values for the MI significant links are displayed in panels

(c,f). The DI maps show positive DI values in red, which mean outgoing links, while

the incoming links are shown in blue.

In Fig. 6.2, panels (a) and (b) show that high MI values do not imply high DI values.

In Fig. 6.2 (b) one can notice that most of the blue dots are located in a narrow range

of MI values while they are distributed in terms of DI values. An inspection of panel (f)

in Fig. 6.1 shows that the blue links related to the node in the Indian Ocean are from a

well-defined region in the central Pacific Ocean. On the other hand, one can notice in

Fig. 6.2 (b) that the few red dots are more distributed in the MI, DI plane, consistent

with Fig. 6.1 (f) the red outgoing links connect the node in the Indian Ocean to various

regions on Earth.

6.2 Analysis of monthly-averaged SAT anomalies

6.2.1 Influence of the parameter τ

As stated in the methodology the correct choice of the value of τ is necessary for ob-

taining consistent results. As τ can be only an integer, for monthly averaged data its

minimum value is one month. In the tropical areas the influence of the ocean on the

surface air temperature is a dominant characteristic. Moreover, because of the large

heat capacity of water and the ocean’s dynamics, the sea surface temperature anoma-

lies vary in the scale of months. Calculating DI for a point in the central pacific (NINO3

area) for different values of τ yields the results shown in Fig. 6.3. The point considered
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Figure 6.1: Procedure of constructing significant directionality maps from raw DI cal-

culations. In panels (a) and (d) the unfiltered DI maps are shown for two nodes, one in

the central Pacific ocean and one in the Indian ocean, indicated with triangles Incom-

ing links are shown in blue while outgoing links are in red. In panels (b) and (e) only

the statistically significant MI values are shown. These results are combined in (c) and

(f) where only the links that have both, statistically significant MI and DI values are

shown using the same color code as in panels (a) and (d).
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Figure 6.2: (a), (b) Plot of DI (τ= 1 month) vs. MI for all the links of the two nodes in the

Pacific and Indian oceans considered in Fig. 6.1. Incoming links are indicated in blue

and outgoing links, in red. Significant links are plotted in red or blue dots; the black

dots indicate the disregarded links (either because MI is not statistically significant, or

because MI is significant but DI is not). The triangles indicate the (MI, DI) values of

the particular link between the two nodes.

is the same as in Fig. 6.1 (a-c) and moreover, the panel 6.1 (c) is the same as panel 6.3

(a).

For τ = 1 Fig.6.3 (a) shows the central Pacific influenced by (in blue) the eastern

equatorial Pacific and influencing (in red), presumably through atmospheric telecon-

nections, the global tropics and the extratropical Pacific ocean. However, as τ grows

the number of significant connections decreases, suggesting that the time-scale of

decorrelation of the SAT is less than 6 months. This is consistent with the persistence

time scale of 3 to 6 months of observed sea surface temperature.

As shown in chapter 5, the extratropical atmosphere shows larger internal vari-

ability than the tropics and the impact of the extratropical SST on the atmosphere

is much more limited than in the tropics. Thus, the variability of extratropical SAT

is dominated by synoptic atmospheric dynamics and has time scales of a few days.
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Figure 6.3: Effect of τ on tropical areas using monthly-averaged data. In this case a

point in central pacific (the same point used in the top row of Fig. 6.1 and in [130]

is considered. The values of τ are: (a) 1 month, (b) 3 months, (c) 6 months, (d) 12

months. Notice the decorrelation of the time series for large τ. Incoming links are in

blue while outgoing links are in red.

Longer persistence time scales might appear in the extratropics if the region is influ-

enced by tropical SST. This motivates the use of a small value of τ when considering

extra-tropical variability.

In Fig. 6.4 the DI and MI maps for two points in the extratropics are shown. Panels

6.4 (a,c) show links related to a point in southeastern South America, while panels 6.4

(b,d) show links related to a point in the Labrador sea, whose characteristics are linked

106



6.2. ANALYSIS OF MONTHLY-AVERAGED SAT ANOMALIES

Figure 6.4: (a), (b) Directionality of the significant links (τ = 1 month) of two nodes

in the extratropics indicated with triangles: (a) in southern South America (de la Plata

basin) and (b) in Labrador Sea. As the decorrelation time on the extratropics is very

fast, no clear structures are seen. In order to show that it is not a problem of statistics,

panels (c) and (d) display the significant MI values. Incoming links are in blue while

outgoing links are in red.

to the North Atlantic Oscillation (NAO) as shown in Chapter 5. The top panels show

DI for τ= 1 month while the bottom panels show MI.

Consistent with the previous description, the extratropical SAT show only some

incoming links from the tropical region for τ= 1 month. The point over the Labrador

Sea seems to show also some outgoing links to the northeast, although there is no clear
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structure. As will be shown in Sec. 6.3, a better identification of link directionality is

obtained by using daily data.

6.2.2 Comparison between monthly and daily datasets

Figure 6.5: Comparison of results for monthly-averaged and daily-averaged datasets.

The nodes considered are as in Fig. 6.1. Panels (a) and (c) display the DI measure

(τ= 1 month) calculated from monthly data —same as Figs. 6.1 (c) and (f). Panels (b)

and (d) display the DI measure (τ = 30 days) calculated from daily data. Results are

consistent and the resolution using daily data is better.

In order to obtain more temporal resolution daily averaged data has been used.

Figure 6.5 shows a comparison between DI calculated for monthly-mean data—panels
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6.5 (a) and 6.5 (c)—and using daily-mean data—panels 6.5 (b) and 6.5 (d), correspond-

ing to the same points considered in Fig. 6.1. In order to adequately compare the

datasets, τ was chosen equal to one month in the monthly-mean data and and 30

days in the daily-mean data.

The maps using monthly- and daily-mean data show similar features and no in-

consistencies are found. Nevertheless, the map constructed using daily-mean data

captures much better the local and remote dependencies and directionality of the

links. Areas with significant links are better defined and some regions that are known

to be influenced by equatorial Pacific SST, like the tropical north Atlantic [220], clearly

appear using daily-mean data, but only very roughly using monthly-mean data. Thus,

the increase in temporal resolution improves the representation of the links related to

tropical regions.

6.3 Analysis of daily-averaged SAT anomalies

6.3.1 Influence of the parameter τ

To analyze the influence of the parameter τ in the DI measure when it is computed

from daily data, four links connecting the node in the Pacific ocean are considered in

Fig. 6.6 with:

(a) a region in Labrador Sea (60.0 N, 52.5 W), (b) a region in tropical north Atlantic

(25.0 N, 40.0 W), (c) a region in southern Pacific (5.0 N, 80.0 E) and, (d) a region in the

Indian ocean (−22.5 N, 132.5 E). Figure 6.6 displays, for each link, the DI value vs τ.

In order to filter the noise, the DI value of nearby points—over a box of ±5◦ latitude

and longitude centered in the region of interest (second neighbors in the grid)—was

calculated and averaged.

In panel (a), the directionality index that characterizes the influence of the equa-

torial Pacific to the Labrador Sea shows a small increase for small τ that persists up to
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Figure 6.6: Influence of the parameter τ when DI is computed from daily-averaged

data. The DI value is plotted vs. τ for the four links that connect a node in the Pacific

ocean with (a) a node in Labrador sea (60.0 N, 52.5 W), (b) a node in tropical north

Atlantic (25.0 N, 40.0 W), (c) a node in southern Pacific (5.0 N, 80.0 E) and (d) a node

in the Indian ocean (−22.5 N, 132.5 E). In order to filter the noise the DI value was

averaged over second neighbors in the grid. The shaded area (red online) indicates

the DI value computed from 100 BS surrogates, as explained in section 6.1.

about τ= 10 days. This is the typical time scale associated with the setup of the atmo-

spheric anomalies forced by anomalies in tropical convection. Afterwards, the DI de-

creases exponentially-like, becoming non-significant at τ = 30 days—as the DI value
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enters the shaded area. In the tropical north Atlantic—Fig. 6.6 (b)—the DI related to

the equatorial Pacific shows similar values as for the Labrador Sea case, for up to τ= 10

days. For larger values of τ, however, the DI has significant values (approximately con-

stant) up to about τ= 60 days. Afterwards, it decreases becoming non-significant for

τ larger than 4 months. The difference in behavior between the tropical north Atlantic

and the Labrador Sea might be because the remote forcing from ENSO induces a clear

regional response in the surface temperatures of the tropical Atlantic [220], which will

add persistence to the remote signal. On the other hand, in the Labrador Sea, the

ocean does not respond strongly and the large atmospheric variability obscures the

signal from the equatorial Pacific.

A similar behavior to the one seen in the tropical Atlantic is also found in the

Southern ocean—Fig. 6.6 (c). There is a fast time scale for small values of τ, but in

this case the influence of the equatorial Pacific persists for τ up to 80 days, where DI

starts to decrease, with DI values significantly larger than in the Atlantic. The ENSO

influence over the south Pacific is one of the most robust signals in the extratropics,

consequence of atmospheric teleconections associated with the Pacific South Amer-

ican pattern [222]. The time scale of about 3 months seen in the DI is likely associ-

ated with the time it takes to the surface ocean to respond to anomalous atmospheric

fluxes and to the seasonal dependence of the atmospheric teleconnection pattern on

the mean state of the extratropical atmosphere.

The behavior of the influence of the equatorial Pacific onto the Indian ocean—Fig.

6.6 (d)—also shows a fast time scale of a few days, but in this case the largest value of

the DI is seen for a τ of about 60 days. Also, there are large values of DI for τ values of

more than 4 months. This suggests that the Indian ocean responds to the incoming

ENSO signal in a time scale of about 2 months, through thermodynamic and dynamic

coupling [223, 224].

Thus, the DI plots as a function of τ for different ocean regions suggest that there

is one fast time scale of about 10 days associated to the setup of the atmospheric tele-
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conections associated with changes in tropical convection. Moreover, in some regions

the DI shows a second longer time scale of about 2 or 3 months associated with the

response of the local ocean to the circulation anomalies forced from the tropics. Fi-

nally, longer time scales related to oceanic inertia also affect the DI value but longer

datasets are needed in order to perform a robust estimation of their effects.

As supplementary information for better understanding the behavior of DI(τ), two

videos have been prepared which show DI maps for three points, one in the equatorial

Pacific∗, other in the Labrador sea†, and other in Southern South America‡ for values

of τ from 1 day to 180 days. The point considered in the first video is the same as in

Fig. 6.6 so the maps can be compared to the effects over the selected points.

6.3.2 Influence of τ in the extra-tropics

The improvement in characterizing directionality using daily-mean data is larger in

the extratropics. As mentioned above, the extratropical SAT is strongly dependent on

synoptic scale perturbations (a time scale of a few days). Thus, the use of daily-mean

data should allow to uncover these relationships and investigate the direction of the

links as the lag increases. In order to do so, the point in southeastern South America

shown in Fig. 6.4 is considered and the directionality network for several values of τ

ranging from a day to one month (Fig. 6.7) is constructed. For synoptic time scales of a

few days the methodology uncovers the existence of a wave train connected to south-

eastern South America propagating with a southwest-northeast direction. Moreover,

there is a clear separation line between regions with incoming and outgoing links.

This configuration is characteristic of the progression of a front through the reference

point and does not imply that the SAT over the reference point influences the region to

the northeast but it only happens to be in the path of the perturbation. As the lag time

∗Equatorial Pacific: http://youtu.be/alcormjKIbM
†Labrador Sea: http://youtu.be/oSW5Ltkw9cQ
‡South America: http://youtu.be/-3Ruyj1MPz8
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Figure 6.7: Effect of τ in the southern extratropics, when DI is computed from daily

data. The same node in Fig. 6.4 (a) is considered, and the values of τ are: (a) 1 day, (b)

3 days, (c) 7 days, and (d) 30 days. Small τ capture wave trains propagating from west

to east, while for τ values longer than a week the decorrelation is higher and only the

influence from the Pacific ocean persists.

increases, the extratropical wave train associated with synoptic time scales fades and

only the points in the tropics remain, consistent with an influence of the equatorial

Pacific on the region on longer time scales, perhaps related to ENSO.

A similar behavior is seen taking as reference point the SAT over the Labrador Sea

(Fig. 6.8). For small values of τ the progression of a front is clearly detected using this

procedure: given the mean westerly winds at these latitudes, the front moves from
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Figure 6.8: As in Fig 6.7 but for a node in the northern extratropics —the Labrador

Sea, as in Fig. 6.4 (b). The values of τ are as in Fig 6.7. The Labrador sea area is related

to a source of atmospheric variability of the north Atlantic ocean that affects Europe.

As in Fig. 6.7, smaller values of τ can capture wave trains propagating from west to

east, over Europe, while values of τ longer than a week loose this effect and only the

influence from the Pacific ocean persists.

west to east and is clearly marked as the boundary between the incoming and outgo-

ing links. It is also seen for τ= 3 suggesting that in about three days the front reaches

the Mediterranean region affecting temperatures there. Again, as τ increases mainly

the tropical links remain. However, even for τ= 30 there is a well defined region of out-

going links that remain over the Labrador Sea, suggesting that the SAT in the region
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may have relatively long time scales of variability, perhaps related to the North At-

lantic Oscillation. Another possibility is the influence of the local ocean that increases

the persistence of atmospheric temperature anomalies through thermodynamic cou-

pling, as shown by Barsugli et. al. [210].

As supplementary information to this section, two videos were prepared showing

(for τ= 3 days in all cases) the differences of the patterns of DI along a parallel line. the

45◦ North§ and the 30◦ South¶ parallels were chosen. As τ = 3 days, patterns of syn-

optic variability appear, similar to those in figures 6.7(b) and 6.8(b). However these

patterns result to be different depending of the geographic location of the selected

point (shown in yellow in the videos). In the first video, notice, e.g. the effect of the

northern Atlantic ocean over Europe, shown as blue over the Atlantic when the point is

over Europe and as red over Europe when the point is over the northern Atlantic. Also

the signature of ENSO is found when the yellow dot crosses the dateline. In the sec-

ond video notice how the geographical conditions are almost the oposite, with almost

all covered of water instead of land as in the northern Hemisphere. Here, wavelike

propagation is less constrained and it appears to be of a longer range. Also the Efect

of ENSO is found, even if it is a mild effect due to the fast time scales considered with

τ= 3 days.

6.3.3 Influence of τ in the tropics

Figure 6.9 presents the effect of τ for a point in the tropics. Panel 6.9 (a) shows the

point considered in the Pacific ocean for τ= 1 day. Contrarily to e.g. figure 6.7, where

there is a clear front propagation due to the existence of wave trains in the extratropics,

in this case the connections are weak. The opposite case, for τ> 30 days—Panels 6.9

(b,c)—are consistent with figure 6.6 as the structures are robust for a wide range of

τ. Notice in Panel 6.9 (c) the presence of a second blue area near the coast of Chile

§45◦ North: http://youtu.be/BkM-tumD7To
¶30◦ South: http://youtu.be/fZqbZ0Be_bs
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Figure 6.9: Effect of τ using daily data for a node in the tropics. In panels (a-c) the

node is in the Pacific ocean, and (d-f), in the Indian ocean. The values of τ are: (a,d)

1 day, (b,e) 45 days, and (c,f) 90 days. The maps for τ = 30 were shown in Fig. 6.3.

In contrast to the extra-tropics, where the propagation of waves in the scale of days

is dominant, and are clearly seen in the maps for time scales of a few days, in the

tropics the variability is longer as the ocean adds persistence to the nearly barotropic

atmosphere. For higher values of τ only long lasting phenomena are observed, related

to the strongest variability pattern in this area, which is ENSO.
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for high values of τ. In order to complement the information provided in panels 6.9

(a,b,c) and also in Fig. 6.6. Panels 6.9 (d,e,f) show maps for a point in the Indian ocean,

for values of τ= 1, 45, and 90 days respectively where similar results are obtained with

weak connections for low values of τ and robustly strong for τ> 30 days.

6.4 Directionality on the tropical Pacific Ocean

In Fig. 6.10 the DI for τ = 30 days has been plotted for points covering all the equa-

torial Pacific. They begin at 95.0◦ W –panel 6.10 (a) – and end at 125.0◦ E –panel 6.10

(d). Clearly, the influence the Pacific ocean exerts is almost global, over tropics and

extratropics, in agreement with previous studies (e.g. in [211]). The DI allows to show

that —even if there are feedbacks and the Pacific is affected by extratropical perturba-

tions and other ocean basins (e.g. the tropical Atlantic)— the influence is effectively

from the Pacific to the rest of the world. Moreover, the maps show that the largest

influence is done by the equatorial Pacific close to the dateline. This is clear in the

extratropical atmosphere, as well as in the tropical north Atlantic. On the other hand,

the connection to the Indian ocean and south Atlantic is not so sensitive of the point

considered over the equatorial Pacific. As the reference point moves further west from

the dateline the influence decreases substantially, only remaining weak connections

to the tropical north Atlantic and Indian oceans. The methodology can thus be ap-

plied to find the best region to construct an index that describes the Pacific influence

over the area where climate anomalies are studied.

Notice that all maps show a blue tongue of incoming links to the east of the point

considered; it it is seen first in panel 6.10 (a) and extends westward until covering the

whole Pacific ocean in 6.10 (d). This feature is related to the existence of the equatorial

cold tongue and the fact that easterly trades blow over the equator thus advecting air

from the east to the west of the point.

In order to further illustrate the phenomena seen in Fig. 6.10, a video‖ is included

‖Equator: http://youtu.be/F8DRZEe-big
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Figure 6.10: The zonal change of directionality over the equatorial pacific is shown. In

all cases τ = 30 days. From (a) near the south American coast, to (d) in the western

Pacific ocean. As seen in the maps, most of the points over central and eastern Pacific

have an important effect over a large part of the world; especially over the tropical ar-

eas and the rest of the Pacific ocean—notice that in (a)-(c) the teleconnections remain

basically the same, although the intensity varies. Incoming links are in blue while out-

going are in red.

as supplementary information. This film shows DI along the equator. Notice that

outside the Pacific ocean, the rest of the equator—with some exceptions—shows a

negative DI with respect to the Pacific. This further confirms the analysis given in this

section.
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6.5 Conclusions

An information theoretic measure to calculate the direction of propagation of infor-

mation directly from the data was implemented and used to construct directed cli-

mate networks of surface air temperature. The applicability of the method was shown

for monthly- and daily-mean data. Using monthly-averaged SAT data the results from

previous chapters have been recovered, and the system correctly found the direction

of propagation of the patterns.

The measure included a parameter τ, that represents the time required for the in-

formation to travel from one node to another. It was found that by adequately tuning

τ the network connectivity varied revealing the various time-scales of atmospheric

processes; too short values of τ failed to capture several long-range links, while for too

large values of τ (above the length of decorrelation in the data) the connectivity of the

network decreased drastically. A further study of the dependence of some links with

τ was made and it was found to be consistent with the propagation of information in

the tropics and extra tropics.

For monthly-mean data, it was shown that the method recovers the known direc-

tion of propagation, and it was shown to be more suited for the tropics where vari-

ability is slower due to the influence of the SSTs. In addition, when considering daily-

averaged SAT data, the analysis revealed variability patterns consistent with known

features of the global climate dynamics. For example, in the extratropics the long time

average synoptic weather was correctly inferred: as specific examples two geograph-

ical regions in different hemispheres—one node in the La Plata basin and another in

the Labrador Sea—were considered, and the link direction revealing wave trains prop-

agating from west to east, in both hemispheres was shown.
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Chapter

7
Conclusions

This Thesis was centered in the construction of climate networks based on the sur-

face air temperature field, and the use of these networks to study several aspects of

the global climate. Built out by means of information theoretic measures and ordi-

nal time series analysis, these networks allowed to study statistical similarity among

geographical regions, time scales of variability and the direction of their interactions.

Statistical similarity was evaluated by means of information theoretic measures and

special efforts were made in assessing the statistical significance of the links of the

networks by means of classical statistics, surrogate data and bootstrap.

In Chapter 4, two thresholding methodologies were employed. The first one was

based on surrogate data to define a global threshold, chosen as the mean value plus 3

standard deviations of the surrogate MI distribution (Figs. 4.1, 4.2). In order to com-

pare with previous work [12, 120, 128], the second methodology fixed the link density

(Figs. 4.3, 4.4). The networks obtained using both thresholding schemes were consis-

tent. Furthermore, the first method was found to display the complexity of the atmo-

spheric teleconnections in more detail due to the increasing of the number of links.

For the second methodology, the main features of the network for fixed link density
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were found to be independent of the bin number used for computing the mutual in-

formation, so confirming the robustness of the climate networks constructed with this

thresholding methodology.

The use of ordinal patterns allowed to study the properties of networks built at dif-

ferent time scales. An increase in the ordinal pattern spacing—therefore, an increase

in the timescale—was found to generate a richer connectivity pattern in the equato-

rial Pacific area (figures 4.1–4.4, left column, rows 2–4). This increase in connectivity is

associated with an increase in the teleconnections from points situated in this region.

This result is consistent with climatological interpretations in terms of atmospheric

teleconnection patterns. As the equatorial Pacific is known to be dominated by ENSO

on scales longer than several months, this method allowed to obtain networks where

the effect of ENSO went from weak (monthly OP) to strong (yearly OP), independently

of the number of letters used for the ordinal patterns and of the thresholding method-

ology.

***

In Chapter 5 the variability of the monthly averaged surface air temperature field was

decomposed—using an ensemble of nine AGCM runs forced with the same SST data,

and starting from slightly different initial conditions—into a part forced by the ocean

temperature, and another due to internal atmospheric variability. As the separation

of internal and forced variability required averaging over several model runs, the net-

works obtained could not have been calculated from observational/reanalysis data

only.

Separate climate networks were constructed for the forced and for the internal

variability components, using Mutual Information to assess the interdependencies

between the time series. Ordinal patterns were also used in order to separate and

determine the strength of the links on different time scales. The NINO3.4 and NAO
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indices were linearly removed from the original data and the CNs were recalculated to

assess the effect of these phenomena on the connectivity of the network.

The main conclusions were that the global connectivity of the forced variability

network is heavily influenced by ENSO (Figs. 5.3 and 5.4), and that of the internal vari-

ability network is significantly influenced—in the north Atlantic—by the NAO (Figs.

5.5 and 5.6). This is in excellent agreement with well known climatological evidence

[1]. Moreover, this has revealed that most of the links detected in the forced variability

proceed from long time scales, while the contributions of intra-annual time scales to

the internal variability are the most important.

Another conclusion is that forced and internal atmospheric variabilities are char-

acterized by very different networks. The connectivity of the forced variability was

shown to be strong in the tropics, while that of the internal variability has a maximum

in mid latitudes. Long-range teleconnections from the tropics to the extratropics—

and even between different hemispheres—were observed in the forced network, and

explained by the influence of ENSO. On the other hand, the network of internal atmo-

spheric variability has the strongest connections in the extratropics, and connections

to the Labrador Sea were found to be heavily affected by the North Atlantic Oscillation.

***

In the last part of the thesis, Chapter 6, directed climate networks were constructed by

using a directionality index, which has not been previously employed for the analysis

of climate data. The presence of significant links was inferred using mutual informa-

tion, while the direction of those links was inferred using the directionality index (Fig.

6.1). To assess the statistical significance of these results the bootstrap method was

employed.

For monthly-averaged SAT, the analysis extended previous works [120,128,130], to

inferring the net direction of propagation of the information. The inference method
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was tested against the value of the parameter τ, that represents the time required for

the information to be transferred from one node to another. The network connectiv-

ity was found to vary as a function of τ (figure 6.6), revealing the various time-scales

of atmospheric processes; too short values of τ failed to capture several long-range

links, while for too large values of τ (above the decorrelation length of the data) the

connectivity of the network decreased drastically. This effect was also dependent of

the latitude and the variability patterns present on the regions considered.

In addition, when considering daily-averaged SAT data, the analysis revealed the

influence of variability patterns (as ENSO, NAO and ) consistent with known features

of the global climate dynamics. In the extra-tropics, the averaged synoptic weather

patterns were correctly inferred. For example, considering nodes in La Plata basin

and the Labrador Sea, the link direction revealed wave trains propagating from west

to east in both hemispheres, consistent with the synoptic weather patterns that domi-

nate atmospheric variability in mid-latitudes (Figs. 6.7 and 6.8). On the other hand, in

the tropical Pacfic and Indian oceans, ENSO was found to be the main component on

long time-scale variability (Fig. 6.9). These are not only fully consistent with previous

results presented in this thesis (e.g. see top right panel of Fig. 4.1), but also comple-

mented these patterns establishing the direction of transfer of the information.

To summarize, the work presented in this thesis has advanced the state of the art

in a number of ways:

• The networks constructed in Chapter 4 were found to be fully consistent with

those previously reported in [12, 128]; furthermore, a careful significance anal-

ysis allowed to construct non-sparse, higher density networks—by identifying

weak but significant links—which displayed features, as teleconnection patterns,

only hinted in the previous analysis but expected by the present knowledge of

climate science.

124



• In Chapters 4 and 5, ordinal analysis allowed for a clear identification of the

different time scales involved patterns in both internal and forced atmospheric

variability types.

• In Chapter 5, the linear removal of ENSO and NAO indices allowed to under-

stand the effect well known climate patterns on the climate network topology.

This effect has found to be considerable, as teleconnection patterns resulted to

be major components of the long-range network connectivity on both internal

and forced variability networks.

• The directionality index of Chapter 6—not used before on climate studies—

permitted a direct analysis of the transference of information among nodes,

from the data. The patterns revealed are consistent with those of chapters 4

and 5, and with the state of the art knowledge of variability patterns.

• The analysis of τ performed in Chapter 6 allowed to identify the time-scales of

net link directionality; for example, the analysis revealed that the Indian ocean

responds to the incoming ENSO signal in a time scale of about 2 months, this

time being shorter for other areas in the globe (figure 6.6).

As future work, it would be interesting to apply this methodology to analyze how the

climate network changes for different climatic variables—as vertical velocity (related

with rainfall in the tropics) or geopotential height—in different seasons, or in different

phases of some phenomenon as ENSO. Also to focus in some specific areas of the

globe, studying their dynamics and time-scales, together with the linear removal of

leading patterns of variability is a direct application of the methods devised during

this thesis.

This work also opens the possibility of studying how various network measures—

such as average path length, assortativity, clustering coefficient, betweenness, etc, cal-
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culated from the adjacency matrices obtained—depend on the time scale considered

for quantifying statistical interdependencies, together with the physical interpretation

of these measures in terms of climate dynamics. Also an analysis of synchronization

of the networks at different time scales could be of interest. As the focus of this thesis

was on the construction of the networks, much of this analysis has not been yet done.

A comparison of the directionality measure presented in this work with other mea-

sures used in the literature is of great interest. Outside the context of climate data

analysis this type of comparison has been done (see, e.g. [177] where several meth-

ods are compared for noisy chaotic oscillators. However directionality measures are

known to perform differently on different types of data, as they are affected by non-

linearities of the data (skewness or higher moments) as well as the autocorrelation of

the time series. Especially interesting is to compare the results presented in this work

with those obtained using Granger causality [149].

Another interesting issue is to analyze the effect of directionality on several time

scales, by computing the directionality index with the ordinal patterns approach. This

would allow to construct networks that characterize short-scale (days to months) or

long-scale (few years) atmospheric processes.

Some of these works are in progress as a natural continuation of this research.
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